STATISTICAL SUMMARIES OF STREAMFLOW DATA IN OREGON Volume 2. Western Oregon By John Friday and Suzanne J. Miller U.S. GEOLOGICAL SURVEY OPEN-FILE REPORT 84-454-4 Prepared in cooperation with Oregon Water Resources Department ## UNITED STATES DEPARTMENT OF THE INTERIOR WILLIAM P. CLARK, Secretary GEOLOGICAL SURVEY Dallas L. Peck, Director Cover photo: Dog Creek near Idleyld For additional information write to: District Chief U.S. Geological Survey 847 N.E. 19th Ave., Suite 300 Portland, Oregon 97232 Copies of this report can be purchased from: Open-File Services Section Western Distribution Branch Box 25425, Federal Center Denver, Colorado 80225 (Telephone: (303) 776-7476) #### CONTENTS | Abstract | |---| | Introduction | | Streamflow records | | Statistical summaries | | Monthly and annual mean discharges | | Magnitude and probability of annual low flows | | Magnitude and probability of annual high flows | | Magnitude and probability of instantaneous peak flows | | Duration table of daily mean flows | | References | | List of gaging stations, in downstream order | | Gaging-station descriptions and statistical tables | ## ILLUSTRATIONS 「Plate is in pocket] Plate 1. Map showing location of streamflow gaging stations in western Oregon. ## METRIC CONVERSION TABLE To convert inch-pound units \lceil in this report \rceil to metric units, multiply by the following factors: | Multiply inch-pound unit | Ву | To obtain metric unit | |--|----------|--| | acre | 0.4047 | hectometer (hm) | | acre-foot per year (acre-ft/yr) | 0.001233 | <pre>cubic hectometers per year (hm³/yr)</pre> | | cubic foot per second (ft³/s
and CFS) | 0.02832 | cubic meter per second
(m³/s) | | foot (ft) | 0.3048 | meter (m) | | inch per year (in/yr) | 25.40 | millimeter per year (mm/yr) | | mile (mi) | 1.609 | kilometer (km) | | square mile (mi²) | 2.590 | square kilometer (km²) | #### STATISTICAL SUMMARIES OF STREAMFLOW DATA IN OREGON #### VOLUME 2. WESTERN OREGON By John Friday and Suzanne J. Miller #### **ABSTRACT** Statistical summaries of streamflow data at 212 stream-gaging sites are presented in this report to aid in appraising the hydrology of river basins in Western Oregon. Records for 21 gaging stations were compiled into separate periods owing to changes in regulation during the period of data collection. The periods before and after regulation are presented for comparison. A brief station description is given describing the physical and operational features for each gaging station. Following the station description are tables of monthly and annual flow statistics, flood frequency data, low-flow and high-flow frequency data, and flow-duration information. #### INTRODUCTION This is the second of two volumes of statistical summaries of streamflow data collected at gaging stations in Oregon. Volume 1 contains data from 123 gaging stations located in the area east of the divide of the Cascade Range. Volume 2 contains data from 212 gaging stations in the remainder of the State. It is anticipated these reports will be updated about every five years. This report was prepared in cooperation with the Oregon Water Resouces Department (OWRD). The purpose is to provide water-resource managers with a knowledge of streamflow characteristics based on historical data. For the purpose of this report, gaging-station records had to satisfy one of two criteria. The data had to be hydrologically transferable (for use in estimating streamflow in ungaged basins), or it had to be a significant indicator of flow availability. For example, a gage at the outlet of a natural lake would have little hydrologic transferability (due to storage of water in the lake), but the data would be a good indication of low-flow availability as well as flood events. Stations on canals, reservoirs, or combined-flow stations, were not used in this report. Data for combined-flow stations include diverted flow which may or may not reenter the stream downstream from the gage. A map showing the location of gaging stations used in this report is enclosed in a packet in the back of the book. #### STREAMFLOW RECORDS Both active and discontinued gaging stations having a minimum of 10 years of daily-mean discharge values were used in this report. For active stations, the period of record extends to the end of the 1982 water year (ending on September 30). A brief station description showing the physical and operational features of the gaging station precedes the statistical summaries for each station. Except for paragraphs describing revised records and extremes for a specific year, the station descriptions are identical to the last-published version in the annual release "Water Resources Data - Oregon" (U.S. Geological Survey, 1983). A detailed explanation of the manuscript data and a definition of terms is given in that report. Sometimes the natural flow of a stream may be altered by the construction of a dam, an irrigation diversion, or by the augmentation of flow by transbasin diversions. If this occurs during the operation of a gaging station, the statistical summaries must reflect both natural and altered states of flow, providing there are at least 10 years of data for each state. There are 21 such stations in this report. #### STATISTICAL SUMMARIES The tables of statistical data include monthly and annual mean discharges, magnitude and probability of annual low flows, magnitude and probability of annual high flows, magnitude and probability of instantaneous peak flows, and a duration table of daily mean flows. The statistics were generated by using computer programs available from the U.S. Geological Survey's "National Water Data Storage and Retrieval System" (WATSTORE). #### Monthly and Annual Mean Discharges This statistical summary is from computer program W4422 by Price and Meeks (1977). The period of record shown in the heading is the first and last water year for which daily-mean discharge values are available, and does not necessarily indicate a continuous period of record (see the PERIOD OF RECORD paragraph in the station description for fragmentary records). The standard deviation shown in the table is a measure of the variability of flows occurring during a given month during the period of record. The value represents the spread in discharges (from the mean value) that could be expected to occur two-thirds of the time based on the distribution of data during the sampling period. The coefficient of variation is the ratio of the standard deviation to the mean. The annual mean shown in the table will sometimes vary from the average discharge shown in the manuscript because the annual mean is based only on years for which daily-mean discharge values are available, while the average discharge includes years having estimated monthly values. ## Magnitude and Probability of Annual Low Flows This summary is from computer program A969 by Meeks (1977). The computation period is based on a climatic year which ends on March 31 thus assuring the low-flow season will be complete within a twelve-month period. The recurrence interval was generally extended to twice the period of record for stations having less than 40 years of record. If 40 or more years of record were available, the recurrence interval was extended to 100 years (a flow having a 1 percent chance of not being exceeded in any given year). The table shows the amount of flow that probably would not be exceeded, during specified periods, for the indicated recurrence intervals. The recurrence intervals are also shown as nonexceedance probabilities which are expressed as a percent chance of the event not being exceeded in any given year. For example, the low flow during a 30-day period might not be exceeded on the average of once every 50 years, and would have a 2 percent chance of not being exceeded in any given year. ### Magnitude and Probability of Annual High Flows This summary is also from computer program A969 (Meeks, 1977). The period of record is based on water years having daily-mean discharge data. The recurrence intervals are extended in the same manner as the low-flow frequency. The table shows maximum flows that could be equalled or exceeded, during specified periods, for the indicated recurrence intervals. Occasionally, the values shown for a 1-day period will exceed the instantaneous peaks shown for the same recurrence intervals in the adjacent table. The reason for this is that different periods of record are involved. Quite often peak data are documented outside the period of systematic data collection. ## Magnitude and Probability of Instantaneous Peak Flow This summary is from computer program J407 by Kirby (1981). The period of record shows the first and last water years for which annual peak flows were documented. The table shows the magnitude of instantaneous peak flows for selected recurrence intervals as computed from a log-Pearson Type III probability distribution of gaging-station data. For stations having less than 25 years of record, the frequency curve was based on a generalized skew coefficient taken from the U.S. Water Resources Council Bulletin 17B (1981). For stations having more than 25 years of data, the skew coefficient was determined by weighing the generalized skew against the actual station skew as recommended by the Council. The skew used for a particular station is shown at the bottom of the table. Flood-frequency data were not determined at gaging stations immediately downstream from dams and reservoirs. At stations where low-flow statistics are divided into two periods due to the construction of a bypass structure, the flood-frequency data are computed for the entire period of record. ## Duration Table of Daily Mean Flow This summary is from computer program A969 by Meeks (1977). The period of record indicates the first and last water
year where daily-mean values of discharge were available for analysis. The table shows the amount of flow that was equalled or exceeded for the indicated percent of the time. #### REFERENCES - Kirby, William, 1981, Annual flood frequency analysis using U.S. Water Resources Council guidelines (Program J407), chapter I, section C of WATSTORE user's guide: U.S. Geological Survey Open-File Report 76-435. v. 4, p. C-1 to C-57. - Meeks, W. C., 1977, Daily values statistics (Program A969), chapter IV, section G, of WATSTORE user's guide: U.S. Geological Survey Open-File Report 75-426, v. 1, p. G-1 to G-37. - Price, W. E., Jr., and Meeks W. C., 1977, Daily values monthly and annual statistics (Program W4422), chapter IV, section F, of WATSTORE user's guide: U.S. Geological Survey Open-File Report 75-426, v. 1, p. F-1 to F-46. - U.S. Geological Survey, 1983, Water resources data, Oregon, water year 1982, volume 2. Western Oregon; Portland, Oregon, U.S. Geological Survey Water-Data Report OR-82-2, 419 p. - U.S. Water Resources Council, 1981, Guidelines for determining flood flow frequency [revised]: Hydrology Committee Bulletin 17B, 28 p. | | PAGE | |--|------| | Lower Columbia River Basin | | | Sandy River Basin | | | Sandy River | | | Little Zigzag River at Twin Bridges, nr. Rhododendron | 11 | | Salmon River near Government Camp | 12 | | Salmon River below Linney Creek | 13 | | Salmon River at Welches | 14 | | Salmon River above Boulder Creek, near Brightwood | 15 | | Sandy River near Marmot | 16 | | Bull Run River | | | Blazed Alder Creek near Rhododendron | 17 | | Bull Run River near Multnomah Falls | 18 | | North Fork Bull Run River near Multnomah Falls | 19 | | Bull Run River below Lake Ben Morrow | 20 | | South Fork Bull Run River | 2.0 | | Cedar Creek near Brightwood | 21 | | Little Sandy River near Bull Run | 22 | | Sandy River below Bull Run River, near Bull Run | 23 | | Willamette River Basin | | | Middle Fork Willamette River near Oakridge | 24 | | Hills Creek above Hills Creek Reservoir, near Oakridge . | 25 | | Middle Fork Willamette River ab. Salt Cr., nr. Oakridge | 26 | | Salt Creek near Oakridge | 28 | | Salmon Creek near Oakridge | 29 | | Waldo Lake Outlet near Oakridge | 30 | | North Fork of Middle Fork Willamette River near Oakridge | 31 | | Middle Fork Willamette River below No. Fork, nr. Oakridge. | 32 | | Middle Fork Willamette River near Dexter | 34 | | Fall Creek near Lowell | 35 | | Winberry Creek near Lowell | 36 | | Fall Creek below Winberry Creek, near Fall Creek | 37 | | Little Fall Creek near Fall Creek | 39 | | Middle Fork Willamette River at Jasper | 40 | | Coast Fork Willamette River at London | 41 | | Coast Fork Willamette River below Cottage Grove Dam | 42 | | Row River above Pitcher Creek, near Dorena | 43 | | Row River near Cottage Grove | 44 | | Mosby Creek near Cottage Grove | 46 | | Mosby Creek at mouth, near Cottage Grove | 47 | | Coast Fork Willamette River at Saginaw | 48 | | Coast Fork Willamette River near Goshen | 49 | | Willamette River at Springfield | 50 | | McKenzie River at outlet of Clear Lake | . 51 | | Smith River ab. Smith River Res., nr. Belknap Springs. | 52 | | McKenzie River bl. Trail Bridge Dam, near Belknap Spgs | 53 | | | PAGE | |---|----------| | Lower Columbia River BasinContinued | | | Willamette River BasinContinued | | | McKenzie River BasinContinued | | | McKenzie River at McKenzie Bridge | 54 | | South Fork McKenzie River above Cougar Lake, near | | | Rainbow | 56 | | South Fork McKenzie River near Rainbow | 57 | | Blue River below Tidbits Creek, near Blue River | 59 | | Lookout Creek near Blue River | 60 | | Blue River near Blue River | 61 | | Blue River at Blue River | 62 | | McKenzie River near Vida | 63
65 | | Gate Creek at Vida | 66 | | Mohawk River near Springfield | 67 | | McKenzie River near Coburg | 68 | | Long Tom River near Noti | 69 | | Coyote Creek near Crow | 70 | | Amazon Creek at Eugene | 71 | | Long Tom River at Monroe | 72 | | Rock Creek near Philomath | 74 | | Marys River near Philomath | 75 | | Calapooia River at Holley | 76 | | Calapooia River at Albany | 77 | | Willamette River at Albany | 78 | | North Santiam River below Boulder Creek, near Detroit | 80 | | Breitenbush River above Canyon Creek, near Detroit | 81 | | North Santiam River at Niagara | 82 | | Little North Santiam River near Mehama | 84 | | North Santiam River at Mehama | 85 | | South Santiam River below Cascadia | 87 | | Middle Santiam River near Cascadia | 88 | | Quartzville Creek near Cascadia | 89 | | Middle Santiam River near Foster | 90 | | Middle Santiam River at mouth, near Foster | 91 | | South Santiam River | 00 | | Wiley Creek near Foster | 92
93 | | South Santiam River at Waterloo | | | Thomas Creek near Scio | 95
96 | | Luckiamute River near Hoskins | 98
98 | | Luckiamute River at Pedee | 90
99 | | Luckiamute River ar redee | 100 | | Rickreall Creek near Dallas | 101 | | Willamette River at Salem | 102 | | South Yamhill River near Willamina | 104 | | Willamina Creek near Willamina | 105 | | Mill Creek near Willamina | 106 | | | | | | PAGE | |--|------------| | Lower Columbia River BasinContinued | | | Willamette River BasinContinued | | | South Yamhill River BasinContinued | | | South Yamhill River near Whiteson | 107 | | North Yamhill River near Fairdale | 108 | | Haskins Creek near McMinnville | 109 | | North Yamhill River near Pike | 110 | | North Yamhill River at Pike | 111 | | Willamette River at Wilsonville | 112 | | Molalla River above Pine Creek, near Wilhoit | 113 | | Mollala River near Canby | 114 | | Pudding River | | | Silver Creek at Silverton | 115 | | Pudding River near Mount Angel | 116 | | Butte Creek at Monitor | 117 | | Pudding River at Aurora | 118 | | Tualatin River | | | Tualatin River near Gaston | 119 | | Scoggins Creek | | | Scoggins Creek near Gaston | 121 | | Tualatin River near Dilley | 122 | | Gales Creek near Gales Creek | 123 | | Gales Creek near Forest Grove | 124 | | East Fork Dairy Creek at Mountaindale | 125 | | McKay Creek near North Plains | 126 | | Tualatin River at Farmington | 127 | | Tualatin River at West Linn | 128 | | Clackamas River | | | Clackamas River at Big Bottom | 130 | | Oak Grove Fork at Timothy Meadows | 131 | | Oak Grove Fork near Government Camp | 132 | | Oak Grove Fork above powerplant intake | 133 | | Clackamas River above Three Lynx Creek | 135 | | Clackamas River at Estacada | 136 | | Clackamas River near Clackamas | 138 | | Johnson Creek at Sycamore | 139 | | Willamette River at Portland | 140 | | Bear Creek near Svensen | 141 | | Youngs River near Astoria | 142 | | Pacific Slope Basins in Oregon | | | Nehalem River Basin | | | Nehalem River near Foss | 144 | | Wilson River Basin | 4.45 | | Wilson River near Tillamook | 145 | | Trask River Basin | 4.40 | | Trask River near Tillamook | 146 | | Nestucca River Basin | 1 47 | | Nestucca River near Fairdale | 147 | | Nestucca River near McMinnville | 148
149 | | NESTUCIA RIVER DESCRIPCIÓN CONTRACTOR DESCRIPCIÓN DE DESCRIPCION DE DESCRIPCION DE DESCRIPCION DE DESCRIPCION D | 144 | | | PAGE | |--|------------| | Pacific Slope Basins in OregonContinued | | | Siletz River Basin | | | Siletz River at Siletz | 150 | | Yaquina River Basin | | | Yaquina River near Chitwood | 151 | | Mill Creek near Toledo | 152 | | Alsea River Basin | | | North Fork Alsea River at Alsea | 153 | | Five Rivers near Fisher | 154 | | Alsea River near Tidewater | 155 | | Drift Creek near Salado | 156 | | Needle Branch near Salado | 157 | | Flynn Creek near Salado | 158 | | Deer Creek near Salado | 159 | | Big Creek Basin | | | Big Creek near Roosevelt Beach | 160 | | Siuslaw River Basin | | | Siuslaw River | | | Lake Creek at Triangle Lake | 161 | | Lake Creek near Deadwood | 162 | |
Siuslaw River near Mapleton | 163 | | North Fork Siuslaw River near Minerva | 164 | | Umpqua River Basin | | | South Umpqua River Jackson Creek near Tiller | 165 | | | 165
166 | | South Umpqua River at Tiller Elk Creek near Drew | 167 | | Days Creek at Days Creek | 168 | | Cow Creek near Azalea | 169 | | West Fork Cow Creek near Glendale | 170 | | Cow Creek near Riddle | 171 | | South Myrtle Creek near Myrtle Creek | 172 | | North Myrtle Creek near Myrtle Creek | 173 | | Olalla Creek near Tenmile | 174 | | Lookingglass Creek at Brockway | 175 | | South Umpqua River near Brockway | 176 | | Deer Creek near Roseburg | 177 | | North Umpqua River | ,,, | | Lake Creek near Diamond Lake | 178 | | North Umpqua River at Toketee Falls | 179 | | North Umpqua River ab. Copeland Creek, nr. Toketee Falls | 180 | | Steamboat Creek near Glide | 181 | | North Umpqua River above Rock Creek, near Glide | 182 | | Rock Creek near Glide | 183 | | Little River at Peel | 184 | | North Umpqua River near Glide | 185 | | Sutherlin Creek at Sutherlin | 186 | | North Umpqua River at Winchester | 187 | | | PAGE | |--|------| | Pacific Slope Basins in OregonContinued | | | Umpqua River BasinContinued | | | Umpqua River | | | Calapooya Creek near Oakland | 188 | | Umpqua River near Elkton | 189 | | Elk Creek near Drain | 190 | | Tenmile Creek Basin | | | Tenmile Creek near Lakeside | 191 | | Coos River Basin | | | West Fork Millicoma River near Allegany | 192 | | Coquille River Basin | | | South Fork Coquille River above Panther Creek, nr. Illahe. | 193 | | South Fork Coquille River near Illahe | 194 | | South Fork Coquille River near Powers | 195 | | South Fork Coquille River at Powers | 196 | | Middle Fork Coquille River near Myrtle Point | 197 | | North Fork Coquille River near Fairview | 198 | | North Fork Coquille River near Myrtle Point | 199 | | Rogue River Basin | | | Rogue River above Bybee Creek, near Union Creek | 200 | | Rogue River above Prospect | 201 | | Rogue River below Prospect | 202 | | South Fork Rogue River above Imnaha Creek, near Prospect | 203 | | Imnaha Creek near Prospect | 204 | | Middle Fork Rogue River near Prospect | 205 | | Red Blanket Creek near Prospect | 206 | | South Fork Rogue River, South of Prospect | 207 | | Rogue River below South Fork Rogue River, near Prospect | 208 | | South Fork Big Butte Creek near Butte Falls | 209 | | Big Butte Creek near McLeod | 210 | | Rogue River near McLeod | 211 | | Elk Creek near Trail | 212 | | Rogue River at Dodge Bridge, near Eagle Point | 213 | | South Fork Little Butte Creek at Big Elk Ranger Station. | 214 | | South Fork Little Butte Creek near Lakecreek | 215 | | North Fork Little Butte Creek at Fish Lake, near | | | Lakecreek | 217 | | North Fork Little Butte Creek near Lakecreek | 218 | | Emigrant Creek near Ashland | 219 | | West Fork Ashland Creek near Ashland | 221 | | East Fork Ashland Creek near Ashland | 222 | | Bear Creek at Medford | 223 | | Rogue River at Raygold, near Central Point | 224 | | Roque River at Grants Pass | 225 | | | PAGE | |--|------| | Pacific Slope Basins in OregonContinued | | | Rogue River Basin-Continued | | | Applegate River | | | Applegate River near Copper | 226 | | Applegate River near Ruch | 227 | | Applegate River near Applegate | 228 | | Powell Creek near Williams | 229 | | Applegate River near Wilderville | 230 | | Slate Creek at Wonder | 231 | | Grave Creek at Pease Bridge, near Placer | 232 | | Rogue River near Agness | 233 | | Illinois River Basin | | | East Fork Illinois River near Takilma | 234 | | Sucker Creek near Holland | 235 | | Sucker Creek below Little Grayback Creek, nr. Holland. | 236 | | West Fork Illinois River below Rock Cr., near O'Brien. | 237 | | Illinois River at Kerby | 238 | | Illinois River near Kerby | 239 | | Deer Creek near Dryden | 240 | | Illinois River near Selma | 241 | | Illinois River near Agness | 242 | | Chetco River Basin | | | Chetco River near Brookings | 243 | #### 14131000 LITTLE ZIGZAG RIVER AT TWIN BRIDGES, NEAR RHODODENDRON, OR LOCATION.--Lat 45°18'50", long 121°48'30", in NW4 sec.15, T.3 S., R.8 E., Clackamas County, Hydrologic Unit 17080001, 0.1 mi upstream from mouth and the upper of Twin Bridges on the Mount Hood Loop Highway and 5.5 mi east of Rhododendron. DRAINAGE AREA.--3.7 mi², approximately. PERIOD OF RECORD. -- April 1926 to September 1936. GAGE.--Water-stage recorder. Datum of gage is 2,905.16 ft National Geodetic Vertical Datum of 1929. REMARKS.--No diversion or regulation above station. AVERAGE DISCHARGE.--10 years (water years 1927-36), 25.3 ft³/s. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 250 ft³/s Mar. 31, 1931, gage height not determined, from area-velocity study and comparison with discharge of nearby streams; maximum gage height, 3.5 ft Oct. 7, 1930 (probably backwater from debris); minimum, 15 ft³/s Feb. 1-13, 16-18, 1932. #### STATISTICAL SUMMARIES | '' | ONTHLY AN | ID ANNUAL I | MEAN DIS | CHARGES | 1927-36 | | MA | | | ABILITY (| | | OW | |-----------------------|------------------------------------|--|----------------------|-----------------------------------|-------------------------------------|--|---|---|---|--|--|---|-----------| | | MINIMUM | MAX I MUM | MEAN | STAN-
DARD
DEVIA-
TION | COEFFI-
CIENT OF
VARI- | | PERIOD
(CON-
SECU- | | INTERVAL | CFS, FOR | RS, AND A | ANNUAL NO | ON- | | MONTH | (CFS) | (CFS) | (CFS) | (CFS) | ATION | RUNOFF | TIVE
DAYS) | 2
50% | 5
20 % | 10
10% | 20
5% | 50
2 % | 100
13 | | OCTOBER | 20 | 25 | 22 | 1.6 | .07 | 7.3 | 1 | | | | | | | | VOVEMBER | 20 | 30 | 24 | 2.9 | .12 | 7.8 | 3 | | | | | | | | DECEMBER | 19 | 44 | 26 | 7.1 | . 27 | 8.6 | 7 | | | | | | | | ANUARY | 20 | 42 | 26 | 6.5 | . 25 | 8.5 | 14 | | | | | | | | EBRUARY | 17 | 31 | 24 | 4.5 | .18 | 8.1 | 30 | | | | | | | | 1ARCH | 23 | 36 | 26 | 4.1 | . 16 | 8.7 | 60 | | | | | | | | APRIL | 24 | 32 | 29 | 2.6 | •09 | 9.4 | 90 | | | | | | | | 1A Y | 24 | 37 | 31 | 4.5 | .15 | 10.1 | 120 | | | | | | | | JUNE | 23 | 42 | 28 | 5.3 | .19 | 9.2 | 183 | | | | | | | | JULY | 21 | 30 | 24 | 2.6 | .11 | 7.9 | | | | | | | | | NUGUST | 19 | 25 | 22 | 1.9 | .09 | 7.2 | NOTE: | LESS THA | N 10 YFAI | RS OF DAT | TA AVALLA | ABLE. | | | SEPTEMBER | | 24 | 22 | 2.0 | .09 | 7.2 | 110721 | | | | | | | | NNUAL | 22 | 29 | 25 | 2.1 | .08 | 100 | | | | | | | | | | DA3E | D ON PERIO | OD OF RE | | | FLOW | | | | IOD OF RE | | . HIGH FL
927-36 | _OW | | | , IN CFS, | FOR INDIC | CATED RE | CORD 1921 | 7-36

INTERVAL |
, IN | PERIOD
(CON- | BASEI
DISCH | D ON PER
ARGE, IN
INTERV | | ECORD 19R INDICATEARS, AND | 27-36

ED RECUP
) ANNUAL | RRENCI | | | , IN CFS, | FOR INDIC | CATED RE | CORD 1921 | 1-36
INTERVAL
IN PERCEI |
, IN |
PERIOD | BASEI
DISCH | D ON PER
ARGE, IN
INTERV | OD OF RECEIVED | ECORD 19R INDICATEARS, AND | 27-36

ED RECUP
) ANNUAL | RRENCI | | YEARS,
1.25 | , IN CFS,
AND ANNUA | FOR INDIC | CATED RENCE PROB | CORD 1927
CURRENCE
ABILITY, | 7-36
INTERVAL
IN PERCEI | , IN
NT | PERIOD
(CON-
SECU-
TIVE | BASEI
DISCH | D ON PER ARGE, IN INTERV EXCEEDANG | CFS, FOR
AL, IN YECE PROBAE | ECORD 19 R INDICAT EARS, AND BILITY, 1 | ED RECUP
ANNUAL
N PERCEN | RRENCE | | YEARS,
1.25
80% | , IN CFS,
AND ANNUA
2
50% | FOR INDIC
L EXCEEDAN
5
20% | CATED RENCE PROB | CORD 1927
CURRENCE
ABILITY, | 7-36
INTERVAL
IN PERCEI | , IN
NT |
PERIOD
(CON-
SECU-
TIVE | BASEI
DISCH | D ON PER ARGE, IN INTERV EXCEEDANG | CFS, FOR
AL, IN YECE PROBAE | ECORD 19 R INDICAT EARS, AND BILITY, 1 | ED RECUP
ANNUAL
N PERCEN | RRENCI | | 1.25
80% | , IN CFS,
AND ANNUA
2
50% | FOR INDIC
L EXCEEDAN
5
20% | CATED RENCE PROB | CORD 1927
CURRENCE
ABILITY, | 7-36
INTERVAL
IN PERCEI | , IN
NT | PERIOD
(CON-
SECU-
TIVE
DAYS) | DISCH | D ON PER ARGE, IN INTERV EXCEEDANG | CFS, FOF
AL, IN YE
CE PROBAE | ECORD 19 R INDICAT EARS, AND BILITY, 1 | ED RECUP
ANNUAL
N PERCEN | RRENCI | | 1.25
80% | , IN CFS,
AND ANNUA
2
50% | FOR INDIC
L EXCEEDAN
5
20% | CATED RENCE PROB | CORD 1927
CURRENCE
ABILITY, | 7-36
INTERVAL
IN PERCEI | , IN
NT | PERIOD
(CON-
SECU-
TIVE
DAYS) | DISCH.
2
50% | D ON PER ARGE, IN INTERVIEXCEEDANG 5 20% | CFS, FOF
AL, IN YE
CE PROBAE
10
10% | ECORD 19 R INDICAT EARS, AND BILITY, ! | PED RECUP
ANNUAL
N PERCEN
50
2% | 100
13 | | 1.25
80% | , IN CFS,
AND ANNUA
2
50% | FOR INDIC
L EXCEEDAN
5
20% | CATED RENCE PROB | CORD 1927
CURRENCE
ABILITY, | 7-36
INTERVAL
IN PERCEI | , IN
NT | PERIOD
(CON-
SECU-
TIVE
DAYS) | DISCH. 2 50% | D ON PER ARGE, IN INTERV EXCEEDANG 5 20% 82 61 | CFS, FOR
AL, IN YE
CE PROBAE
10
10% | R INDICAT
R INDICAT
EARS, AND
BILITY, I | PED RECUP
ANNUAL
N PERCEN
50
2% | 100
13 | | YEARS,
1.25
80% | , IN CFS,
AND ANNUA
2
50% | FOR INDIC
L EXCEEDAN
5
20% | CATED RENCE PROB | CORD 1927
CURRENCE
ABILITY, | 7-36
INTERVAL
IN PERCEI | , IN
NT | PERIOD (CON- SECU- TIVE DAYS) 1 3 7 | DISCH | D ON PER ARGE, IN INTERV EXCEEDANC 5 20% 82 61 49 43 | 10D OF RE
CFS, FOR
AL, IN YE
CE PROBAE
10
10% | ECORD 19 R INDICAT EARS, AND BILITY, I 25 4% | D27-36 FED RECUF ANNUAL N PERCEN 50 2% | 100
13 | | YEARS,
1.25
80% | , IN CFS,
AND ANNUA
2
50% | FOR INDIC
L EXCEEDAN
5
20% | CATED RENCE PROB | CORD 1927
CURRENCE
ABILITY, | 7-36
INTERVAL
IN PERCEI | , IN
NT | PERIOD (CON-
SECU-
TIVE DAYS) | BASEI DISCH. 2 50 54 45 39 36 34 | D ON PER ARGE, IN INTERV EXCEEDANC 5 20% 82 61 49 43 40 | OF RECEPTION OF RECEPTION OF THE PROBAE | ECORD 19 R INDICAT EARS, AND BILITY, I 25 4% | D27-36 FED RECUF ANNUAL N PERCEN 50 2% | 100
13 | | YEARS,
1.25
80% | , IN CFS,
AND ANNUA
2
50% | FOR INDIC
L EXCEEDAN
5
20% | CATED RENCE PROB | CORD 1927
CURRENCE
ABILITY, | 7-36
INTERVAL
IN PERCEI | , IN
NT | PERIOD (CON- SECU- TIVE DAYS) 1 3 7 | DISCH | D ON PER ARGE, IN INTERV EXCEEDANC 5 20% 82 61 49 43 | 10D OF RE
CFS, FOR
AL, IN YE
CE PROBAE
10
10% | R INDICAT
FARS, AND
BILITY, ! | D27-36 FED RECUF ANNUAL N PERCEN 50 2% | 100
13 | | YEARS,
1.25
80% | , IN CFS,
AND ANNUA
2
50% | FOR INDIC
L EXCEEDAN
5
20% | CATED RE
NCE PROB | CURRENCE ABILITY, | INTERVAL
IN PERCEI | , IN
NT
100
1% | PERIOD
(CON-
SECU-
TIVE
DAYS)
 | DISCH. 2 50\$ 54 45 39 36 34 32 30 | ARGE, IN INTERV. EXCEEDAN. 5 20% 82 61 49 43 40 36 34 | CFS, FOFAL, IN YECE PROBACTION TO THE TOTAL THE TOTAL TO TOT | R INDICAT
FARS, AND
BILITY, ! | D27-36 FED RECUF ANNUAL N PERCEN 50 2% | 100
13 | | YEARS,
1.25
80% | , IN CFS,
AND ANNUA
2
50% | FOR INDIC
L EXCEEDAN
5
20%
122
.324 | DURATIO | CURRENCE ABILITY, 25 4% | 7-36 INTERVAL IN PERCEI 50 2% | , IN
NT
100
1% | PERIOD
(CON-
SECU-
TIVE
DAYS)
 | DISCH. 2 50\$ 54 45 39 36 34 32 30 OF RECOIL | B2 61 43 40 36 34 ARD 1927-3 | 100 OF RE CFS, FOFAL, IN YE PROBAE 10 107 74 57 48 44 40 37 | R INDICAT | D27-36 FED RECUF ANNUAL N PERCEN 50 2% | RRENCE | | YEARS,
1.25
80% | , IN CFS,
AND ANNUA
2
50% | FOR INDIC
L EXCEEDAN
5
20%
122
.324 | DURATIO | CURRENCE ABILITY, 25 4% | INTERVAL IN PERCEI 50 2% DF DAILY N | , IN
NT
100
1%

MEAN FLOW | PERIOD (CON- SECU- TIVE DAYS) | DISCH. 2 50\$ 54 45 39 36 34 32 30 OF RECOIL | B2 61 43 40 36 34 ARD 1927-3 | 100 OF RE CFS, FOFAL, IN YE PROBAE 10 107 74 57 48 44 40 37 | R INDICAT | D27-36 FED RECUF ANNUAL N PERCEN 50 2% | 100
13 | #### 14134000 SALMON RIVER NEAR GOVERNMENT CAMP, OR LOCATION.--Lat 45°15'55", long 121°43'00", in SEtNWt sec.31, T.3 S., R.9 E., Clackamas County, Hydrologic Unit 17080001, in Mount Hood National Forest, on right bank near lower end of Red Top Meadows and 3.0 mi southeast of Government Camp. DRAINAGE AREA .-- 8.00 mi2. PERIOD OF RECORD.--May 1910 to May 1912, April 1926 to September 1982. Published as "near Rowe" 1910-12. GAGE.--Water-stage recorder. Datum of gage is 3,445.53 ft National Geodetic Vertical Datum of 1929. Prior to Nov. 21, 1910, nonrecording gage at site 0.2 mi upstream at different datum. Nov. 21, 1910, to May 31, 1912, and Apr. 21, 1926, to Sept. 30, 1933, at site 75 ft upstream from former site at different datums. Oct. 1, 1933, to Sept. 30, 1960, at datum 1.00 ft higher. REMARKS.--No regulation or diversion above station. AVERAGE DISCHARGE.--57 years (water years 1911, 1927-82), 44.4 ft³/s, 75.37 in/yr, 32,170 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.—Maximum discharge, 1,300 ft 3 /s Dec. 23, 1964, gage height, 4.75 ft, from rating curve extended above 310 ft 3 /s, on basis of slope-area measurement of peak flow; minimum, 10 ft 3 /s Nov. 27, 1952. #### STATISTICAL SUMMARIES MONTHLY AND ANNUAL MEAN DISCHARGES 1911-82 MAGNITUDE AND PROBABILITY OF ANNUAL LOW FLOW BASED ON PERIOD OF RECORD 1912-82 | монтн | MINIMUM | MAXIMUM
(CFS) | MEAN | STAN-
DARD
DEVIA-
TION | CIENT OF | PERCENT
OF | PERIOD
(CON- | | DISCHARGE, IN CFS, FOR INDICATED RECURRENCE
INTERVAL, IN YEARS, AND ANNUAL NON-
EXCEEDANCE PROBABILITY, IN PERCENT | | | | | | | |-----------|---------|------------------|-------|---------------------------------|----------------|------------------|------------------------|----------|--|-----------|----------|----------|-----------|--|--| | | (CFS) | | (CFS) | (CFS) | VARI-
ATION | ANNUAL
RUNOFF | SECU-
TIVE
DAYS) | 2
50% | 5
20% | 10
10% | 20
5% | 50
2% | 100
1% | | | | OCTOBER | 14 | 52 | 25 | 8.5 | .33 | 4.8 | 1 | 17 | 14 | 13 | 12 | 11 | 10 | | | | NOVEMBER | 14 | 90 | 38 | 17 | .45 | 7.1 | 3 | 17 | 15 | 13 | 12 | 11 | 10 | | | | DECEMBER | 15 | 135 | 50 | 26 | .53 | 9.4 | 7 | 18 | 15 | 14 | 13 | 12 | 11 | | | | JANUARY | 17 | 98 | 43 | 18 | .41 | 8.2 | 14 | 19 | 16 | 14 | 13 - | 12 | 11 | | | | FEBRUARY | 15 | 109 | 42 | 18 | .43 | 7.9 | 30 | 20 | 17 | 15 | 14 | 13 | 12 | | | | MARCH | 21 | 89 | 39 | 13 | .34 | 7.3 | 60 | 21 | 18 | 16 | 15 | 14 | 13 | | | | APRIL | 27 | 82 | 52 | 13 | .25 | 9.7 | 90 | 23 | 19 | 17 | 16 | 15 | 14 | | | | MAY | 32 | 125 | 76 | 22 | .28 | 14.3 | 120 | 24 | 20 | 18 | 17 | 16 | 15 | | | | JUNE | 24 | 164 | 71 | 30 | .43 | 13.3 | 183 | 30 | 24 | 21 | 19 | 18 | 17 | | | | JULY | 17 | 97 | 43 | 18 | -41 | 8.2 | | | | | | | | | | | AUGUST | 16 | 55 | 28 | 8.1 | . 29 | 5.3 | | | | | | | | | | | SEPTEMBER | 15 | 37 | 24 | 5.0 | .21 | 4.5 | | | | | | | | | | | ANNUAL | 24 | 63 | 44 | 8.7 | . 19 | 100 | | | | | | | | | | ## MAGNITUDE AND PROBABILITY OF INSTANTANEOUS PEAK FLOW BASED ON PERIOD OF RECORD 1911-82 MAGNITUDE AND PROBABILITY OF ANNUAL HIGH FLOW BASED ON PERIOD OF RECORD 1911-82 | DISCHARGE, IN CFS, FOR INDICATED RECURRENCE INTERVAL, IN YEARS, AND ANNUAL EXCEEDANCE PROBABILITY, IN PERCENT | | | | | | | PERIOD
(CON- | | ARGE, IN
INTERV
EXCEEDANG | AL, ÎN YI | EARS, AND | ANNUAL | | |---|--------------|--------------|-----------|----------|----------|-----------|------------------------|----------|---------------------------------|-----------|-----------|------------------|-----------| | 1.25
80% | 2
50%
 | 5
20%
 | 10
10% | 25
4% | 50
2% | 100
1% | SECU-
TIVE
DAYS) | 2
50% | 5
20 % | 10
10% | 25
4% | 50
2 % | 100
1% | | 183 | 287 | 465 | 608 | 817 | 996 | 1190 | | | | | | | | | | | | | | | | 1 | 192 | 297 | 383 | 510 | 620 | 745 | | <i>IE</i> I GHTED | SKEW = | .269 | | | | | 3 | 145 | 213 | 270 | 356 | 432 | 520 | | | | | | | | | 7 | 121 | 165 | 198 | 245 | 282 | 32: | | | | | | | | | 15 | 106 | 137 | 157 | 182 | 200 | 217 | | | | | | | | | 30 | 95 | 119 | 132 | 147 | 157 | 16 | | | | | | | | | 60 | 84 | 102 | 111 | 119 | 124 | 12 | | | | | | | | | 90 | 75 | 89 | 96 | 103 | 107 | 11 | DURATION TABLE OF DAILY MEAN FLOW FOR PERIOD OF RECORD 1911-82 | | DISC | HARGE, I | N CFS, | WHICH WAS | EQUALED | OR EXCE | EDED FOR | INDICATED | PERCE | NT OF TIM | 1 E | | | |--------|------|----------|--------|-----------|---------|---------|----------|-----------|-------|-----------|------------|-----|-----| | 5% 10% | 15% | 20% | 25% | 30% | 40% | 50% | 60% | 70% | 75% | 80% | 85% | 90% | 95% | | 102 82 | 71 | 63 | 55 | 50 | 42 | 36 | 31 | 27 | 25 | 24 | 22 | 20 | 18 | 13 #### 14134500 SALMON RIVER BELOW LINNEY CREEK, OR LOCATION.--Lat 45°13'20", long 121°51'40", in SW\ sec.17, T.4 S., R.8 E., Clackamas County, Hydrologic Unit 17080001, 200 ft downstream from Linney Creek, 8 mi southwest of Government Camp, and 9 mi southeast of Welches. DRAINAGE AREA. -- 54 mi², approximately. 569 451 363 304 264 PERIOD OF RECORD. -- October 1927 to September 1950. GAGE.--Water-stage recorder. Altitude of gage is 2,500 ft, from topographic map. Prior to Oct. 18; 1934, 25 ft downstream at same datum. REMARKS.--No diversion or regulation above station. AVERAGE DISCHARGE.--23 years (water years 1928-50), 205 ft3/s. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 3,670 ft³/s Mar. 31, 1931,
gage height, 5.81 ft, site then in use, from rating curve extended above 1,500 ft³/s by logarithmic plotting; minimum, 37 ft³/s Nov. 2, 1936, gage height, 0.22 ft. #### STATISTICAL SUMMARIES | | MINIMINA | MAXIMUM | MEAN | STAN-
DARD
DEVIA-
TION | COEFFI-
CIENT OF
VARI- | PERCENT
OF
ANNUAL | PERIOD
(CON-
SECU- | DISCH | INTERVAL | , IN YE | OR INDICAT
ARS, AND A
ABILITY, I | NNUAL N | ON- | |------------------------------------|--|---|--|---|---|-------------------------|---|---|---|--|--|--|-----------| | MONTH | (CFS) | (CFS) | (CFS) | (CFS) | ATION | RUNOFF | TIVE
DAYS) | 2
50% | 5
20% | 10
10% | 20
5% | 50
2 % | 100
1% | | CTOBER | 53 | 243 | 90 | 47 | .52 | 3.7 | 1 | 52 | 47 | 45 | 44 | | | | OVEMBER | 47 | 446 | 182 | 120 | .66 | 7.4 | 3 | 52 | 47 | 46 | 44 | | | | ECEMBER | 79 | 676 | 250 | 162 | .65 | 10.1 | 7 | 53 | 48 | 46 | 45 | | | | ANUARY | 73 | 528 | 212 | 1 14 | .54 | 8.6 | 14 | 55 | 49 | 47 | 46 | | | | EBRUARY | 81 | 395 | 197 | 77 | .39 | 8.0 | 30 | 57 | 52 | 50 | 48 | | | | IARCH | 129 | 483 | 248 | 83 | .33 | 10.1 | 60 | 62 | 55 | 52 | 50 | | | | PRIL | 119 | 632 | 370 | 119 | .32 | 15.0 | 90 | 66 | 57 | 54 | 52 | | | | IAY | 125 | 776 | 414 | 181 | .44 | 16.8 | 120 | 72 | 61 | 57 | 54 | | | | UNE | 87 | 585 | 242 | 131 | .54 | 9.8 | 183 | 98 | 77 | 69 | 64 | | | | IULY | 64 | 198 | 117 | 39 | .33 | 4.7 | | | | | | | | | UGUST | 50 | 117 | 76 | 18 | .23 | 3.1 | | | | | | | | | EPTEMBER | 53 | 103 | 66 | 11 | . 16 | 2.7 | | | | | | | | | NNUAL | 109 | | | | | | | | | | | | | | | TUDE AND | 286

PROBABILI
D ON PERIO | | | .22

OUS PEAK I
8-50 | 100

FLOW | MAG | | | | OF ANNUAL | | .OW | | MAGNI | TUDE AND
BASE | PROBABILI
D ON PERIO | TY OF IN
OD OF RE
CATED RE | STANTANE
CORD 192
CURRENCE | OUS PEAK I | FLOW | MAC | BASE
DISCH | D ON PER

ARGE, IN
INTERV | CFS, FO | | ED RECUP | RENCE | | MAGNI | TUDE AND
BASE
, IN CFS,
AND ANNUA | PROBABILI
D ON PERIO
FOR INDIO
L EXCEEDA | TY OF IN
OD OF RE
CATED RE
NCE PROB | STANTANE
CORD 192

CURRENCE
BABILITY, | OUS PEAK I
8-50
INTERVAL
IN PERCEI | FLOW , IN NT | PERIOD
(CON-
SECU- | BASE
DISCH | D ON PER ARGE, IN INTERV EXCEEDAN | CFS, FO | ECORD 19 OR INDICAT EARS, AND BILITY, I | 28-50 ED RECUF ANNUAL N PERCEN | RRENCE | | MAGNI
ISCHARGE
YEARS, | TUDE AND
BASE
, IN CFS, | PROBABILI
D ON PERIO
FOR INDIO
L EXCEEDA | TY OF IN
OD OF RE
CATED RE
NCE PROB | STANTANE
CORD 192
CURRENCE | OUS PEAK I
8-50
INTERVAL
IN PERCEI | FLOW
, IN | PERIOD
(CON- | BASE
DISCH | D ON PER

ARGE, IN
INTERV | CFS, FO | ECORD 19 R INDICAT EARS, AND | ED RECUP | RENCE | | MAGNI | TUDE AND
BASE
, IN CFS,
AND ANNUA | PROBABILI
D ON PERIO
FOR INDIO
L EXCEEDA
5
20% | TY OF IN
OD OF RE
CATED RE
NCE PROB | STANTANE
CORD 192

CURRENCE
BABILITY, | OUS PEAK I
8-50
INTERVAL
IN PERCEI | FLOW , IN NT | PERIOD
(CON-
SECU-
TIVE
DAYS) | DISCH | D ON PER ARGE, IN INTERV EXCEEDAN 5 20% | CFS, FCAL, IN YCE PROBA | EECORD 19 | ED RECUF
ANNUAL
N PERCEN
50
2% | RRENCE | | MAGNI | TUDE AND BASE , IN CFS, AND ANNUA 2 50% | PROBABILI'D ON PERIO | TY OF IN
OD OF RE
CATED RE
NCE PROB | STANTANE
CORD 192
CURRENCE
ABILITY, | OUS PEAK I
8-50
INTERVAL
IN PERCEI | FLOW , IN NT | PERIOD
(CON-
SECU-
TIVE
DAYS) | DISCH | D ON PER ARGE, IN INTERV EXCEEDAN 20% | CFS, FCAL, IN YCE PROBA | RECORD 19 RE INDICAT REARS, AND BILITY, I 25 4% | ED RECUP
ANNUAL
N PERCEN
50
2% | RRENCE | | MAGNI | TUDE AND BASE , IN CFS, AND ANNUA 2 50% | PROBABILI
D ON PERIO
FOR INDIO
L EXCEEDA
5
20% | TY OF IN
OD OF RE
CATED RE
NCE PROB | STANTANE
CORD 192
CURRENCE
ABILITY, | OUS PEAK I
8-50
INTERVAL
IN PERCEI | FLOW , IN NT | PERIOD (CON- SECU- TIVE DAYS) | DISCH | D ON PER ARGE, IN INTERV EXCEEDAN 5 20% 1680 1360 | CFS, FCAL, IN YCE PROBA-10, 10% | RECORD 19 PR INDICAT FEARS, AND BILITY, I 25 4% 2710 2090 | ED RECUF
ANNUAL
N PERCEN
50
2% | 100
15 | | MAGNI | TUDE AND BASE , IN CFS, AND ANNUA 2 50% | PROBABILI'D ON PERIO | TY OF IN
OD OF RE
CATED RE
NCE PROB | STANTANE
CORD 192
CURRENCE
ABILITY, | OUS PEAK I
8-50
INTERVAL
IN PERCEI | FLOW , IN NT | PERIOD (CON- SECU- TIVE DAYS) 1 3 7 | DISCH 2 50% 1100 924 767 | D ON PER ARGE, IN INTERV EXCEEDAN 5 20% 1680 1360 1060 | CFS, FC
AL, IN Y
CE PROBA
10
10% | RECORD 19 R INDICAT FEARS, AND BILITY, I 25 4% 2710 2090 1520 | ED RECUF
ANNUAL
N PERCEN
50
2% | 100
15 | | MAGNITION ISCHARGE YEARS, 1.25 80% | TUDE AND BASE , IN CFS, AND ANNUA 2 50% | PROBABILI'D ON PERIO | TY OF IN
OD OF RE
CATED RE
NCE PROB | STANTANE
CORD 192
CURRENCE
ABILITY, | OUS PEAK I
8-50
INTERVAL
IN PERCEI | FLOW , IN NT | PERIOD (CON-
SECU-
TIVE DAYS) | DISCH 2 50% 1100 924 767 658 | D ON PER ARGE, IN INTERV EXCEEDAN 5 20% 1680 1360 1060 842 | CFS, FCAL, IN YCE PROBA 10 10% 2110 1670 1260 937 | PR INDICAT
PEARS, AND
BILITY, I
25
4%
 | 128-50 TED RECUF ANNUAL N PERCEN 50 2% | 100
15 | | MAGNI | TUDE AND BASE , IN CFS, AND ANNUA 2 50% | PROBABILI'D ON PERIO | TY OF IN
OD OF RE
CATED RE
NCE PROB | STANTANE
CORD 192
CURRENCE
ABILITY, | OUS PEAK I
8-50
INTERVAL
IN PERCEI | FLOW , IN NT | PERIOD (CON-
SECU-
TIVE DAYS) | DISCH | D ON PER | 100 OF F
CFS, FC
AL, IN Y
CE PROBA
10
10%
2110
1670
1260
937
755 | RECORD 19 | 28-50 ED RECUF ANNUAL N PERCEN 50 2% | 100
15 | | MAGNITION ISCHARGE YEARS, 1.25 80% | TUDE AND BASE , IN CFS, AND ANNUA 2 50% | PROBABILI'D ON PERIO | TY OF IN
OD OF RE
CATED RE
NCE PROB | STANTANE
CORD 192
CURRENCE
ABILITY, | OUS PEAK I
8-50
INTERVAL
IN PERCEI | FLOW , IN NT | PERIOD
(CON-
SECU-
TIVE
DAYS)
 | DISCH 2 50% 1100 924 767 658 574 481 | D ON PER | CFS, FC AL, IN Y CE PROBA- 10 10% | RECORD 19 RINDICAT REARS, AND BILITY, I | 128-50 TED RECUF ANNUAL N PERCEN 50 2% | 100
15 | | MAGNITION ISCHARGE YEARS, 1.25 80% | TUDE AND BASE , IN CFS, AND ANNUA 2 50% | PROBABILI'D ON PERIO | TY OF IN OD OF RE | STANTANE
CORD 192
CURRENCE
IAB IL ITY,
25
4% | OUS PEAK I
8-50
INTERVAL
IN PERCEI
50
2% | FLOW , IN NT 100 18 | PERIOD (CON-
SECU-
TIVE DAYS) | DISCH 2 50% 1100 924 767 658 574 481 406 | ARGE, IN INTERVEXCEEDAN 1680 1360 1060 1060 842 703 580 486 | CFS, FCAL, IN YOCE PROBA 2110 1670 1260 937 755 617 517 | RECORD 19 | 28-50 ED RECUF ANNUAL N PERCEN 50 2% | 100
15 | | MAGNITION ISCHARGE YEARS, 1.25 80% | TUDE AND BASE , IN CFS, AND ANNUA 2 50% | PROBABILI'D ON PERIO | TY OF IN OD OF RE | STANTANE
CORD 192
CURRENCE
IAB IL ITY,
25
4% | OUS PEAK I
8-50
INTERVAL
IN PERCEI
50
2% | FLOW , IN NT 100 18 | PERIOD
(CON-
SECU-
TIVE
DAYS)
 | DISCH 2 50% 1100 924 767 658 574 481 406 | ARGE, IN INTERVEXCEEDAN 1680 1360 1060 1060 842 703 580 486 | CFS, FCAL, IN YOCE PROBA 2110 1670 1260 937 755 617 517 | RECORD 19 RINDICAT REARS, AND BILITY, I | 28-50 ED RECUF ANNUAL N PERCEN 50 2% | 100
13 | | MAGNI | TUDE AND BASE , IN CFS, AND ANNUA 2 50% | PROBABILI'D ON PERIO | TY OF
IN OD OF RE | STANTANE CORD 192 CURRENCE IAB IL ITY, 25 4% 3410 | OUS PEAK I
8-50
INTERVAL
IN PERCEI
50
2% | FLOW IN 100 1% | PERIOD (CON-
SECU-
TIVE DAYS) | DISCH 2 50% 1100 924 767 658 574 481 406 OF RECO | ARGE, IN INTERVEXCEEDAN 1680 1360 1060 842 703 580 486 RD 1928- | CFS, FCAL, IN NCE PROBA- 10 10% | 27 10 2090 1520 1030 797 645 543 | 28-50 ED RECUF ANNUAL N PERCEN 50 2% | RRENCE | 231 179 141 115 92 81 73 #### 14135000 SALMON RIVER AT WELCHES. OR LOCATION.--Lat 45°19'10", long 121°57'10", in S-1/2 sec.9, T.3 S., R.7 E., Clackamas County, Hydrologic Unit 17080001, 1,200 ft downstream from Cheeney Creek and 0.8 mi southeast of Welches. DRAINAGE AREA .-- 100 mi2. 1160 932 790 677 495 379 295 221 137 115 77 PERIOD OF RECORD.--September 1913 to September 1914, August 1920 to September 1921, April 1925 to September 1936. GAGE.--Staff gage. Altitude of gage is 1,350 ft, from topographic map. Aug. 15, 1913, to Sept. 30, 1914, 0.8 mi downstream at different datum. July 26, 1920, to Sept. 15, 1921, Apr. 1, 1925, to May 2, 1931, about 500 ft downstream at various datums. REMARKS. -- No diversion or regulation above station. AVERAGE DISCHARGE.--13 years (water years 1914, 1921, 1926-36), 438 ft^3/s . EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 13,000 ft³/s Mar. 31, 1931, gage height, 9.80 ft, site and datum then in use, from rating curve extended above 4,600 ft³/s; minimum, 65 ft³/s Dec. 3-6, 1929, Aug. 31 to Sept. 3, 1931. STATISTICAL SUMMARIES | МС | ONTHLY AN | ID ANNUAL | MEAN DIS | SCHARGES | 1914-36 | | MAG | | | | OF ANNUAL
ECORD 19 | | OW | |---|--|---|---|--|--|----------------------|---|---|--|---|---|--|-----------| | | Manifella | | MEAN | STAN-
DARD
DEVIA- | COEFFI-
CIENT OF | 0F | PERIOD
(CON- | DISCH | INTERVAL | , IN YEA | R INDICAT
RS, AND A
BILITY, I | NNUAL NO | DN- | | MONTH | (CFS) | MAXIMUM
(CFS) | MEAN
(CFS) | TION
(CFS) | VARI-
ATION | ANNUAL
RUNOFF | SECU-
TIVE
DAYS) | 2
50% | 5
20 % | 10
10% | 20
5 % | 50
2 % | 100
1% | | OCTOBER | 80 | 519 | 222 | 140 | .63 | 4.2 | 1 | 71 | 66 | 64 | 63 | | | | NOVEMBER | 73 | 1359 | 481 | 358 | .74 | 9.2 | 3 | 71 | 66 | 64 | 63 | | | | DECEMBER | 219 | 1641 | 576 | 384 | .67 | 11.0 | 7 | 72 | 67 | 65 | 64 | | | | JANUARY | 275 | 1066 | 619 | 263 | .42 | 11.8 | 14 | 74 | 69 | 67 | 66 | | | | EBRUARY | 183 | 1113 | 545 | 300 | .55 | 10.4 | 30 | 78 | 71 | 69 | 68 | | | | 1ARCH | 468 | 1322 | 707 | 255 | •36 | 13.5 | 60 | 86 | 76 | 73 | 71 | | | | APR1L | 298 | 955 | 697 | 189 | .27 | 13.3 | 90 | 94 | 80 | 75 | 73 | | | | 1AY | 231 | 1045 | 646 | 276 | .43 | 12.3 | 120 | 106 | 87 | 81 | 78 | | | | JUNE | 132 | 1071 | 377 | 236 | .63 | 7.2 | 183 | 171 | 130 | 117 | 109 | | | | JULY | 86 | 277 | 159 | 49 | .31 | 3.0 | | | | | | | | | AUGUST | 75 | 142 | 102 | 18 | .18 | 1.9 | | | | | | | | | SEPTEMBER | 76 | 296 | 123 | 64 | .52 | 2.3 | | | | | | | | | BEPTEMBER | 70 | | | | | | | | | | | | | | ANNUAL | 284
 | 589

PROBABILI | | | .21

EOUS PEAK | 100

FLOW |
MA(| | | | OF ANNUAL | | | | MAGNIT | Z84 FUDE AND BASE IN CFS, | 589 PROBABILI D ON PERI FOR INDI | TY OF IN
OD OF RE
CATED RE
NCE PROE | NSTANTANE
ECORD 191
ECURRENCE
BABILITY, | EOUS PEAK
 4-36
 INTERVAL
 IN PERCE | FLOW
, IN | PERIOD
(CON- | BASE
DISCH | D ON PER | CFS, FO | OF ANNUAL ECORD 19 R INDICAT EARS, AND | 14-36
ED RECUR | RRENCE | | MAGNIT | 284 FUDE AND BASE | 589 PROBABILI D ON PERI | TY OF IN | NSTANTANE
ECORD 191 | EOUS PEAK
 4-36
 INTERVAL
 IN PERCE | FLOW | PERIOD
(CON-
SECU-
TIVE | BASE
DISCH | ID ON PER | CFS, FO
AL, IN Y
CE PROBA | ECORD 19 R INDICAT EARS, AND BILITY, I | ED RECUF
ANNUAL
N PERCEN | RRENCE | | MAGNIT
DISCHARGE,
YEARS, A | 284 FUDE AND BASE IN CFS, AND ANNUA | 589 PROBABILI D ON PERI FOR INDI LL EXCEEDA | TY OF IN
OD OF RE
CATED RE
NCE PROE | NSTANTANE
ECORD 191
ECURRENCE
BABILITY, | EOUS PEAK 1
14-36
E INTERVAL
IN PERCE | FLOW
, IN
NT | PERIOD
(CON-
SECU- | BASE
DISCH | ED ON PER | CFS, FO
AL, IN Y | ECORD 19 R INDICAT EARS, AND BILITY, I | 14-36 ED RECUF ANNUAL N PERCEN | RRENCE | | MAGNIT
DISCHARGE,
YEARS, A | 284 FUDE AND BASE IN CFS, AND ANNUA | PROBABILI
D ON PERI
FOR INDI
L EXCEEDA | TY OF IN
OD OF RE
CATED RE
NCE PROE
10
10% | NSTANTANE
ECORD 191
ECURRENCE
BABILITY, | EOUS PEAK 1
14-36
E INTERVAL
IN PERCE | FLOW
, IN
NT | PERIOD
(CON-
SECU-
TIVE
DAYS) | DISCH | ARGE, IN INTERVENCE EXCEEDAN | CFS, FO
AL, IN Y
CE PROBA | R INDICATE ARS, AND BILITY, I | P14-36 TED RECUF ANNUAL N PERCEN 50 2% | RRENCE | | MAGNIT
DISCHARGE,
YEARS, A
1.25
80% | 284 FUDE AND BASE IN CFS, NND ANNUA 2 50% | FOR INDI | TY OF IN
OD OF RE
CATED RE
NCE PROE
10
10% | NSTANTANE
ECORD 191
ECURRENCE
BABILITY,
25
4% | EOUS PEAK I
4-36
INTERVAL
IN PERCEI
50
2% | FLOW
, IN
NT | PERIOD
(CON-
SECU-
TIVE
DAYS) | DISCH | ID ON PER
IARGE, IN
INTERV
EXCEEDAN
5
20% | CFS, FO
AL, IN Y
CE PROBA
10
10% | ECORD 19 R INDICAT EARS, AND BILITY, I 25 4% | ED RECUF
ANNUAL
N PERCEN | RRENCE | | MAGNIT
DISCHARGE,
YEARS, A | 284 FUDE AND BASE IN CFS, AND ANNUA 2 50% | PROBABILI
D ON PERI
FOR INDI
L EXCEEDA | TY OF IN
OD OF RE
CATED RE
NCE PROE
10
10% | NSTANTANE
ECORD 191
ECURRENCE
BABILITY,
25
4% | EOUS PEAK I
4-36
INTERVAL
IN PERCEI
50
2% | FLOW
, IN
NT | PERIOD (CON- SECU- TIVE DAYS) | DISCH | INTERVENTED INTERV | CFS, FO AL, IN Y CE PROBA | RECORD 19 RINDICAT FEARS, AND BILITY, I 25 4% 7980 5310 | P14-36 TED RECUF ANNUAL N PERCEN 50 2% | RRENCE | | MAGNIT
DISCHARGE,
YEARS, A
1.25
80% | 284 FUDE AND BASE IN CFS, AND ANNUA 2 50% | FOR INDI | TY OF IN
OD OF RE
CATED RE
NCE PROE
10
10% | NSTANTANE
ECORD 191
ECURRENCE
BABILITY,
25
4% | EOUS PEAK I
4-36
INTERVAL
IN PERCEI
50
2% | FLOW
, IN
NT | PERIOD (CON-
SECU-
TIVE
DAYS) | DISCH
2
50%
4220
2930
2060 | INTERVEXCEEDAN 5 20% 5700 3960 2850 | 10 OF R 1 CFS, F0 AL, IN Y CE PROBA 10 10 4580 3370 | RECORD 19 R INDICAT EARS, AND BILITY, I | P14-36 TED RECUF ANNUAL N PERCEN 50 2% | RRENCE | | MAGNIT
DISCHARGE,
YEARS, A
1.25
80% | 284 FUDE AND BASE IN CFS, AND ANNUA 2 50% | FOR INDI | TY OF IN
OD OF RE
CATED RE
NCE PROE
10
10% | NSTANTANE
ECORD 191
ECURRENCE
BABILITY,
25
4% | EOUS PEAK I
4-36
INTERVAL
IN PERCEI
50
2% | FLOW
, IN
NT | PERIOD (CON-
SECU-
TIVE DAYS) | DISCH 2 50\$ 4220 2930 2060 1490 | INTERVENTED ON PER INTERVENTE STORY | CFS, FO AL, IN Y CE PROBA 10 10\$ 6700 4580 3370 2270 | RECORD 19 R INDICAT EARS, AND BILITY, I 25 4% 7980 5310 4040 2640 | P14-36 TED RECUF ANNUAL N PERCEN 50 2% | RRENCE | | MAGNIT
DISCHARGE,
YEARS, A
1.25
80% | 284 FUDE AND BASE IN CFS, AND ANNUA 2 50% | FOR INDI | TY OF IN
OD OF RE
CATED RE
NCE PROE
10
10% | NSTANTANE
ECORD 191
ECURRENCE
BABILITY,
25
4% | EOUS PEAK I
4-36
INTERVAL
IN
PERCEI
50
2% | FLOW
, IN
NT | PERIOD (CON- SECU- TIVE DAYS) 1 3 7 15 30 | DISCH
2
50%
4220
2930
2060
1490
1150 | 5700
3960
2850
1970
1410 | CFS, F0 AL, IN Y CE PROBA 10 10 4580 3370 2270 1580 | R INDICAT
EARS, AND
BILITY, I
25
4%
7980
5310
4040
2640
1800 | P14-36 TED RECUF ANNUAL N PERCEN 50 2% | RRENCE | | MAGNIT
DISCHARGE,
YEARS, A
1.25
80% | 284 FUDE AND BASE IN CFS, AND ANNUA 2 50% | FOR INDI | TY OF IN
OD OF RE
CATED RE
NCE PROE
10
10% | NSTANTANE
ECORD 191
ECURRENCE
BABILITY,
25
4% | EOUS PEAK I
4-36
INTERVAL
IN PERCEI
50
2% | FLOW
, IN
NT | PERIOD (CON-
SECU-
TIVE DAYS) | DISCH 2 50\$ 4220 2930 2060 1490 | INTERVENTED ON PER INTERVENTE STORY | CFS, FO AL, IN Y CE PROBA 10 10\$ 6700 4580 3370 2270 | RECORD 19 R INDICAT EARS, AND BILITY, I 25 4% 7980 5310 4040 2640 | P14-36 TED RECUF ANNUAL N PERCEN 50 2% | RRENCE | | MAGNIT
DISCHARGE,
YEARS, A
1.25
80% | 284 FUDE AND BASE IN CFS, AND ANNUA 2 50% | PROBABILI
D ON PERI
FOR INDI
L EXCEEDA
5
20% | TY OF IN OD OF RE CATED RE NCE PROE 10 10 10 9110 1 | STANTANE CORD 191 CURRENCE BABILITY, 25 4% | EOUS PEAK I
4-36 E INTERVAL IN PERCEI 50 2% OF DAILY I | FLOW , IN NT 100 1% | PERIOD (CON- SECU- TIVE DAYS) | DISCH
2
50%
4220
2930
2060
1490
1150
915
806 | ARGE, IN INTERVEXCEEDAN 5 20 | CFS, F0 AL, IN Y CE PROBA 10 10\$ 6700 4580 3370 2270 1580 1240 1050 | R INDICAT
FARS, AND
BILITY, I
25
4%
7980
5310
4040
2640
1800
1400
1180 | P14-36 TED RECUF ANNUAL N PERCEN 50 2% | RRENCE | | MAGNIT
DISCHARGE,
YEARS, A
1.25
80% | 284 FUDE AND BASE IN CFS, AND ANNUA 2 50% | PROBABILI
D ON PERI
FOR INDI
L EXCEEDA
5
20% | TY OF IN OD OF RE CATED RE NCE PROE 10 10 10 9110 1 | STANTANE CORD 191 CURRENCE BABILITY, 25 4% | EOUS PEAK I
4-36 E INTERVAL IN PERCEI 50 2% OF DAILY I | FLOW , IN NT 100 1% | PERIOD (CON-
SECU-
TIVE DAYS) | DISCH
2
50%
4220
2930
2060
1490
1150
915
806 | ARGE, IN INTERVEXCEEDAN 5 20 | CFS, F0 AL, IN Y CE PROBA 10 10\$ 6700 4580 3370 2270 1580 1240 1050 | R INDICAT
FARS, AND
BILITY, I
25
4%
7980
5310
4040
2640
1800
1400
1180 | P14-36 TED RECUF ANNUAL N PERCEN 50 2% | RRENCE | #### 14135500 SALMON RIVER ABOVE BOULDER CREEK, NEAR BRIGHTWOOD, OR LOCATION.--Lat 45°21'40", long 122°00'40", in SW\sEt sec.25, T.2 S., R.6 E., Clackamas County, Hydrologic Unit 17080001, on left bank 1.1 mi upstream from Boulder Creek, 1.2 mi south of Brightwood, and 2.0 mi upstream from mouth. DRAINAGE AREA. -- 106 mi2. PERIOD OF RECORD. -- August 1936 to September 1952. GAGE.--Water-stage recorder. Datum of gage is 1,089.2 ft National Geodetic Vertical Datum of 1929 (levels by Corps of Engineers). REMARKS.--No regulation or diversion above station. AVERAGE DISCHARGE.--16 years (water years 1937-52) 452 ft³/s, 327,200 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 11,700 ft³/s Dec. 14, 1946, gage height, 7.08 ft, from rating curve extended above 4,100 ft³/s by logarithmic plotting; minimum, 59 ft³/s Nov. 30, Dec. 1, 1936, Sept. 25, 26, 1940. #### STATISTICAL SUMMARIES | M | ONTHLY AN | ID ANNUAL | MEAN DIS | SCHARGES | 1937-52 | | MAG | | | | OF ANNUAL
ECORD 19 | | OW | |---------------------|------------------|------------------|--------------------------------|---------------------------------|---------------------|--------------------------------------|--|--|---|--|--|----------------------|-----------| | | MINIMUM | MAX I MUM | MEAN | STAN-
DARD
DEVIA-
TION | COEFFI-
CIENT OF | PERCENT
OF | PERIOD
(CON-
SECU- | DISCH | INTERVAL | , IN YEA | R INDICAT
RS, AND A
BILITY, I | ANNUAL NO | DN- | | MONTH | (CFS) | (CFS) | (CFS) | (CFS) | VARI-
ATION | ANNUAL
RUNOFF | TIVE
DAYS) | 2
50% | 5
20% | 10
10% | 20
5 % | 50
2% | 100 | | OCTOBER | 74 | 582 | 224 | 159 | •71 | 4.1 | 1 | 81 | 70 | 65 | 61 | | | | 10VEMBER | 70 | 1058 | 527 | 318 | .60 | 9.7 | 3 | 82 | 71 | 65 | 61 | | - | | DECEMBER | 175 | 1666 | 713 | 374 | •52 | 13.1 | 7 | 83 | 72 | 67 | 63 | | - | | JANUARY | 143 | 1026 | 518 | 268 | •52 | 9.5 | 14 | 86 | 75 | 70 | 66 | | _ | | EBRUARY | 253 | 956 | 629 | 218 | .35 | 11.6 | 30 | 91 | 79 | 74 | 69 | | - | | MARCH | 228 | 900 | 572 | 163 | .28 | 10.5 | 60 | 101 | 86 | 79 | 74 - | | - | | APRIL | 228 | 1064 | 738 | 225 | .30 | 13.6 | 90 | 111 | 92 | 84 | 78 | | _ | | MAY | 270 | 1294 | 715 | 292 | .41 | 13.2 | 120 | 134 | 105 | 92 | 83 | | _ | | JUNE | 142 | 907 | 399 | 187 | .47 | 7.3 | 183 | 217 | 156 | 132 | 114 | | _ | | JULY | 94 | 313 | 184 | 59 | .32 | 3.4 | | | | | | | | | NUGUST | 71 | 161 | 112 | 24 | .21 | 2.1 | | | | | | | | | SEPTEMBER | | 140 | 103 | 21 | .20 | 1.9 | | | | | | | | | ANNUAL | 246 | 613 | 452 | 112 | .25 | 100 | | | | | | | | | | | FOR INDIC | ATED DE | | | | | | | | | | | | | | L EXCEEDA | | | INTERVAL | | PERIOD | | INTERV | AL, İN YI | R INDICAT | ANNUAL | | | 1.25 | 2 | 5 | NCE PROB | ABILITY,

25 | IN PERCEI | NT
 | (CON-
SECU- | | I NTERV
EXCEEDAN | AL, IN YI
CE PROBAE | EARS, AND
BILITY, I | N PERCEN | IT | | 1.25
80% | | | NCE PROB | ABILITY, | IN PERCE | NT | (CON- | | INTERV | AL, İN YI | EARS, AND | ANNUAL | IT
10 | | | 2 | 5
20% | NCE PROB
10
10\$ | ABILITY,

25 | IN PERCEI | NT
 | (CON-
SECU-
TIVE
DAYS) | 2
50% | INTERV
EXCEEDAN
5
20% | AL, IN YICE PROBAE | EARS, AND
BILITY, I
25
4% | N PERCEN
50
2% | IT
10 | | 80 %
3270 | 2
50%
4780 | 5
20%
7260 | NCE PROB
10
10\$ | 25
4% | IN PERCEI | NT
 | (CON-
SECU-
TIVE
DAYS) | 2
50%
3270 | INTERVEXCEEDAN 5 20% | AL, IN YICE PROBAR
10
10%
5960 | EARS, AND
BILITY, I
25
4% | N PERCEN | 10 | | 80 %
3270 | 2
50% | 5
20% | NCE PROB
10
10\$ | 25
4% | IN PERCEI | NT
 | (CON-
SECU-
TIVE
DAYS)
 | 2
50%
3270
2270 | INTERV
EXCEEDAN
5
20%

4760
3440 | AL, IN YICE PROBAB
10
10%
5960
4490 | 7760
6240 | N PERCEN
50
2% | 10 | | 80 %
 | 2
50%
4780 | 5
20%
7260 | NCE PROB
10
10\$ | 25
4% | IN PERCEI | NT
 | (CON-
SECU-
TIVE
DAYS)
 | 2
50%
3270
2270
1690 | 1 NTERV
EXCEEDAN
5
20%
4760
3440
2490 | AL, IN YICE PROBAB
10
10\$
5960
4490
3150 | 7760
6240
4170 | N PERCEN | IT
10 | | 80 %
3270 | 2
50%
4780 | 5
20%
7260 | NCE PROB
10
10\$ | 25
4% | IN PERCEI | NT
 | (CON-
SECU-
TIVE
DAYS)

1
3
7 | 2
50%
3270
2270
1690
1290 | 1 NTERV
EXCEEDAN
5
20%
4760
3440
2490
1780 | 10
10%
5960
4490
3150
2120 | 25
4%
7760
6240
4170
2560 | 50
2% | 10 | | 80 %
3270 | 2
50%
4780 | 5
20%
7260 | NCE PROB
10
10\$ | 25
4% | IN PERCEI | NT
 | (CON-
SECU-
TIVE
DAYS)
 | 2
50%
3270
2270
1690
1290
1100 | 1 NTERV
EXCEEDAN
5
20%
4760
3440
2490
1780
1420 | 10
10%
5960
4490
3150
2120
1600 | 25
4%
7760
6240
4170
2560
1800 | N PERCEN | IT
10 | | 80 %
 | 2
50%
4780 | 5
20%
7260 | NCE PROB
10
10\$ | 25
4% | IN PERCEI | NT
 | (CON-
SECU-
TIVE
DAYS)
 | 2
50%
3270
2270
1690
1290 | 1 NTERV
EXCEEDAN
5
20%
4760
3440
2490
1780 | 10
10%
5960
4490
3150
2120 | 25
4%
7760
6240
4170
2560 | 50
2% | IT
10 | | 80 %
3270 | 2
50%
4780 | 5
20%
7260 | NCE PROB
10
10\$ | 25
4% | IN PERCEI | NT
 | (CON-
SECU-
TIVE
DAYS)
 | 2
50%
3270
2270
1690
1290
1100 | 1 NTERV
EXCEEDAN
5
20%
4760
3440
2490
1780
1420 | 10
10%
5960
4490
3150
2120
1600 | 25
4%
7760
6240
4170
2560
1800 | 50
2% | IT
10 | | 80 %
3270 | 2
50%
4780 | 5
20%
7260 | 10
10%
9180 1 | 25
4%
1900 | 1N PERCEI | 100
1% | (CON-
SECU-
TIVE
DAYS)
 | 3270
2270
1690
1290
1100
916
834 | 1 NTERV
EXCEEDAN
5
20%
4760
3440
2490
1780
1420
1120
1010 | 10
10%
5960
4490
3150
2120
1600
1210 | 7760
6240
4170
2560
1800
1300 | 50
2% | 10 | | 80 %
3270 | 2
50%
4780 | 7260 S | 10
10
10
10
9180 1 | 25
4%
1900
N TABLE | IN PERCEI | NT
100
1%

MEAN FLOW | (CON-
SECU-
TIVE
DAYS)

1
3
7
15
30
60
90 | 2
50%
3270
2270
1690
1290
1100
916
834 | 1 NTERV
EXCEEDAN
5 20\$
4760 3440
2490 1780
1420 1010 | 5960
4490
2120
1600
1100
5960
4490
2120
1600
1210
1100 | 7760
6240
4170
2560
1800
1300 | 50
2% | IT
100 | | 80 %
3270 | 2
50%
4780 | 7260 S | 10
10
10
10
9180 1 | 25
4%
1900
N TABLE | IN PERCEI | MEAN FLOW | (CON-
SECU-
TIVE
DAYS)
 | 2
50%
3270
2270
1690
1290
1100
916
834 | 1 NTERV
EXCEEDAN
5 20\$
4760 3440
2490 1780
1420 1010 | 5960
4490
2120
1600
1100
5960
4490
1100
1100 | 7760
6240
4170
2560
1800
1300 | 50
2% | | #### 14137000 SANDY RIVER NEAR MARMOT, OR
LOCATION.--Lat 45°23'30", long 122°07'40", in SE± sec.13, T.2 S., R.5 E., Clackamas County, Hydrologic Unit 17080001, on right bank 0.7 mi southwest of Marmot, 0.8 mi upstream from Sandy River Dam of Portland General Electric Co., 6.6 mi downstream from Salmon River, and at mile 30.9. DRAINAGE AREA .-- 262 mi2. PERIOD OF RECORD.--August 1911 to September 1982. Published as "at Marmot" October 1912 to September 1913. Records for January 1916 to June 1919, published as "below dam, near Marmot," obtained by combining records for Sandy River below dam, near Marmot, with records for Sandy River Canal near Marmot. GAGE.--Water-stage recorder. Altitude of gage is 730 ft, from river-profile map. Aug. 15, 1911, to Dec. 20, 1915, and July 2, 1919, to Oct. 19, 1933, nonrecording gage at site 1.0 mi upstream at different datum. Oct. 20, 1933, to Sept. 30, 1958, water-stage recorder at site 0.6 mi upstream at different datum. REMARKS.--No regulation or diversion above station. AVERAGE DISCHARGE.--71 years, 1,368 ft³/s, 70.91 in/yr, 991,100 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 61,400 ft³/s Dec. 22, 1964, gage height, 17.05 ft, from rating curve extended above 7,000 ft³/s; minimum, 195 ft³/s Nov. 27, 28, 1952. #### STATISTICAL SUMMARIES | | MINIMUM | MAXIMUM | MEAN | STAN-
DARD
DEVIA-
TION | COEFFI-
CIENT OF
VARI- | PERCENT
OF
ANNUAL | PERIOD
(CON-
SECU- | | ARGE, IN
INTERVAL
EXCEEDAN | , IN YEA | RS, AND | ANNUAL N | ⊃N- | |---------------------|------------|-------------|------------|---------------------------------|------------------------------|-------------------------|--------------------------|----------|----------------------------------|-----------|----------|----------|------------| | MONTH | (CFS) | (CFS) | (CFS) | (CFS) | ATION | RUNOFF | TIVE
DAYS) | 2
50% | 5
20% | 10
10% | 20
5% | 50
2% | 100
1% | | OCTOBER | 260 | 2168 | 665 | 400 | .60 | 4.1 | 1 | 290 | 252 | 234 | 220 | 205 | 196 | | NOVEMBER | 236 | 3699 | 1558 | 897 | .58 | 9.5 | 3 | 295 | 255 | 237 | 222 | 207 | 197 | | DECEMBER | 445 | 6278 | 2129 | 1189 | •56 | 13.0 | 7 | 304 | 262 | 242 | 227 | 210 | 200 | | JANUARY | 498 | 4752 | 2028 | 1016 | .50 | 12.4 | 14 | 317 | 273 | 252 | 236 | 218 | 207 | | FEBRUARY | 464 | 4686 | 1834 | 825 | .45 | 11.2 | 30 | 337 | 289 | 267 | 249 | 231 | 219 | | MARCH | 631 | 3983 | 1645 | 574 | .35 | 10.0 | 60 | 373 | 314 | 288 | 267 | 247 | 234 | | APRIL | 658 | 3134 | 1900 | 502 | .26 | 11.6 | 90 | 409 | 340 | 310 | 287 | 263 | 249 | | 4AY_ | 744 | 3443 | 1878 | 628 | .33 | 11.4 | 120 | 466 | 380 | 344 | 318 | 292 | 276 | | JUNE | 496 | 3457 | 1257 | 580 | .46 | 7.7 | 183 | 682 | 537 | 477 | 434 | 392 | 368 | | JULY | 356 | 1385 | 654 | 192 | . 29 | 4.0 | | | | | | | | | AUGUST
SEPTEMBER | 268
265 | 663
1056 | 435
427 | 85
158 | .20
.37 | 2.7
2.6 | | | | | | | | | ANNUAL | 766 | 1933 | 1363 | 273 | .20 | 100 | | | | | | | | | DISCHARGE
YEARS, | | S, FOR IN | | | | | PERIOD
(CON- | DISC | INTER | VAL, ÎN | OR INDICA
YEARS, AI
ABILITY, | ND ANNUA | L | |---------------------|------------------|------------------|-----------|----------|------------------|-----------|------------------------|----------|------------------|-----------|------------------------------------|----------|-----------| | 1.25
80% | 2
50 % | 5
20 % | 10
10% | 25
4% | 50
2 % | 100
1% | SECU-
TIVE
DAYS) | 2
50% | 5
20 % | 10
10% | 25
4% | 50
2% | 100
1% | | 9120 | 14200 | 21900 | 27300 | 34400 | 39800 | 45300 | | | | | | | | | | | | | | | | 1 | 10500 | 15600 | 19000 | 23500 | 26800 | 30200 | | WEIGHTE | D SKEW = | 123 | | | | | 3 | 7750 | 11300 | 13900 | 17200 | 19800 | 22500 | | | | | | | | | 7 | 5680 | 7900 | 9360 | 11200 | 12500 | 13800 | | | | | | | | | 15 | 4260 | 5650 | 6510 | 7530 | 8260 | 8950 | | | | | | | | | 30 | 3370 | 4330 | 4920 | 5630 | 6130 | 6610 | | | | | | | | | 60 | 2720 | 3380 | 3780 | 4250 | 4570 | 4870 | | | | | | | | | 90 | 2440 | 2970 | 3270 | 3610 | 3840 | 4050 | DURATION TABLE OF DAILY MEAN FLOW FOR PERIOD OF RECORD 1912-82 | | | DISC | CHARGE, | IN CFS, | WHICH WAS | EQUALED | OR EXC | EDED FOR | INDICATED | PERCENT | OF TIME | | | | |------|------|------|---------|---------|-----------|---------|--------|----------|-----------|-------------|---------|-----|-----|-----| | 5% | 10% | 15% | 20% | 25% | 30\$ | 40% | 50% | 60% | 70% | 75 % | 80% | 85% | 90% | 95% | | 3570 | 2700 | 2250 | 1960 | 1740 | 1550 | 1240 | 997 | 793 | 597 | 520 | 456 | 404 | 358 | 310 | 17 #### 14138800 BLAZED ALDER CREEK NEAR RHODODENDRON, OR LOCATION.--Lat 45°27'10", long 121°53'25", in NW4SE4 sec.25, T.1 S., R.7 E., Clackamas County, Hydrologic Unit 17080001, in Mount Hood National Forest, on right bank 600 ft below the confluence of Bedrock and Hickman Creeks and 8.6 mi north of Rhododendron. DRAINAGE AREA. -- 8.17 mi2. PERIOD OF RECORD. -- October 1963 to September 1982. GAGE.--Water-stage recorder. Altitude of gage is 2,540 ft, from topographic map. REMARKS.--No regulation or diversion above station. AVERAGE DISCHARGE.--19 years, 59.8 ft³/s, 99.40 in/yr, 43,330 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 2,610 ft^3/s Dec. 22, 1964, gage height, 8.25 ft, from rating curve extended above 330 ft^3/s , on basis of slope-area measurement of peak flow; minimum, 1.5 ft^3/s Sept. 5-10, 28, 29, 1967. #### STATISTICAL SUMMARIES | | MINIMUM | MAXIMUM | MEAN | STAN-
DARD
DEVIA-
TION | COEFFI-
CIENT OF
VARI- | PERCENT
OF
ANNUAL | PERIOD
(CON-
SECU- | J | NTERVAL, | IN YEAR | R INDICATI
RS, AND AI
BILITY, II | NNUAL NO | N- | |-------------------------------------|--|-------------------------|-----------------------|---|-----------------------------------|-------------------------|--|---|--|---|--|--------------------------------------|-----------| | MONTH | (CFS) | (CFS) | (CFS) | (CFS) | ATION | RUNOFF | TIVE
DAYS) | 2
50% | 5
20 % | 10
10 % | 20
5% | 50
2 % | 100
1% | | OCTOBER | 2.4 | 83 | 30 | 23 | •75 | 4.2 | 1 | 2.2 | 1.8 | 1.6 | 1.5 | | | | NOVEMBER | 15 | 177 | 79 | 46 | . 58 | 10.9 | 3 | 2.3 | 1.8 | 1.6 | 1.6 | | | | DECEMBER | 23 | 288 | 122 | 71 | .59 | 17.0 | 7 | 2.4 | 1.9 | 1.7 | 1.6 | | | | JANUARY | 23 | 207 | 113 | 57 | • 50 | 15.7 | 14 | 2.6 | 2.0 | 1.8 | 1.7 | | | | EBRUARY | 18 | 183 | 80 | 46 | • 57 | 11.2 | 30 | 3.1 | 2.3 | 2.0 | 1.9 | | | | MARCH | 29 | 167 | 60 | 31 | .51 | 8.4 | 60 | 4.3 | 2.9 | 2.5 | 2.2 | | | | APRIL | 35 | 109 | 74 | 24 | . 32 | 10.2 | 90 | 6.9 | 4.3 | 3.4 | 2.8 | | | | 1AY | 38 | 165 | 85 | 37 | .43 | 11.9 | 120 | 10 | 6.7 | 5.3 | 4.4 | | | | JUNE | 13 | 115 | 45 | 30 | .66 | 6.2 | 183 | 23 | 16 | 13 | 11 | | | | JULY | 4.0 | 24 | 11 | 5.5 | . 49 | 1.6 | | | | | | | | | AUGUST | 2.4 | 28 | 6.7 | 6.2 | .92 | .9 | | | | | | | | | SEPTEMBER | 2.4 | 36 | 13 | 10 | .81 | 1.8 | | | | | | | | | ANNUAL | 34 | 88 | 60 | 13 | .22 | 100 | | | | | | | | | | BASE | PROBABILI
D ON PERIO | OD OF REC | CORD 1964 | 1- 82 | | MAG | BASED | ON PERI | OD OF RE | F ANNUAL | 54-82
 | | | OISCHARGE
YEARS, | BASE
, IN CFS,
AND ANNUA | FOR INDICAL EXCEEDA | OD OF REC | CORD 1964
CURRENCE
ABILITY, | 1-82
INTERVAL
IN PERCEI | , IN
NT | PERIOD
(CON- | BASED
DISCHA | ON PERI | OD OF RE

CFS, FOR
L, IN YE | | 54-82

ED RECUR
ANNUAL |
RENCE | |) I SCHARGE | BASE
, IN CFS, | D ON PERIO | OD OF REC | CORD 1964 | 1-82
INTERVAL
IN PERCEI | . IN | PERIOD |
BASED
DISCHA | ON PERI | OD OF RE

CFS, FOR
L, IN YE | CORD 196 | 54-82

ED RECUR
ANNUAL |
RENCE | |) SCHARGE
YEARS, | BASE
, IN CFS,
AND ANNUA | FOR INDIO | OD OF REC | CORD 1964
CURRENCE
ABILITY, | INTERVAL
IN PERCEI | , IN
NT
 | PERIOD
(CON-
SECU-
TIVE | BASED DISCHA E: | ON PERI | OD OF RE
CFS, FOR
L, IN YE
E PROBAB | CORD 196 INDICATE ARS, AND ILITY, IN | 54-82 ED RECUR ANNUAL I PERCEN 50 | RENCE | | 1.25
80% | BASE
, IN CFS,
AND ANNUA
2
50% | FOR INDIO | OD OF REC | CORD 1964
CURRENCE
ABILITY,
25
4% | INTERVAL
IN PERCEI | , IN
NT
 | PERIOD
(CON-
SECU-
TIVE | BASED DISCHA E: | ON PERI | OD OF RE
CFS, FOR
L, IN YE
E PROBAB | CORD 196 INDICATE ARS, AND ILITY, IN | 54-82 ED RECUR ANNUAL I PERCEN 50 | T
100 | | 1.25
80% | BASE
, IN CFS,
AND ANNUA
2
50% | FOR INDIAL EXCEEDA | OD OF REC | CORD 1964
CURRENCE
ABILITY,
25
4% | INTERVAL
IN PERCEI | , IN
NT
 | PERIOD
(CON-
SECU-
TIVE
DAYS) | BASED DISCHA E: 2 50% | ON PERIOR PER | OD OF RE | INDICATE ARS, AND | 54-82 ED RECUR ANNUAL PERCEN 50 2% | T
100 | | 1.25
80% | BASE , IN CFS, AND ANNUA 2 50% | FOR INDIAL EXCEEDA | OD OF REC | CORD 1964
CURRENCE
ABILITY,
25
4% | INTERVAL
IN PERCEI | , IN
NT
 | PERIOD
(CON-
SECU-
TIVE
DAYS) | BASED DISCHA E 2 50% | ON PERI | OD OF RECES, FOR IN YEE PROBAB | INDICATE ARS, AND CILITY, IN | 54-82 ED RECUR ANNUAL PERCEN 50 2% | T
100 | | DI SCHARGE
YEARS,
1.25
80% | BASE , IN CFS, AND ANNUA 2 50% | FOR INDIAL EXCEEDA | OD OF REC | CORD 1964
CURRENCE
ABILITY,
25
4% | INTERVAL
IN PERCEI | , IN
NT
 | PERIOD (CON- SECU- TIVE DAYS) | DISCHA E 2 50% 743 498 | ON PERIOR OF THE | OD OF RE
CFS, FOR
L, IN YE
E PROBAB
10
10% | 25 4% 1460 1030 | 54-82 ED RECUR ANNUAL N PERCEN 50 2% | T
100 | | DI SCHARGE
YEARS,
1.25
80% | BASE , IN CFS, AND ANNUA 2 50% | FOR INDIAL EXCEEDA | OD OF REC | CORD 1964
CURRENCE
ABILITY,
25
4% | INTERVAL
IN PERCEI | , IN
NT
 | PERIOD (CON- SECU- TIVE DAYS) 1 3 7 | BASED DISCHA E 2 50% 743 498 359 | ON PERI | OD OF RE
CFS, FOR
L, IN YE
E PROBAB
10
10% | INDICATE ARS, AND ILLITY, IN 25 4% 1460 1030 676 | 54-82 ED RECUR ANNUAL PERCEN 50 2% | T
100 | | DI SCHARGE
YEARS,
1.25
80% | BASE , IN CFS, AND ANNUA 2 50% | FOR INDIAL EXCEEDA | OD OF REC | CORD 1964
CURRENCE
ABILITY,
25
4% | INTERVAL
IN PERCEI | , IN
NT
 | PERIOD (CON-
SECU-
TIVE DAYS) | BASED DISCHA E: 2 50% 743 498 359 245 | ON PERI | OD OF RE CFS, FOR L, IN YE E PROBAB 10 10% 1250 856 582 379 | INDICATE ARS, AND ILLITY, IN 25 44 1460 1030 676 438 | 54-82 ED RECUR ANNUAL PERCEN 50 2% | T
100 | | 1.25
80% | BASE , IN CFS, AND ANNUA 2 50% | FOR INDIAL EXCEEDA | OD OF REC | CORD 1964
CURRENCE
ABILITY,
25
4% | INTERVAL
IN PERCEI | , IN
NT
 | PERIOD (CON-
SECU-
TIVE DAYS) | DISCHA E 2 50% 743 498 359 245 183 | ON PERI | OD OF RE
 | 1460
1030
676
438
317 | 54-82 ED RECUR ANNUAL PERCEN 50 2% | T
100 | | 1.25
80% | BASE , IN CFS, AND ANNUA 2 50% | FOR INDIAL EXCEEDA | CATED RECONCE PROBLEM | CURRENCE ABILITY, 25 4% | INTERVAL
IN PERCEI | , IN
NT
 | PERIOD (CON-
SECU-
TIVE DAYS) | DISCHA E 2 50% 743 498 359 245 183 140 121 | ON PERI- RGE, IN INTERVA XCEEDANC 5 20% | CFS, FOR L, IN YEE PROBAB 10 10% 1250 856 582 379 273 201 172 | 1460
1030
676
438
317
231 | 54-82 ED RECUR ANNUAL PERCEN 50 2% | T
100 | | 1.25
80% | BASE , IN CFS, AND ANNUA 2 50% | FOR INDIG | CATED REG | CURRENCE ABILITY, 25 4% 2200 | INTERVAL
IN PERCEI
50
2% | IEAN FLOW | PERIOD
(CON-
SECU-
TIVE
DAYS)
 | DISCHA E 2 50% 743 498 359 245 183 140 121 OF RECORI | ON PERI- RGE, IN INTERVA XCEEDANC 5 20% 1060 713 499 329 238 177 152 D 1964-8: | OD OF RE | 1460
1030
676
438
317
231
197 | 54-82 ED RECUR ANNUAL PERCEN 50 2% | RENCE | | 1.25
80% | BASE , IN CFS, AND ANNUA 2 50% | FOR INDIG | CATED REG | CURRENCE ABILITY, 25 4% 2200 | INTERVAL
IN PERCEI
50
2% | IEAN FLOW | PERIOD (CON- SECU- TIVE DAYS) 1 3 7 15 30 60 90 FOR PERIOD | DISCHA E 2 50% 743 498 359 245 183 140 121 OF RECORI | ON PERI- RGE, IN INTERVA XCEEDANC 5 20% 1060 713 499 329 238 177 152 D 1964-8: | OD OF RE | 1460
1030
676
438
317
231
197 | 54-82 ED RECUR ANNUAL PERCEN 50 2% | T
100 | #### 14138850 BULL RUN RIVER NEAR MULTNOMAH FALLS, OR LOCATION.--Lat 45°29'50", long 122°00'50", near center of sec.12, T.1 S., R.6 E., Multnomah County, Hydrologic Unit 17080001, in Mount Hood National Forest, on right bank 1.2 mi upstream from North Fork, 7.0 mi southeast of Multnomah Falls, and at mile 14.8. DRAINAGE AREA .-- 47.9 mi². 1420 896 PERIOD OF RECORD.--August 1966 to September 1982. GAGE.--Water-stage recorder and crest-stage gage. Altitude of gage is 1,080 ft, from topographic map. REMARKS.--Water stored since 1915 in Bull Run Lake, usable capacity, 12,270 acre-ft. No diversion above station. AVERAGE DISCHARGE.--16 years, 424 ft^3/s , 120.21 in/yr, 307,200 acre-ft/yr. 691 569 492 433 344 EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, $8,610 \text{ ft}^3/\text{s}$ Jan. 20, 1972, gage height, 13.22 ft; minimum, $33 \text{ ft}^3/\text{s}$ Sept. 27, 1967. #### STATISTICAL SUMMARIES | М | ONTHLY AN | ID ANNUAL | MEAN DIS | CHARGES | 1967-82 | | MAG | | | | OF ANNUAL
ECORD 19 | | OW | |---|--|--|--|---|---|-------------------------|---|---|---|---|---|---|--------------| | | MINIMUM | MAX I MUM | MEAN | STAN-
DARD
DEVIA-
TION | COEFFI-
CIENT OF
VARI- | PERCENT
OF
ANNUAL | PERIOD
(CON-
SECU- | DISCH | INTERVAL | , IN YEA | R INDICAT
RS, AND A | NNUAL NO | -MC | | MONTH | (CFS) | (CFS) | (CFS) | (CFS) | ATION | RUNOFF | TIVE
DAYS) | 2
50% | 5
20 % | 10
10% | 20
5 % | 50
2 % | 100
1% | | OCTOBER | 53 | 535 | 249 | 155 | .62 | 4.9 | 1 | 45 | 38 | 35 | 33 | | | | NOVEMBER | 147 | 1050 | 534 | 283 | .53 | 10.5 | 3 | 46 | 39 | 35 | 33 | | | | ECEMBER | 193 | 1434 | 824 | 343 | .42 | 16.2 | 7 | 47 | 39 | 36 | 33 | | | | IANUARY | 178 | 1238 | 755 | 376 | .50 | 14.8 | 14 | 50 | 41 | 37 | 34 | | | | FEBRUARY | 185 | 1215 | 632 | 325 | .51 | 12.4 | 30 | 58 | 46 | 41 | 37 | | | | MARCH | 236 | 1120 | 466 | 212 | .45 | 9.1 | 60 | 72 | 53 | 45 | 40 | | | | PRIL | 242 | 743 | 483 | 141 | . 29 | 9.5 | 90 | 98 | 71 | 59 | 50 | | | | MAY_ | 260 | 885 | 488 | 189 | . 39 | 9.6 | 120 | 119 | 90 | 76 | 66 | | | | JUNE | 114 | 699 | 309 | 172 | .56 | 6.1 | 183 | 186 | 150 | 134 | 123 | | | | JULY | 54 | 243 | 116 | 48 | .42 | 2.3 | | | | | | | | | AUGUST | 44 | 231 | 98 | 54 | -56 | 1.9 | | | | | | | | | EPTEMBER | 43 | 294 | 146 | 73 | . 50 | 2.9 | ANNUAL
MAGNI | | | | | .23
 | 100
 |
MA(| | | | OF ANNUAL | | | | MAGNI
DISCHARGE
YEARS, | TUDE AND
BASE
, IN CFS,
AND ANNUA | PROBABILI
D ON PERI
FOR INDI | TY OF IN
OD OF RE
CATED RE
NCE PROB | ISTANTANE
CORD 196
CURRENCE | OUS PEAK I
7-82
INTERVAL
IN PERCEI | FLOW
, IN | PERIOD
(CON- | BASE
DISCH | D ON PER | CFS, FO
| OF ANNUAL
ECORD 19
R INDICAT
EARS, AND
BILITY, I | 67-82
ED RECUF | RRENCE | | MAGN1 | TUDE AND
BASE | PROBABILI
D ON PERI | TY OF IN
OD OF RE
CATED RE | ISTANTANE
CORD 196 | OUS PEAK I
7-82
INTERVAL
IN PERCEI | FLOW | PERIOD
(CON-
SECU-
TIVE | BASE
DISCH | D ON PER
IARGE, IN
INTERV
EXCEEDAN | CFS, FO
AL, IN Y
CE PROBAL | ECORD 19 R INDICATEARS, AND BILITY, 1 | ED RECUF
ANNUAL
N PERCEN | RRENCE
IT | | MAGNI
DISCHARGE
YEARS,
1.25
80% | TUDE AND BASE , IN CFS, AND ANNUA 2 50% | PROBABILI
D ON PERI
FOR INDI
L EXCEEDA
5
20% | TY OF IN
OD OF RE
CATED RE
NCE PROB | ISTANTANE
CORD 196
CURRENCE
ABILITY, | OUS PEAK I
7-82
INTERVAL
IN PERCEI | FLOW
, IN
NT | PERIOD
(CON-
SECU- | BASE
DISCH | D ON PER | CFS, FO
AL, IN Y
CE PROBAL | ECORD 19 R INDICATEARS, AND | 67-82 ED RECUF ANNUAL N PERCEN | RRENCE | | MAGNI
DISCHARGE
YEARS, | TUDE AND
BASE
, IN CFS,
AND ANNUA | PROBABILI
D ON PERI
FOR INDI
L EXCEEDA
5
20% | TY OF IN
OD OF RE
CATED RE
NCE PROB | ISTANTANE
CORD 196
CURRENCE
IABILITY, | OUS PEAK I
7-82
INTERVAL
IN PERCEI | FLOW
, IN
NT | PERIOD
(CON-
SECU-
TIVE
DAYS) | DISCH | ID ON PER
IARGE, IN
INTERV
EXCEEDAN
5
20% | CFS, FO
AL, IN Y
CE PROBAL
10 | ECORD 19 R INDICAT EARS, AND BILITY, 1 25 4% | ED RECUF
ANNUAL
N PERCEN | RRENCE
IT | | MAGNI
DISCHARGE
YEARS,
1.25
80% | TUDE AND BASE , IN CFS, AND ANNUA 2 50% | PROBABILI
D ON PERI
FOR INDI
L EXCEEDA
5
20% | TY OF IN
OD OF RE
CATED RE
NCE PROB | ISTANTANE
CORD 196
CURRENCE
ABILITY, | OUS PEAK I
7-82
INTERVAL
IN PERCEI | FLOW
, IN
NT | PERIOD
(CON-
SECU-
TIVE | DISCH | ID ON PER
IARGE, IN
INTERV
EXCEEDAN
5
20% | CFS, FO
AL, IN Y
CE PROBAL
10
10% | ECORD 19 R INDICATEARS, AND BILITY, 1 | ED RECUF
ANNUAL
N PERCEN
50
2% | RRENCE
IT | | MAGNI SCHARGE YEARS, 1.25 80% | TUDE AND BASE , IN CFS, AND ANNUA 2 50% | PROBABILI
D ON PERI
FOR INDI
L EXCEEDA
5
20% | TY OF IN
OD OF RE
CATED RE
NCE PROB | ISTANTANE
CORD 196
CURRENCE
ABILITY, | OUS PEAK I
7-82
INTERVAL
IN PERCEI | FLOW
, IN
NT | PERIOD
(CON-
SECU-
TIVE
DAYS) | DISCH | ID ON PER
IARGE, IN
INTERV
EXCEEDAN
5
20% | CFS, FO
AL, IN Y
CE PROBAL
10 | ECORD 19 R INDICAT EARS, AND BILITY, 1 25 4% | ED RECUF
ANNUAL
N PERCEN
50
2% | RRENCE
IT | | MAGNI SCHARGE YEARS, 1.25 80% | TUDE AND BASE , IN CFS, AND ANNUA 2 50% | PROBABILI
D ON PERI
FOR INDI
L EXCEEDA
5
20% | TY OF IN
OD OF RE
CATED RE
NCE PROB | ISTANTANE
CORD 196
CURRENCE
ABILITY, | OUS PEAK I
7-82
INTERVAL
IN PERCEI | FLOW
, IN
NT | PERIOD
(CON-
SECU-
TIVE
DAYS) | DISCH | ID ON PER
IARGE, IN
INTERV
EXCEEDAN
5
20%
5690
3910 | CFS, FO
AL, IN Y
CE PROBAI
10
10% | ECORD 19 R INDICAT EARS, AND BILITY, 1 25 4% 6220 4080 | ED RECUP
ANNUAL
N PERCEN
50
2% | RRENCE
IT | | MAGNI SCHARGE YEARS, 1.25 80% | TUDE AND BASE , IN CFS, AND ANNUA 2 50% | PROBABILI
D ON PERI
FOR INDI
L EXCEEDA
5
20% | TY OF IN
OD OF RE
CATED RE
NCE PROB | ISTANTANE
CORD 196
CURRENCE
ABILITY, | OUS PEAK I
7-82
INTERVAL
IN PERCEI | FLOW
, IN
NT | PERIOD (CON- SECU- TIVE DAYS) 1 3 7 | DISCH
2 50%
4710 3390 2440 | ID ON PER
IARGE, IN
INTERV
EXCEEDAN
5
20%
5690
3910
2910 | CFS, FO
AL, IN Y
CE PROBAI
10
10%
6010
4030
3050 | R INDICATEARS, AND BILITY, 1 25 4% 6220 4080 3140 | ED RECUF
ANNUAL
N PERCEN
50
2% | RRENCE
IT | | MAGNI ISCHARGE YEARS, 1.25 80% | TUDE AND BASE , IN CFS, AND ANNUA 2 50% | PROBABILI
D ON PERI
FOR INDI
L EXCEEDA
5
20% | TY OF IN
OD OF RE
CATED RE
NCE PROB | ISTANTANE
CORD 196
CURRENCE
ABILITY, | OUS PEAK I
7-82
INTERVAL
IN PERCEI | FLOW
, IN
NT | PERIOD
(CON-
SECU-
TIVE
DAYS) | DISCH 2 50% 4710 3390 2440 1620 | D ON PER
ARGE, IN
INTERV
EXCEEDAN
50%
5690
3910
2910
2030 | CFS, FO
AL, IN Y
CE PROBAL
10
10%
6010
4030
3050
2230 | ECORD 19 R INDICAT EARS, AND BILITY, 1 25 4% 6220 4080 3140 2440 | FED RECUF
ANNUAL
N PERCEN
50
2% | RRENCE
IT | | MAGNI ISCHARGE YEARS, 1.25 80% | TUDE AND BASE , IN CFS, AND ANNUA 2 50% | PROBABILI
D ON PERI
FOR INDI
L EXCEEDA
5
20% | TY OF IN
OD OF RE
CATED RE
NCE PROB | ISTANTANE
CORD 196
CURRENCE
ABILITY, | OUS PEAK I
7-82
INTERVAL
IN PERCEI | FLOW
, IN
NT | PERIOD (CON-
SECU-
TIVE DAYS) | DISCH 2 50% 4710 3390 2440 1620 1220 | 5 20% | CFS, FO AL, IN Y. CE PROBAL 10 10% 6010 4030 3050 2230 1640 | R INDICAT
EARS, AND
BILITY, 1
25
4%
6220
4080
3140
2440
1770 | 167-82 TED RECUF ANNUAL N PERCEN 50 2% | RRENCE
IT | | MAGNI I SCHARGE YEARS, 1.25 80% | TUDE AND BASE , IN CFS, AND ANNUA 2 50% | PROBABILI
D ON PERI
FOR INDI
L EXCEEDA
5
20% | TY OF IN
OD OF RE
CATED RE
NCE PROB
10
10% | ISTANTANE CORD 196 CURRENCE HABILITY, 25 4% | OUS PEAK I
17-82
INTERVAL
IN PERCEI | FLOW , IN NT 100 1% | PERIOD (CON- SECU- TIVE DAYS) 1 3 7 15 30 60 | DISCH 2 50% 4710 3390 2440 1620 1220 962 832 | 5 20% | CFS, FO AL, IN Y CE PROBAI 10 10% 6010 4030 3050 2230 1640 1300 1120 | ECORD 19 R INDICAT EARS, AND BILITY, I 25 4% 6220 4080 3140 2440 1770 1440 | 167-82 TED RECUF ANNUAL N PERCEN 50 2% | RRENCE
IT | | MAGNI I SCHARGE YEARS, 1.25 80% | TUDE AND BASE , IN CFS, AND ANNUA 2 50% | PROBABILI
D ON PERI
FOR INDI
L EXCEEDA
5
20%
7400
105 | TY OF IN OD OF RECOME NOT THE PROBLEM OF PROBLE | ISTANTANE CORD 196 CURRENCE ABILITY, 25 4% 8950 | OUS PEAK I
7-82 INTERVAL IN PERCEI 50 2% | FLOW , IN NT 100 1% | PERIOD
(CON-
SECU-
TIVE
DAYS)
 | DISCH 2 50% 4710 3390 2440 1620 1220 962 832 OF RECO | 5 20% 5690 3910 2030 1180 1010 | CFS, FO AL, IN Y CE PROBAI 10 10% 6010 4030 3050 2230 1640 1300 1120 | R INDICATEARS, AND BILITY, 1 25 4% 6220 4080 3140 2440 1770 1440 1240 | 167-82 TED RECUF ANNUAL N PERCEN 50 2% | RRENCE
IT | 264 207 149 124 100 81 63 51 #### 14138900 NORTH FORK BULL RUN RIVER NEAR MULTNOMAH FALLS, OR LOCATION.--Lat 45°29'40", long 122°02'05", near line between SE‡ and SW‡ sec.11, T.1 S., R.6 E., Multnomah County, Hydrologic Unit 17080001, Mount Hood National Forest, on left bank 7.0 mi southeast of Multnomah Falls, and at mouth. DRAINAGE AREA .-- 8.32 mi2. 239 161 124 104 79 63 50 39 29 24 21 18 16 PERIOD OF RECORD. -- August 1965 to September 1982. GAGE.--Water-stage recorder. Altitude of gage is 1,060 ft, from topographic map. Prior to Oct. 1, 1978, at site 700 ft upstream at datum 18.7 ft higher. REMARKS.--Regulation at times since 1958 by North Fork dam, capacity, about 1,030 acre-ft. No diversion above station. AVERAGE DISCHARGE.--17 years, 77.3 ft3/s, 126.17 in/yr, 56,000 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 9,700 ft³/s, probably affected by surge from release of water temporarily impounded by landslide upstream from station, Jan. 20, 1972, gage height, 9.89 ft, from floodmark, from rating curve extended above 350 ft³/s on basis of estimate of peak flow from slope-area survey; minimum, 9.1 ft³/s Oct. 2-14, 1979. STATISTICAL SUMMARIES | | MINIMUM | MAXIMUM | MEAN | STAN-
DARD
DEVIA-
TION | COEFFI-
CIENT OF
VARI- | PERCENT
OF
ANNUAL | PERIOD
(CON-
SECU- | | INTERVAL | , IN YEA | R INDICATE
RS, AND AI
BILITY, II | NNUAL N |)N | |-------------------------|------------------|------------------|-----------|---------------------------------|------------------------------|-------------------------|---|---|--|---|---|----------------------|-----------| | НТИОМ | (CFS) | (CFS) | (CFS) | (CFS) | ATION | RUNOFF | TIVE
DAYS) | 2
50 % | 5
20 % | 10
10% | 20
5 % | 50
2 % | 100
1% | | OCTOBER | 16 | 93 | 46 | 26 | •56 | 4.9 | 1 | 13 | 11 | 10 | 9.3 | | | | 10VEMBER | 28 | 199 | 97 | 52 | .54 | 10.5 | 3 | 13 | 11 | 10 | 9.3 | | | | DECEMBER | 33 | 285 | 150 | 73 | .49 | 16.2 | 7 | 13 | 11 | 10 | 9.4 | | | | JANUARY | 32 | 309 | 145 | 78 | . 54 | 15.6 | 14 | 14 | 12 | 11 | 9.8 | | | | EBRUARY | 40 | 216 | 111 | 54 | .48 | 12.0 | 30 | 14 | 12 | 11 | 10 | | | | 4ARCH | 41 | 200 | 83 | 37 | . 44 | 9.0 | 60 | 17 | 14 | 13 | 12 | | | | APRIL | 50 | 127 | 85 | 23 | .27 | 9.2 | 90 | 21 | 17 | 15 | 13 | | | | 4A Y | 46 | 137 | 84 | 32 | . 38 | 9.0 | 120 | 25 | 20 | 18 | 16 | | | | JUNE | 18 | 111 | 53 | 28 | .52 | 5.7 | 183 | 36 | 29 | 25 | 22 | | | | JULY | 14 | 47 | 27 | 9.4 | . 35 | 2.9 | | | | | | | | | AUGUST | 12 | 35 | 19 | 6.1 | .32 | 2.1 | | | | | | | | | SEPTEMBER | 12 | 54 | 28 | 13 | .45 | 3.0 | | | | | | | | | ANNUAL | 46 | 121 | 77 | 20 | .26 | 100 | | | | | | | | | N. SCHADOS | | FOR INDI | | | INTERVAL,
IN PERCEN | | PERIOD | DISCH | ARGE, IN | CFS, FO | ECORD 196 R INDICATE EARS, AND BUILTY, IN | ED RECUF | RENCE | | YEARS, | | | | | | | (CON- | | CHOCKEDINA | | C.L.,,,, | N PERCEN | T | | YEARS, 1.25 | 2 |
5 | 10 | 25 | | 100 | SECU- | | | | | | | | YEARS, | | | 10
10% | 25
4% | 50 1
2% | 100
1% | | 2
50% | 5
20% | 10
10% | 25
4% | N PERCEN
50
2% | 100 | | YEARS, 1.25 | 2 | 5
20% | 10% | | | | SECU-
TIVÉ | 2 | 5 | 10 | 25 | 50 | 100 | | YEARS, 4
1.25
80% | 2
50%
1140 | 5
20%
1850 | 10% | 4% | | | SECU-
TIVE
DAYS) | 2
50%
 |
5
20%
 | 10
10%
1520 | 25
4%
1830 | 50 | 100 | | YEARS, 4
1.25
80% | 2
50% | 5
20%
1850 | 10% | 4% | | | SECU-
TIVE
DAYS) | 2
50% | 5
20% | 10
10% | 25
4% | 50
2% | 100 | | YEARS, 4
1.25
80% | 2
50%
1140 | 5
20%
1850 | 10% | 4% | | | SECU-
TIVE
DAYS) | 2
50%
 | 5
20%
 | 10
10%
1520 | 25
4%
1830 | 50
2% | 100 | | YEARS, 4
1.25
80% | 2
50%
1140 | 5
20%
1850 | 10% | 4% | | | SECU-
TIVE
DAYS)
 | 2
50%

834
569 | 20%
20%
1250
799 | 10
10%
1520
932 | 25
4%
1830
1080 | 50
2% | 100 | | YEARS, 4
1.25
80% | 2
50%
1140 | 5
20%
1850 | 10% | 4% | | | SECU-
TIVE
DAYS)
 | 2
50%

834
569
413 | 5
20%
1250
799
570 | 10
10%
1520
932
656 | 25
4%
1830
1080
748 | 50
2% | 100 | | YEARS, 4
1.25
80% | 2
50%
1140 | 5
20%
1850 | 10% | 4% | | | SECU-
TIVE
DAYS)

1
3
7
15 | 2
50%

834
569
413
288 | 20%
20%
1250
799
570
395 | 10
10%
1520
932
656
458 | 25
4%
1830
1080
748
530 | 50
2% | 1000 | | YEARS, 7
1.25
80% | 2
50%
1140 | 5
20%
1850 | 10% | 4% | | | SECU-
TIVE
DAYS)

1
3
7
15
30 | 2
50%

834
569
413
288
219 | 5
20%
1250
799
570
395
288 | 10
10%
1520
932
656
458
327 | 25
4%
1830
1080
748
530
371 | 50
2% | 100 | #### 14139500 BULL RUN RIVER BELOW LAKE BEN MORROW, OR LOCATION.--Lat 45°29'00", long 122°04'50", in SE‡ sec.16, T.1 S., R.6 E., Multhomah County, Hydrologic Unit 17080001, in gatehouse at Bear Creek Dam on Bull Run River, 500 ft downstream from Bear Creek, 1,000 ft upstream from Fivemile Creek, and 8.5 mi northeast of Bull Run DRAINAGE AREA.--74 mi², approximately. PERIOD OF RECORD.--October 1929 to September 1954. Published as "below Bull Run Reservoir near Bull Run" in 1930 and as "below Bull Run Reservoir" 1931-37. GAGE.--Water-stage recorder above crest of spillway and scales indicating number of turns outlet needle valves are open. Datum of gage is National Geodetic Vertical Datum of 1929 (levels by Portland Water Bureau). Prior to Oct. 1, 1934, at site 0.5 mi downstream at different datum. REMARKS.--Discharge determined by combining discharge through valves near base of dam and discharge over crest of spillway (elevation, 1,036 ft). Leakage at dam is less than 1 ft³/s and is disregarded. Flow regulated by Bull Run Lake and Lake Ben Morrow (since 1928); flow from Bull Run Lake is not artificially regulated but reaches river through surface and underground channels. AVERAGE DISCHARGE.--25 years (water years 1930-54), 582 ft³/s, 421,400 acre-ft/yr, adjusted for storage. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge at dam, 16,100 ft³/s, Mar. 31, 1931, elevation, 1,047.40 ft (with 1 valve open 30 turns); no flow Oct. 27, 1939, Oct. 2, 1951, Dec. 11-13, 1952. #### STATISTICAL SUMMARIES MONTHLY AND ANNUAL MEAN DISCHARGES 1930-54 MAGNITUDE AND PROBABILITY OF ANNUAL LOW FLOW BASED ON PERIOD OF RECORD 1931-54 | | MINIMUM | MAXIMUM | MEAN | STAN-
DARD
DEVIA-
TION | COEFFI-
CIENT OF
VARI- | PERCENT
OF
ANNUAL | PERIOD
(CON-
SECU- | | INTERVAL | , IN YEA | RS, AND / | TED RECUR
ANNUAL NO
IN PERCEN | N- | |-----------|---------|---------|-------|---------------------------------|------------------------------|-------------------------|--------------------------|----------|------------|-----------|-----------|-------------------------------------|-----------| | MONTH | (CFS) | (CFS) | (CFS) | (CFS) | ATION | RUNOFF | TIVE
DAYS) | 2
50% | 5
20% | 10
10% | 20
5% | 50
2 % | 100
1% | | OCTOBER | 76 | 1092 | 326 | 291 | .89 | 4.7 | 1 | 70 | 31 | 18 | 10 | 5.0 | | | NOVEMBER | 93 | 2005 | 817 | 513 | .63 | 11.7 | 3 | 74 | 37 | 23 | 15 | 8.5 | | | DECEMBER | 225 | 2629 | 1022 | 544 | .53 | 14.6 | 7 | 80 | 5 5 | 44 | 36 | 29 | | | JANUARY | 163 | 2581 | 877 | 541 | .62 | 12.5 | 14 | 87 | 68 | 60 | 55 | 49 | | | FEBRUARY | 290 | 1732 | 826 | 373 | .45 | 11.8 | 30 | 94 | 77 | 70 | 65 | 60 | | | MARCH | 233 | 1831 | 764 | 320 | .42 | 10.9 | 60 | 105 | 87 | 80 | 75 | 70 | | | APRIL | 211 | 1263 | 778 | 253 | .33 | 11.1 | 90 | 113 | 94 | 87 | 82 | 78 | | | MAY | 233 | 1284 | 686 | 287 | .42 | 9.8 | 120 | 136 | 103 | 91 | 83 | 75 | | | JUNE | 110 | 1305 | 443 | 273 | .62 | 6.3 | 183 | · 240 | 171 | 145 | 127 | 109 | | | JULY | 90 | 358 | 187 | 71 | . 38 | 2.7 | | | | | | | | | AUGUST | 88 | 184 | 132 | 27 | .21 | 1.9 | | | | | | | | | SEPTEMBER | . 80 | 385 | 137 | 71 | .52 | 2.0 | | | | | | | | | ANNUAL | 349 | 784 | 582 | 119 | .20 | 100 | | | | | | | | MAGNITUDE AND PROBABILITY OF INSTANTANEOUS PEAK FLOW BASED ON PERIOD OF RECORD 1930-54 MAGNITUDE AND PROBABILITY OF ANNUAL HIGH FLOW BASED ON PERIOD OF RECORD 1930-54 | | | S, FOR IN
JAL EXCEE | | | | | PERIOD
(CON- | | INTERV | 'AL, ÍN' | YEARS, A | ATED RECUI
ND ANNUAL
IN PERCEI | | |-------------|--------------|------------------------|-----------|----------|----------|-----------|------------------------|----------|----------|-----------|----------|--------------------------------------|-----------| | 1.25
80% | 2
50%
 | 5
20% | 10
10% | 25
4% | 50
2% | 100
1% | SECU-
TIVE
DAYS) | 2
50% | 5
20% | 10
10% | 25
4% | 50
2% | 100
1% | | 5690 | 7650 | 10400 | 12200 | 14600 | 16400 | | | | | | | | | | | | | | | | | 1 | 5710 | 7860 | 9480 | 11800 | 13600 | | | VE I GHTED | SKEW = | 116 | | | | | 3 | 4050 | 5470 | 6480 | 7830 | 8900 | | | | | | | | | | 7 | 2840 | 3760 | 4380 | 5160 | 5740 | | | | | | | | | | 15 | 2080 | 2690 | 3050 | 3470 | 3760 | | | | | | | | | | 30 | 1650 | 2140 | 2430 | 2760 | 2980 | | | | | | | | | | 60 | 1270 | 1600 | 1780 | 1990 | 2130 | | | | | | | | | | 90 | 1140 | 1380 | 1500 | 1640 | 1720 | | DURATION TABLE OF DAILY MEAN FLOW FOR PERIOD OF RECORD 1930-54 | | | DISC | HARGE, | IN CFS, | WHICH WAS | EQUALED | OR EXCE | EEDED FOR | INDICATI | ED PERCE | NT OF TI | ME
ME | | | |------|------|------|--------|---------|-----------|---------|---------|-----------|----------|----------|----------|-------------|-----|-----| | 5% | 10% | 15% | 20% | 25% | 30% | 40% | 50% | 60% | 70% | 75% | 80% | 85 % | 90% | 95% | | 1910 | 1280 | 1000 | 848 | 733 | 631 | 471 | 349 | 249 | 172 | 147 | 128 | 115 | 103 | 88 | 21 #### 14139700 CEDAR CREEK NEAR BRIGHTWOOD, OR LOCATION.--Lat 45°27'30", long 122°01'50", in NEt sec.26, T.1 S., R.6 E., Clackamas County, Hydrologic Unit 17080001, in Mount Hood National Forest, on right bank 5.8 mi north of Brightwood and at mile 2.5. DRAINAGE AREA .-- 7.93 mi2. 221 143 112 82 55 33 24 21 18 16 12 PERIOD OF RECORD.--July to November 1964, June 1965 to September 1982. GAGE.--Water-stage recorder. Altitude of gage is 1,960 ft, from topographic map. REMARKS. -- No regulation or diversion above station. AVERAGE DISCHARGE.--17 years, 68.1 ft³/s, 116.62 in/yr, 49,340 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 1,990 ft 3 /s Dec. 22, 1964, gage height, 7.20 ft, from rating curve extended above 320 ft 3 /s on basis of slope-area measurement of peak flow; minimum, 6.9 ft 3 /s Oct. 9-13, 1979. #### STATISTICAL SUMMARIES | | MINIMUM | MAXIMUM | MEAN | STAN-
DARD
DEVIA-
TION | COEFFI-
CIENT OF
VARI- | PERCENT
OF
ANNUAL | PERIOD
(CON-
SECU- | 1 | NTERVAL, | IN YEAR | R INDICAT
RS, AND A
BILITY, I | NNUAL NO |)N- | |------------------------|------------------------------|-------------------------------------|--|---|-------------------------------|-------------------------|---
--|--|--|---|--|-----------| | MONTH | (CFS) | (CFS) | (CFS) | (CFS) | ATION | RUNOFF | TIVE
DAYS) | 2
50% | 5
20 % | 10
10% | 20
5% | 50
2 % | 100
1% | | OCTOBER | 13 | 87 | 40 | 25 | .61 | 4.9 | 1 | 9.5 | 8.2 | 7.6 | 7.2 | | | | NOVEMBER | 24 | 166 | 82 | 43 | - 53 | 10.1 | 3 | 9.6 | 8.3 | 7.7 | 7.2 | | | | DECEMBER | 29 | 232 | 125 | 56 | .45 | 15.3 | 7 | 9.9 | 8.4 | 7.8 | 7.3 | | | | JANUARY | 32 | 218 | 124 | 62 | -50 | 15.1 | 14 | 10 | 8.8 | 8.2 | 7.7 | | | | EBRUARY | 32 | 196 | 101 | 49 | .48 | 12.3 | 30 | 12 | 9.9 | 9.1 | 8.5 | | | | MARCH | 39 | 181 | 82 | 34 | .41 | 10.0 | 60 | 14 | 11 | 11 | 10 | | | | APRIL | 47 | 130 | 86 | 24 | .28 | 10.5 | 90 | 17 | 14 | 13 | 12 | | | | YAY | 36 | 136 | 71 | 28 | . 39 | 8.6 | 120 | 21 | 17 | 15 | 14 | | | | JUNE | 19 | 115 | 44 | 25 | • 58 | 5.4 | 183 | 31 | 25 | 22 | 20 | | | | JULY | 13 | 37 | 21 | 6.7 | •31 | 2.6 | | | | | | | | | AUGUST | 8.7 | 38 | 18 | 7.8 | | 2.2 | | | | | | | | | SEPTEMBER | 12 | 51 | 26 | 13 | .49 | 3.1 | | | | | | | | | ANNUAL | 42 | 105 | 68 | 16 | .24 | 100 | | | | | | | | | MAGNIT | | PROBABILI
D ON PERIO | | | | FLOW | MAG | | | | OF ANNUAL
ECORD 196 | | .ow | |)ISCHARGE,
YEARS, A | BASE
IN CFS, | FOR INDIC | OD OF RECATED RE | CORD 196 | 6-82
INTERVAL,
IN PERCE | , IN
NT | PERIOD
(CON- | BASED
DISCHA | ON PERI | OD OF RECEIVED | | 56-82

ED RECUF
ANNUAL | RENCE | |)ISCHARGE, | BASE
IN CFS, | D ON PERIO | OD OF RE | CORD 196 | 6-82
INTERVAL,
IN PERCE | . IN | PERIOD
(CON-
SECU-
TIVE | DISCHA | ON PERI
RGE, IN
INTERVA
XCEEDANC | OD OF RECEIVED | ECORD 196 R INDICATE EARS, AND BILITY, IE | 56-82 ED RECUF ANNUAL N PERCEN | RENCE | | YEARS, A | IN CFS, IND ANNUA 2 50% | FOR INDIC
L EXCEEDA | CATED RENCE PROB | CORD 1966
CURRENCE
ABILITY,
25
4% | INTERVAL,
IN PERCEI | , IN
NT | PERIOD
(CON-
SECU- | BASED
DISCHA | ON PERI | OD OF RECEIVED | ECORD 196 R INDICATE EARS, AND BILITY, I | 56-82 ED RECUF ANNUAL N PERCEN | RENCE | | ISCHARGE,
YEARS, A | BASE
IN CFS,
IND ANNUA | FOR INDIC
L EXCEEDA | CATED RENCE PROB | CORD 1960 CURRENCE ABILITY, | INTERVAL,
IN PERCEI | , IN
NT | PERIOD
(CON-
SECU-
TIVE
DAYS) | DISCHA E 2 50% | ON PERI
RGE, IN
INTERVA
XCEEDANC
5
20% | OD OF RECEIVED | ECORD 196 R INDICATE EARS, AND BILITY, II 25 4% | 56-82 ED RECUF ANNUAL N PERCEN | RENCE | | 1.25
80% | BASE IN CFS, IND ANNUA 2 50% | FOR INDIC
L EXCEEDAL
5
20% | CATED RENCE PROB | CORD 1966
CURRENCE
ABILITY,
25
4% | INTERVAL,
IN PERCEI | , IN
NT | PERIOD
(CON-
SECU-
TIVE
DAYS) | BASED DISCHA E 2 50% | ON PERI
RGE, IN
INTERVA
XCEEDANC
5
20% | OD OF RECESS, FOR L, IN YEE PROBAE | ECORD 196 R INDICATE EARS, AND BILITY, II 25 4% | 56-82 ED RECUF ANNUAL N PERCEN 50 2% | RENCE | | 1.25
80% | IN CFS, IND ANNUA 2 50% | FOR INDIC
L EXCEEDAL
5
20% | CATED RENCE PROB | CORD 1966
CURRENCE
ABILITY,
25
4% | INTERVAL,
IN PERCEI | , IN
NT | PERIOD (CON- SECU- TIVE DAYS) | DISCHA E 2 50% 720 504 | ON PERI
RGE, IN
INTERVA
XCEEDANC
5
20% | OD OF RECES, FOR L, IN YEE PROBAGE 10 10% | R INDICATE EARS, AND BILITY, IN 25 4% | 56-82 ED RECUF ANNUAL N PERCEN 50 2% | RENCE | | 1.25
80% | BASE IN CFS, IND ANNUA 2 50% | FOR INDIC
L EXCEEDAL
5
20% | CATED RENCE PROB | CORD 1966
CURRENCE
ABILITY,
25
4% | INTERVAL,
IN PERCEI | , IN
NT | PERIOD (CON- SECU- TIVE DAYS) 1 3 7 | DISCHA E 2 50% 720 504 358 | ON PERI
RGE, IN
INTERVA
XCEEDANC
5
20%
912
610
444 | OD OF RECEIVED | R INDICATE EARS, AND BILITY, II 25 4% 1070 670 503 | ED RECUF
ANNUAL
N PERCEN
50
2% | RENCE | | 1.25
80% | BASE IN CFS, IND ANNUA 2 50% | FOR INDIC
L EXCEEDAL
5
20% | CATED RENCE PROB | CORD 1966
CURRENCE
ABILITY,
25
4% | INTERVAL,
IN PERCEI | , IN
NT | PERIOD (CON- SECU- TIVE DAYS) 1 3 7 | DISCHA 2 50% 720 504 358 246 | ON PERI RGE, IN INTERVA XCEEDANC 5 20% 912 610 444 314 | OD OF RECEIVED | 25
1070
670
670
503
395 | ED RECUP
ANNUAL
N PERCEN
50
2% | RENCE | | 1.25
80% | BASE IN CFS, IND ANNUA 2 50% | FOR INDIC
L EXCEEDAL
5
20% | CATED RENCE PROB | CORD 1966
CURRENCE
ABILITY,
25
4% | INTERVAL,
IN PERCEI | , IN
NT | PERIOD (CON-
SECU-
TIVE DAYS) | DISCHA E 2 50% 720 504 358 246 188 | 912
610
444
314
239 | OD OF RECEIVED | R INDICATE EARS, AND BILITY, II 25 4% 1070 670 503 395 298 | ED RECUP
ANNUAL
N PERCEN
50
2% | RENCE | | 1.25
80% | BASE IN CFS, IND ANNUA 2 50% | FOR INDIC
L EXCEEDAL
5
20% | CATED RENCE PROB | CORD 1966
CURRENCE
ABILITY,
25
4% | INTERVAL,
IN PERCEI | , IN
NT | PERIOD (CON- SECU- TIVE DAYS) 1 3 7 | DISCHA 2 50% 720 504 358 246 | ON PERI RGE, IN INTERVA XCEEDANC 5 20% 912 610 444 314 | OD OF RECEIVED | 25
1070
670
670
503
395 | 50 RECUF
ANNUAL
N PERCEN
50
2% | RENCE | | 1.25
80% | BASE IN CFS, IND ANNUA 2 50% | FOR INDIC
L EXCEEDAL
5
20% | CATED RENCE PROB | CORD 1966 CURRENCE ABILITY, 25 4% 2030 | INTERVAL,
IN PERCEN | , IN
NT
100
1% | PERIOD (CON-
SECU-
TIVE DAYS) 1 3 7 15 30 60 | DISCHA E 2 50% 720 504 358 246 188 149 130 | ON PERI RGE, IN INTERVA XCEEDANC 5 20% 912 610 444 314 239 186 161 | OD OF RECEIVED | R INDICATE EARS, AND BILITY, II 25 4% 1070 670 503 395 298 232 | 50 RECUF
ANNUAL
N PERCEN
50
2% | RENCE | | PISCHARGE, YEARS, A | BASE IN CFS, IND ANNUA 2 50% | FOR INDIG | DD OF RECEIVED OF REPORT O | CORD 1966 CURRENCE ABILITY, 25 4% 2030 | INTERVAL, IN PERCEN 50 2% | IN
NT
100
1% | PERIOD (CON- SECU- TIVE DAYS) 1 3 7 15 30 60 90 | DISCHA E 2 50% 720 504 358 246 188 149 130 OF RECOR | 912
610
444
239
186
161 | OD OF RECEPTION | R INDICATE
EARS, AND
BILITY, II
25
4%
1070
670
503
395
298
232
203 | 50 RECUF
ANNUAL
N PERCEN
50
2% | RENCE | #### 14141500 LITTLE SANDY RIVER NEAR BULL RUN. OR LOCATION.--Lat 45°24'55", long 122°10'20", in NW±NW± sec.10, T.2 S., R.5 E., Clackamas County, Hydrologic Unit 17080001, in Mount Hood National Forest, on left bank 0.25 mi upstream from Portland General Electric Co. dam and tunnel from Sandy River, 3.0 mi east of Bull Run, and at mile 1.95. DRAINAGE AREA. -- 22.3 mi². PERIOD OF RECORD.--May to July 1911, October 1911 to March 1912, June 1912 to April 1913, July 1919 to September 1982. Monthly discharge only for some periods, published in WSP 1318. GAGE.--Water-stage recorder. Altitude of gage is 720 ft, from topographic map. May 23, 1911, to Apr. 29, 1913, nonrecording gage at site 0.85 mi downstream at different datum, 0.5 mi downstream from Sandy River diversion tunnel. July 1, 1919, to Sept. 30, 1931, water-stage recorder at site 0.1 mi downstream at different datum. Oct 1, 1931, to Nov. 3, 1967, at site 0.1 mi downstream at datum 712 ft National Geodetic Vertical Datum of 1929. Nov. 4, 1967, to Aug. 8, 1971, water-stage recorder at site 0.1 mi downstream at datum 697.44 ft National Geodetic Vertical Datum of 1929 (Portland General Electric Co. bench mark). REMARKS. -- No regulation or diversion above station. AVERAGE DISCHARGE.--63 years (water years 1920-82), 146 ft³/s, 88.91 in/yr, 105,800 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 5,320 ft³/s Nov. 20, 1921, gage height, 9.18 ft, site and datum then in use, from rating curve extended above 2,200 ft³/s; minimum, 8 ft³/s Aug. 20, Sept. 16, 17, 1940. #### STATISTICAL SUMMARIES MONTHLY AND ANNUAL MEAN
DISCHARGES 1920-82 MAGNITUDE AND PROBABILITY OF ANNUAL LOW FLOW BASED ON PERIOD OF RECORD 1921-82 | | MINIMUM | MAXIMUM | MEAN. | STAN-
DARD
DEVIA-
TION | COEFFI-
CIENT OF
VARI- | PERCENT
OF
ANNUAL | PERIOD
(CON-
SECU- | | INTERVAL | , IN YEAR | R INDICATE
RS, AND AN
BILITY, IN | INUAL NO | N- | |-----------|---------|---------|---------------|---------------------------------|------------------------------|-------------------------|--------------------------|------------------|------------------|-----------|--|------------------|-----------| | MONTH | (CFS) | (CFS) | MEAN
(CFS) | (CFS) | ATION | RUNOFF | TIVE
DAYS) | 2
50 % | 5
20 % | 10
10% | 20
5% | 50
2 % | 100
1% | | OCTOBER | 13 | 271 | 90 | 62 | •69 | 5.1 | 1 | 14 | 12 | 11 | 9.8 | 9.0 | 8.6 | | NOVEMBER | 14 | 588 | 206 | 124 | .60 | 11.7 | 3 | 14 | 12 | 11 | 9.8 | 9.1 | 8.6 | | DECEMBER | 58 | 585 | 253 | 113 | .45 | 14.4 | 7 | 15 | 12 | 11 | 10 | 9.6 | 9.2 | | JANUARY | 46 | 589 | 241 | 130 | .54 | 13.7 | 14 | 15 | 13 | 11 | 11 | 10 | 9.6 | | FEBRUARY | 59 | 452 | 208 | 94 | .45 | 11.8 | 30 | 17 | 14 | 12 | 11 | 11 | 10 | | MARCH | 50 | 407 | 186 | 69 | . 37 | 10.6 | 60 | 20 | 16 | 14 | 13 | 11 | 11 | | APRIL | 54 | 325 | 198 | 56 | .28 | 11.3 | 90 | 26 | 19 | 16 | 14 | 12 | 11 | | MAY | 56 | 328 | 170 | 64 | . 37 | 9.7 | 120 | 34 | 24 | 20 | 17 | 15 | 13 | | JUNE | 21 | 268 | 105 | 58 | •56 | 6.0 | 183 | 61 | 45 | 39 | 34 | 29 | 27 | | JULY | 14 | 93 | 39 | 17 | .42 | 2.2 | | | | | | | | | AUGUST | 10 | 96 | 24 | 13 | .55 | 1.4 | | | | | | | | | SEPTEMBER | 12 | 184 | 41 | 36 | .88 | 2.3 | | | | | | | | | ANNUAL | 88 | 223 | ,146 | 30 | .20 | 100 | | | | | | | | MAGNITUDE AND PROBABILITY OF INSTANTANEOUS PEAK FLOW BASED ON PERIOD OF RECORD 1920-82 MAGNITUDE AND PROBABILITY OF ANNUAL HIGH FLOW BASED ON PERIOD OF RECORD 1920-82 | DISCHARGE,
YEARS, A | | | | | | | PERIOD | | IARGE, IN
INTERV
EXCEEDAN | AL, ÎN Y | EARS, AN | D ANNUAL | | |------------------------|--------------|------------------|-----------|----------|----------------------|-----------|------------------------|--------------|---------------------------------|--------------|--------------|------------------|--------------| | 1.25
80% | 2
50%
 | 5
20 % | 10
10% | 25
4% | 50
2 %
 | 100
1% | SECU-
TIVE
DAYS) | 2
50% | 5
20 % | 10 | 25
4% | 50
2 % | 100 | | 1560 | 2180 | 3050 | 3620 | 4360 | 4900 | 5460 | | | | 0.00 | | 7700 | 7700 | | WEIGHTED | CKEM - | 007 | | | | | 1 | 1460
1010 | 2030
1380 | 2420
1640 | 2930
1980 | 3320
2250 | 3720
2530 | | WEIGHIED | SKEM = | 027 | | | | | 3 | | | | | | | | | | | | | | | / | 710 | 931 | 1070 | 1230 | 1350 | 1460 | | | | | | | | | 15 | 513 | 665 | 759 | 872 | 952 | 1030 | | | | | | | | | 30 | 394 | 501 | 566 | 641 | 694 | 744 | | | | | | | | | 60 | 312 | 388 | 435 | 491 | 531 | 569 | | | | | | | | | 90 | 277 | 340 | 379 | 426 | 459 | 491 | | | | | | | | | | | | | | | | DURATION TABLE OF DAILY MEAN FLOW FOR PERIOD OF RECORD 1920-82 | | | DISC | HARGE, | IN CFS, | WHICH WAS | EQUALED | OR EXCE | DED FOR | INDICATE | D PERCE | NT OF TIM | 1E | | | |-----|-----|------|--------|---------|-----------|---------|---------|---------|----------|---------|-----------|-------------|-----|-----| | 5% | 10% | 15% | 20% | 25% | 30% | 40% | 50% | 60% | 70% | 75% | 80% | 85 % | 90% | 95% | | 443 | 307 | 249 | 212 | 187 | 166 | 129 | 98 | 73 | 48 | 38 | 29 | 23 | 19 | 16 | #### 14142500 SANDY RIVER BELOW BULL RUN RIVER, NEAR BULL RUN, OR LOCATION.--Lat 45°27'20", long 122°14'45", in SW½NW½ sec.30, T.1 S., R.5 E., Clackamas County, Hydrologic Unit 17080001, on left bank 0.9 mi downstream from Bull Run River, 2.0 mi northwest of Bull Run, and at mile 17.6. DRAINAGE AREA .-- 440 mi2. PERIOD OF RECORD.--April 1910 to September 1914, October 1929 to September 1966. Monthly discharge only for some periods, published in WSP 1318. GAGE.--Water-stage recorder. Altitude of gage is 200 ft, from river-profile map. Apr. 27, 1910, to Sept. 30, 1914, staff gage at site 0.8 mi upstream at different datum. Oct. 31, 1929 to June 7, 1963, water-stage recorder at present site and datum. REMARKS.--Water stored since 1915 in Bull Run Lake. Flow regulated since 1929 by Lake Ben Morrow and since 1961 by Bull Run Reservoir No. 2. Considerable fluctuation caused by Bull Run powerplant of Portland General Electric Co. AVERAGE DISCHARGE.--41 years (water years 1911-14, 1930-66), 2,356 ft³/s, 1,706,000 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 84,400 ft³/s Dec. 22, 1964, gage height, 22.3 ft; minimum, 45 ft³/s Sept. 26, 1962; minimum daily, 63 ft³/s Oct. 12, Nov. 9, 1952. #### STATISTICAL SUMMARIES | YEARS,
1.25
80% | | FOR INDIG | NCE PROB | ABBILITY, 25 4% | IN PERCE | 100
1%
 | PERIOD (CON- SECU- TIVE DAYS) 1 3 7 15 30 60 90 FOR PERIOD | 2
50%
20300
14900
10500
7840
6220
5010
4540
OF RECO | INTER
EXCEEDAN
5
20%
27600
19700
13700
9920
7850
6110
5420 | 7AL, ÎN 10CE PROB/
10 10≴
32600 22900 15700 11100 8750 6710 5870 | 39100
27000
18200
12300
9750
7360
6320 | 44100
30000
19900
10400
7790
6600 | | |-----------------------|------------|------------------------|--------------|------------------------|------------------------------|---------------|--|--|--|--|---|---|---------------| | 1.25
80% | 2
50% | L EXCEEDA
5 | 10
10% | 25
4% | 1N PERCE
50
2% | 100
1%
 | (CON-
SECU-
TIVE
DAYS)
 | 20300
14900
10500
7840
6220
5010
4540 | 27600
19700
13700
9920
7850
6110
5420 | 32600
22900
15700
11100
8750
6710
5870 | YEARS, AI
ABILITY,
25
4%
39100
27000
18200
12300
9750
7360 | ND ANNUAL
IN PERCEN
50
2%
44100
30000
19900
13000
10400
7790 | IT
10 | | 1.25
80% | 2
50% | L EXCEEDA
5 | NCE PROB | 3ABILITY,

25 | IN PERCE | 100 | (CON-
SECU-
TIVE
DAYS)
 | 20300
14900
10500
7840
6220
5010 | 27600
19700
13700
9920
7850
6110 | 32600
22900
11100
8750
6710 | YEARS, AI
ABILITY,
25
4%
39100
27000
18200
12300
9750
7360 | ND ANNUAL
IN PERCEN
50
2%
44100
30000
19900
13000
10400
7790 | IT
10 | | 1.25
80% | 2
50% | L EXCEEDA
5 | NCE PROB | 3ABILITY,

25 | IN PERCE | 100 | (CON-
SECU-
TIVE
DAYS)
 | 20300
14900
10500
7840
6220 | 5
20%
27600
19700
13700
9920
7850 | 10
10%
32600
22900
15700
11100
8750 | YEARS, AI
ABILITY,
25
4%
39100
27000
18200
12300
9750 | ND ANNUAL
IN PERCEN
50
2%
44100
30000
19900
13000
10400 | IT
10 | | 1.25
80% | 2
50% | L EXCEEDA
5 | NCE PROB | 3ABILITY,

25 | IN PERCE | 100 | (CON-
SECU-
TIVE
DAYS)

1
3
7 | 2
50%
20300
14900
10500
7840 | 5
20%
27600
19700
13700
9920 | 10
10%
32600
22900
15700
11100 | YEARS, AI
ABILITY,
25
4%
39100
27000
18200
12300 | ND ANNUAL
IN PERCEN
50
2%
44100
30000
19900
13000 | IT
10 | | 1.25
80% | 2
50% | L EXCEEDA
5 | NCE PROB | 3ABILITY,

25 | IN PERCE | 100 | (CON-
SECU-
TIVE
DAYS)

1
3
7 | 20300
14900
10500 | 1NTER
EXCEEDAN
5
20%
27600
19700
13700 | 10
10%
32600
22900
15700 | YEARS, AI
ABILITY,
25
4%
39100
27000
18200 | ND ANNUAL
IN PERCEN
50
2%
44100
30000
19900 | IT
10 | | 1.25
80% | 2
50% | L EXCEEDA
5 | NCE PROB | 3ABILITY,

25 | IN PERCE | 100 | (CON-
SECU-
TIVE
DAYS)
 | 2
50%
20300
14900 | 5
20%
27600
19700 | 10
10%
32600
22900 | YEARS, AI
ABILITY,
25
4%

39100
27000 | ND ANNUAL
IN PERCEN
50
2%
44100
30000 | IT
10 | | YEARS,
1.25 | AND ANNUA | L EXCEEDA
5 | NCE PROB | 3ABILITY,

25 | IN PERCE | 100 | (CON-
SECU-
TIVE
DAYS) | 2
50% | INTER
EXCEEDAN
5
20% | VAL, IN
NCE PROBA
10
10% | YEARS, AI
ABILITY,
25
4% | ND ANNUAL
IN PERCEN
50
2%
44100 | IT
10 | | YEARS,
1.25 | AND ANNUA | L EXCEEDA
5 | NCE PROB | 3ABILITY,

25 | IN PERCE | 100 | (CON-
SECU-
TIVE | 2 | INTER | /AL, IN NOTE PROBA | YEARS, AI
ABILITY,
25 | ND ANNUAL
IN PERĈEN

50 | IT
 | | YEARS,
1.25 | AND ANNUA | L EXCEEDA
5 | NCE PROB | 3ABILITY,

25 | IN PERCE | 100 | (CON-
SECU-
TIVE | 2 | INTER | /AL, IN NOTE PROBA | YEARS, AI
ABILITY,
25 | ND ANNUAL
IN PERĈEN

50 | IT
 | | YEARS,
1.25 | AND ANNUA | L EXCEEDA
5 | NCE PROB | 3ABILITY,

25 | IN PERCE | 100 | (CON-
SECU-
TIVE | 2 | INTER | /AL, IN NOTE PROBA | YEARS, AI
ABILITY,
25 | ND ANNUAL
IN PERĈEN

50 | IT
 | | YEARS,
1.25 | AND ANNUA | L EXCEEDA
5 | NCE PROB | 3ABILITY,

25 | IN PERCE | 100 | (CON-
SECU- | | I NTER | AL, IN | YEARS, AI
ABILITY, | ND ANNUAL
IN PERCEN | IT | | YEARS, | AND ANNUA | L EXCEEDA | NCE PROB | BABILITY, | IN PERCE | NT | (CON- | DISC | INTER | AL, IN | YEARS, AI | ND ANNUAL | | | | | | | | | | DEDLOD | DISC | | | | | REN | | | | |
| | INTERVAL | . IN | | | | | | | | | MAGNI | | PROBABILI
D ON PERI | | | OUS PEAK | FLOW | MA
 | | | | OF ANNU | AL HIGH FL
1931-61 | .OW | | NNUAL | 1368 | 3359 | 2383 | 468 | .20 | 100 | | | | | | | | | EPTEMBER | 358 | 1947 | 564 | 314 | . 56 | 2.0 | | | | | | | | | UGUST | 322 | 713 | 512 | 102 | .20 | 1.8 | | | | | | | | | ULY | 408 | 1756 | 841 | 294 | .35 | 2.9 | | | | | | | | | UNE | 570 | 4887 | 1933 | 1034 | .53 | 6.7 | 183 | 1060 | 764 | 647 | 565 | 486 | - | | AY | 1053 | 5357 | 3044 | 1113 | .37 | 10.6 | 120 | 620 | 470 | 411 | 370 | 330 | - | | PRIL | 980 | 5176 | 3443 | 905 | .26 | 12.0 | 90 | 508 | 410 | 370 | 342 | 314 | | | 1ARCH | 997 | 6426 | 3171 | 1103 | .35 | 11.1 | 60 | 457 | 380 | 347 | 322 | 297 | | | EBRUARY | 1255 | 7684 | 3343 | 1425 | .43 | 11.7 | 30 | 409 | 351 | 326 | 308 | 291 | | | ANUARY | 992
791 | 9443
8955 | 3923
3457 | 2017
1846 | .51
.53 | 13.7
12.1 | 7
14 | 360
385 | 301
326 | 273
300 | 252
280 | 229
258 | - | | IOVEMBER
ECEMBER | 294 | 6953 | 3137 | 1891 | .60 | 10.9 | 3 | 297 | 221 | 183 | 154 | 124 | • | | CTOBER | 326 | 4086 | 1296 | 1006 | .78 | 4.5 | 1 | 161 | 107 | 87 | 74 | 62 | - | | | | | | | | | DAYS) | 50%
 | 20% | 10% | 5%
 | 2 %
 | | | ONTH | (CFS) | (CFS) | (CFS) | (CFS) | ATION | RUNOFF | TIVE | 2 | 5 | 10 | 20 | 50 | 10 | | | MINIMUM | | MEAN | DARD
DEVIA-
TION | COEFFI-
CIENT OF
VARI- | OF
ANNUAL | PERIOD
(CON-
SECU- | | INTERVA
EXCEEDA | L, IN YE | ARS, AND
ABILITY, | ANNUAL NO |)N-
NT
 | | | | | | STAN- | | | | D100 | LADCE I | U CEC E | OD INDIC | ATED RECU | DEM | RECORD | | | | M
 | ONTHLY AN | D ANNUAL | MEAN DIS | SCHARGES | 1931-61 | | MA | | | | | AL LOW FLO
1932-61 | OW . | #### 14144800 MIDDLE FORK WILLAMETTE RIVER NEAR OAKRIDGE, OR LOCATION.--Lat 43°35'50", long 122°27'20", in NW\\ NE\\ sec.9, T.23 S., R.3 E., Lane County, Hydrologic Unit 17090001, in Willamette National Forest, on right bank 0.2 mi upstream from Windfall Creek, 8.3 mi upstream from Hills Creek Dam, 10.2 mi south of Cakridge, and at mile 240.8. DRAINAGE AREA. -- 258 mi. PERIOD OF RECORD. -- October 1958 to September 1982. GAGE.--Water-stage recorder. Datum of gage is 1,556.83 ft National Geodetic Vertical Datum of 1929 (levels by Corps of Engineers). Prior to June 21, 1967, at site 0.5 mi upstream at different datums. June 22, 1967, to June 23, 1971, water-stage recorder at same site at datum 5.00 ft higher. REMARKS. -- No regulation or diversion above station. AVERAGE DISCHARGE.--24 years, 807 ft³/s, 42.48 in/yr, 584,700 acre-ft/yr. MONTHLY AND ANNUAL MEAN DISCHARGES 1959-82 EXTREMES FOR PERIOD OF RECORD.—Maximum discharge, 39,800 ft³/s Dec. 22, 1964, gage height, 16.96 ft, from floodmark, site and datum then in use, from rating curve extended above 5,100 ft³/s on basis of slope-area measurement of peak flow; minimum, 187 ft³/s Sept. 15, 16, 1977. #### STATISTICAL SUMMARIES BASED ON PERIOD OF RECORD 1960-82 DISCHARGE, IN CFS, FOR INDICATED RECURRENCE INTERVAL, IN YEARS, AND ANNUAL NON-STAN-DARD COEFFI-PERCENT PERIOD EXCEEDANCE PROBABILITY, IN PERCENT CLENT OF DEVIA-OF (CON-MINIMUM MAXIMUM ANNIIAL MEAN TION VARI-SECII-MONTH (CFS) (CES) (CFS) (CES) ATION RUNOFF TIVE 2 50 100 50% 10% 20% 5% 2% DAYS) 1% OCTOBER 238 636 329 84 .26 3.4 211 201 NOVEMBER 1805 796 196 296 414 .52 8.2 234 212 203 DECEMBER 271 3922 1253 .69 12.9 237 214 197 862 204 JANUARY 273 2730 1280 690 .54 13.2 14 241 217 207 200 __ **FEBRUARY** 271 2360 1116 497 .45 11.5 30 247 225 217 212 . 49 __ MARCH 432 2842 1009 492 10.4 60 259 236 227 221 __ APRII 518 1475 1005 271 .27 10.4 90 274 250 241 235 __ --MAY 557 1754 1120 340 . 30 11.6 120 292 264 254 248 JUNE 385 1538 794 346 .44 400 338 313 295 8.2 183 253 JULY 740 411 127 .31 4.2 AUGUST 215 415 299 56 . 19 3.1 SEPTEMBER 43 2.9 226 282 ANNUAL 360 1197 807 206 .26 100 MAGNITUDE AND PROBABILITY OF INSTANTANEOUS PEAK FLOW BASED ON PERIOD OF RECORD 1959-82 MAGNITUDE AND PROBABILITY OF ANNUAL HIGH FLOW BASED ON PERIOD OF RECORD 1959-82 MAGNITUDE AND PROBABILITY OF ANNUAL LOW FLOW | DISCHARGE,
YEARS, A | | | | RECURRENC
ROBABILIT | | | PERIOD
(CON- | DISC | INTER | VAL, İN | OR INDICAT
YEARS, AND
ABILITY. | ANNUAL | | |------------------------|----------|----------|-----------|------------------------|----------|-----------|------------------------|----------|-------|-----------|--------------------------------------|----------|-----| | 1.25
80% | 2
50% | 5
20% | 10
10% | 25
4% | 50
2% | 100
1% | SECU-
TIVE
DAYS) | 2
50% | 5 20% | 10
10% | 25
4% | 50
2% | 100 | | 5210 | 8750 | 15200 | 20700 | 29000 | | | | | | | | | | | WEIGHTED | CKEM - | | | | | | 1 | 6780 | 11600 | 14900 | 18900 | | | | WEIGHIEL | SKEW = | .245 | | | | | 2 | 4890 | 8160 | 10500 | 13500 | | | | | | | | | | | 7 | 3400 | 5340 | 6710 | 8520 | | | | | | | | | | | 15 | 2400 | 3510 | 4250 | 5200 | | | | | | | | | | | 30 | 1910 | 2620 | 3090 | 3690 | | | | | | | | | | | 60 | 1540 | 2050 | 2380 | 2810 | | | | | | | | | | | 90 | 1390 | 1810 | 2080 | 2400 | | | DURATION TABLE OF DAILY MEAN FLOW FOR PERIOD OF RECORD 1959-82 |
 | | DISC | HARGE, IN | CFS, W | HICH WAS | EQUALED | OR EXCEED | DED FOR | INDICATED | PERCENT | OF TIME | | | | |----------|------|------|-----------|--------|----------|---------|-----------|---------|-----------|---------|---------|-----|-----|-----| | 5% | 10% | 15% | 20% | 25% | 30% | 40% | 50% | 60% | 70% | 75% | 80% | 85% | 90% | 95% | |
2000 | 1510 | 1290 | 1130 | 989 | 896 | 735 | 592 | 459 | 359 | 322 | 299 | 278 | 259 | 236 | #### WILLAMETTE RIVER BASIN 25 #### 14144900 HILLS CREEK ABOVE HILLS CREEK LAKE, NEAR OAKRIDGE, OR LOCATION.--Lat 43°40'50", long 122°22'10", in NW±NW± sec.8, T.22 S., R.4 E., Lane County, Hydrologic Unit 17090001, in Willamette National Forest, on right bank 0.2 mi downstream from Tufti Creek, 0.7 mi upstream from Hills Creek Lake, 6.5 mi southeast of Oakridge, and at mile 4.1. DRAINAGE AREA. -- 52.7 mi2. 431 318 263 225 197 171 132 100 69 45 38 32 29 25 22 PERIOD OF RECORD. --October 1958 to September 1981. Prior to October 1971, published as "Hills Creek above Hills Creek Reservoir". GAGE,--Water-stage recorder. Datum of gage is 1,630.80 ft National Geodetic Vertical Datum of 1929 (levels by Corps of Engineers). REMARKS. -- No regulation or diversion above station. AVERAGE DISCHARGE.--23 years, 150 ft³/s, 38.65 in/yr, 108,700 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.—Maximum discharge, 10,700 ft 3 /s Dec. 22, 1964, gage height, 12.23 ft, from rating curve extended above 1,800 ft 3 /s on basis of slope-area measurement of peak flow; minimum, 14 ft 3 /s Nov. 1, 1958. #### STATISTICAL SUMMARIES | | | | | | | | | | | ADII ITV | | | Ale: | |--|---|---|--|---|---|--|---|--|---|--
---|--|-------------| | Mi | ONTHLY A | ND ANNUAL | MEAN DIS | SCHARGES | 1959-81 | | MAC | GNITUDE
BASE | | | OF ANNUAL
RECORD 11 | |) 11 | | | MINIMUM | MAX I MUM | MEAN | STAN-
DARD
DEVIA-
TION | COEFFI-
CIENT OF
VARI- | | PERIOD
(CON-
SECU- | DISCH | INTERVAL | , IN YEA | OR INDICA
ARS, AND A
ABILITY, | ANNUAL NO |)N- | | MONTH | (CFS) | (CFS) | (CFS) | (CFS) | ATION | RUNOFF | TIVE
DAYS) | 2
50 % | 5
20 % | 10
10% | 20
5 % | 50
2 % | 100
1% | | OCTOBER | 24 | 105 | 44 | 19 | .44 | 2.4 | 1 | 20 | 18 | 17 | 16 | | | | NOVEMBER | 28 | 441 | 153 | 102 | .67 | 8.5 | 3 | 20 | 18 | 17 | 16 | | | | DECEMBER | 23 | 1001 | 247 | 201 | .81 | 13.7 | 7 | 20 | 18 | 17 | 16 | | | | JANUARY | 27 | 574 | 264 | 164 | .62 | 14.6 | 14 | 21 | 19 | 18 | 17 | | | | FEBRUARY | 24 | 425 | 200 | 95 | .48 | 11.1 | 30 | 22 | 20 | 19 | 19 | | | | MARCH | 69 | 633 | 198 | 117 | . 59 | 11.0 | 60 | 26 | 23 | 22 | 21 | | | | APRIL | 99 | 308 | 204 | 59 | .29 | 11.3 | 90 | 28 | 25 | 23 | 23 | | | | MAY | 108 | 367 | 236 | 75 | .32 | 13.1 | 120 | 34 | 28 | 26 | 24 | | | | JUNE | 54 | 341 | 145 | 75 | .52 | 8.0 | 183 | 60 | 44 | 37 | 32 | | | | JULY | 28 | 93 | 53 | 20 | . 38 | 2.9 | | | | | | | | | AUGUST | 21 | 61 | 32 | 9.6 | .30 | 1.8 | | | | | | | | | | | | 74 | | .44 | 1.7 | | | | | | | | | SEPTEMBER | 21 | 89 | 31 | 14 | | 1.7 | | | | | | | | | ANNUAL | 60
TUDE AND | 254

PROBABILI
D ON PERI | 150
TY OF IN | 46
ISTANTANE | .30
OUS PEAK | 100 |
MAG | | | | OF ANNUAL | |
.ow | | MAGNI TO STATE OF STATE OF SCHARGE | 60
TUDE AND
BASE | 254
PROBABILI | 150 TY OF IN OD OF RE | 46 USTANTANE CORD 1956 CURRENCE | .30
OUS PEAK
9-81 | 100

FLOW
, IN | PERIDD | BASE
DISCH | D ON PER
IARGE, IN
INTERV | CFS, FO | RECORD 19 | 959-81

FED RECUR
O ANNUAL | RENCE | | MAGNI TO SCHARGE | 60
TUDE AND
BASE | 254 PROBABILI D ON PERI | 150 TY OF IN OD OF RE | 46 USTANTANE CORD 1956 CURRENCE | .30
OUS PEAK
9-81
INTERVAL
IN PERCE | 100

FLOW
, IN | | BASE
DISCH | D ON PER
IARGE, IN
INTERV | CFS, FO | RECORD 19 | 959-81

FED RECUR
O ANNUAL | RENCE | | MAGNI | 60
TUDE AND
BASE
, IN CFS, | PROBABILI
D ON PERI
FOR INDI | TY OF IN
OD OF RE
CATED RE | 46 ISTANTANE CORD 1950 CURRENCE BABILITY, | .30
OUS PEAK
9-81
INTERVAL
IN PERCE | 100
FLOW
, IN | PERIOD
(CON- | BASE
DISCH | D ON PER
IARGE, IN
INTERV | CFS, FO | RECORD 19 | 959-81

FED RECUR
O ANNUAL | RENCE | | MAGNITAL MAG | 60 TUDE AND BASE , IN CFS, AND ANNUA | 254 PROBABILI D ON PERI FOR INDI | 150 TY OF IN OD OF RE CATED RE NCE PROE | 46 ISTANTANE CORD 195 CURRENCE BABILITY, | .30
OUS PEAK
9-81
INTERVAL
IN PERCE | 100
FLOW
, IN
NT | PERIDD
(CON-
SECU-
TIVE | BASE
DISCH | D ON PER
IARGE, IN
INTERV
EXCEEDAN | CFS, FO
AL, IN Y
CE PROBA | RECORD 19 OR INDICAT (EARS, AND BILITY, 1 | 959-81
FED RECUR
O ANNUAL
IN PERCEN | RENCE | | MAGNI DISCHARGE YEARS, // 1.25 80% | 60 TUDE AND BASE , IN CFS, AND ANNUA 2 50% | 254 PROBABILI D ON PERI FOR INDI | 150 TY OF IN OD OF RE CATED RE NCE PROE | 46 ISTANTANE CORD 1956 CURRENCE BABILITY, 25 | .30
OUS PEAK
9-81
INTERVAL
IN PERCE | 100
FLOW
, IN
NT | PERIDD
(CON-
SECU-
TIVE | BASE
DISCH | D ON PER
IARGE, IN
INTERV
EXCEEDAN | CFS, FO
AL, IN Y
CE PROBA | RECORD 19 OR INDICAT (EARS, AND BILITY, 1 | 959-81
FED RECUR
O ANNUAL
IN PERCEN | RENCE | | MAGNI DISCHARGE YEARS, // 1.25 80% | FUDE AND BASE IN CFS, AND ANNUA 2 50% | 254 PROBABILI D ON PERI FOR INDI | 150 TY OF IN OD OF RE CATED RE NCE PROE | 46 ISTANTANE CORD 1956 CURRENCE BABILITY, 25 | .30
OUS PEAK
9-81
INTERVAL
IN PERCE | 100
FLOW
, IN
NT | PERIDD
(CON-
SECU-
TIVE
DAYS) | DISCH | ID ON PER | CFS, FO
AL, IN Y
CE PROBA | RECORD 19 OR INDICAT FEARS, AND BILITY, 1 25 4% | P59-81 FED RECUF ANNUAL N PERCEN 50 2% | RENCE | | MAGNI DISCHARGE YEARS, 1.25 80% | FUDE AND BASE IN CFS, AND ANNUA 2 50% | PROBABILI
D ON PERI
FOR INDI
L EXCEEDA
5
20% | 150 TY OF IN OD OF RE CATED RE NCE PROE | 46 ISTANTANE CORD 1956 CURRENCE BABILITY, 25 | .30
OUS PEAK
9-81
INTERVAL
IN PERCE | 100
FLOW
, IN
NT | PERIDD
(CON-
SECU-
TIVE
DAYS) | DISCH | D ON PER INTERV EXCEEDAN 20% | CFS, FO AL, IN Y CE PROBA | PRECORD 19 PRECORD 19 PREARS, AND | P59-81 FED RECUF ANNUAL N PERCEN 50 2% | RENCE | | MAGNITON MAG | FUDE AND BASE IN CFS, AND ANNUA 2 50% | PROBABILI
D ON PERI
FOR INDI
L EXCEEDA
5
20% | 150 TY OF IN OD OF RE CATED RE NCE PROE | 46 ISTANTANE CORD 1956 CURRENCE BABILITY, 25 | .30
OUS PEAK
9-81
INTERVAL
IN PERCE | 100
FLOW
, IN
NT | PERIOD (CON- SECU- TIVE DAYS) | DISCH | ID ON PER IARGE, IN INTERV EXCEEDAN 5 20% 2370 1710 | CFS, FC
AL, IN Y
CE PROBA
10
10% | RECORD 19 OR INDICAT FEARS, ANG BILITY, 1 25 4% 4220 3200 | 959-81 FED RECUF O ANNUAL IN PERCEN 50 2% | RENCE | | MAGNITON MAG | FUDE AND BASE IN CFS, AND ANNUA 2 50% | PROBABILI
D ON PERI
FOR INDI
L EXCEEDA
5
20% | 150 TY OF IN OD OF RE CATED RE NCE PROE | 46 ISTANTANE CORD 1956 CURRENCE BABILITY, 25 | .30
OUS PEAK
9-81
INTERVAL
IN PERCE | 100
FLOW
, IN
NT | PERIDD (CON- SECU- TIVE DAYS) 1 3 | BASE
DISCH | ID ON PER
INTERVEXCEEDAN
5
20%
2370
1710
1120 | CFS, FO AL, IN Y CE PROBA | RECORD 19 RE INDICATE ARS, AND BILITY, 10 25 4% 4220 3200 2100 | P59-81 FED RECUF ANNUAL N PERCEN 50 2% | RENCE | | MAGNITON MAG | FUDE AND BASE IN CFS, AND ANNUA 2 50% | PROBABILI
D ON PERI
FOR INDI
L EXCEEDA
5
20% | 150 TY OF IN OD OF RE CATED RE NCE PROE | 46 ISTANTANE CORD 1956 CURRENCE BABILITY, 25 | .30
OUS PEAK
9-81
INTERVAL
IN PERCE | 100
FLOW
, IN
NT | PERIOD (CON- SECU- TIVE DAYS) 1 3 7 15 | DISCH 2 50 1410 1020 692 475 | 2370
1710
1120
712 | CFS, FGAL, IN YCE PROBA-10, 10, 3130, 2290, 1500, 917 | RECORD 19 RE INDICAT EARS, ANG BILITY, 1 25 4% 4220 3200 2100 1240 | P59-81 FED RECUF ANNUAL N PERCEN 50 2% | RENCE | | MAGNITON MAG | FUDE AND BASE IN CFS, AND ANNUA 2 50% | PROBABILI
D ON PERI
FOR INDI
L EXCEEDA
5
20% | 150 TY OF IN OD OF RE CATED RE NCE PROE | 46 ISTANTANE CORD 1956 CURRENCE BABILITY, 25 | .30
OUS PEAK
9-81
INTERVAL
IN PERCE | 100
FLOW
, IN
NT | PERIOD (CON- SECU- TIVE DAYS) | BASE DISCH | D ON PER | CFS, FC AL, IN Y CE PROBA | PRECORD 19 | P59-81 FED RECUF ANNUAL N PERCEN 50 2% | RENCE | | MAGNITON MAG | FUDE AND BASE IN CFS, AND ANNUA 2 50% | PROBABILI
D ON PERI
FOR INDI
L EXCEEDA
5
20% | 150 TY OF IN OD OF RE CATED RE NCE PROED 10 10 3800 | 46 ISTANTANE CORD 1950 CURRENCE SABILITY, 25 4% | .30 OUS PEAK 9-81 INTERVAL IN PERCE 50 2% | 100
FLOW
, IN
NT
100
1% | PERIOD (CON- SECU- TIVE DAYS) 1 3 7 15 30 60 | DISCH 2 50% 1410 1020 692 475 374 304 270 | ARGE, IN INTERVEXCEEDAN 2370 1710 1120 712 522 416 363 | CFS, FC AL, IN Y CE PROBA 10 10 10 10 10 10 10 10 10 10 10 10 10 | 25 4% 4220 3200 2100 1240 838 642 | P59-81 TED RECUF ANNUAL N PERCEN 50 2% | RENCE | | MAGNITON MAG | FUDE AND BASE IN CFS, AND ANNUA 2 50% | PROBABILI
D ON PERI
FOR INDI
LEXCEEDA
5
20% | 150 TY OF IN OD OF RE CATED RE NCE PROE 10 10 3800 DURATIO | 46 ISTANTANE CORD 195 CURRENCE SABILITY, 25 4% 5380 | .30 OUS PEAK 9-81 INTERVAL IN PERCE 50 2% | FLOW , IN NT 100 1% MEAN FLOW | PERIOD (CON- SECU- TIVE DAYS) 1 3 7 7 15 30 60 90 | DISCH 2 50% 1410 1020 692 475 374 304 270 OF RECO | 2370
17120
1120
712
522
416
363 | CFS, FC AL, IN Y CE PROBA 10 10 2290 1500 917 646 507 435 | PRECORD 19 | P59-81 TED RECUF ANNUAL N PERCEN 50 2% | RENCE | 26 WILLAMETTE RIVER BASIN #### 14145500
MIDDLE FORK WILLAMETTE RIVER ABOVE SALT CREEK, NEAR OAKRIDGE, OR LOCATION.--Lat 43°43'20", long 122°26'15", in NW±NE± sec.27, T.21 S., R.3 E., Lane County, Hydrologic Unit 17090001, in Willamette National Forest, on right bank 90 ft upstream from highway bridge, 0.4 mi upstream from Salt Creek, 1.1 mi downstream from Hills Creek Dam, 2.3 mi southeast of Oakridge, and at mile 231.4. DRAINAGE AREA .-- 392 mi2. PERIOD OF RECORD. --October 1913 to September 1914, September 1935 to September 1982. Monthly discharge only September 1935, published in WSP 1318. GAGE.--Water-stage recorder. Datum of gage is 1,208.01 ft National Geodetic Vertical Datum of 1929 (levels by Corps of Engineers). Oct. 3, 1913, to Sept. 30, 1914, nonrecording gage and Sept. 1, 1935, to Aug. 18, 1960, water-stage recorder at sites 400 ft and 1,000 ft downstream, respectively, at different datum. REMARKS.--Flow regulated since 1961 by Hills Creek Lake. No diversions above station. AVERAGE DISCHARGE.--48 years, 1,147 ft3/s, 39.74 in/yr, 831,000 acre-ft/yr, adjusted for storage. EXTREMES FOR PERIOD OF RECORD.—Maximum discharge, 34,000 ft 3 /s Dec. 28, 1945, gage height, 12.06 ft, site and datum then in use, from rating curve extended above 13,000 ft 3 /s; minimum observed, 0.70 ft 3 /s Sept. 8-11, 13, 1961. #### STATISTICAL SUMMARIES (BEFORE THE CONSTRUCTION OF HILLS CREEK DAM) MONTHLY AND ANNUAL MEAN DISCHARGES 1914-60 MAGNITUDE AND PROBABILIT MAGNITUDE AND PROBABILITY OF ANNUAL LOW FLOW BASED ON PERIOD OF RECORD 1937-60 | | MINIMUM | MAXIMUM | MEAN | STAN-
DARD
DEVIA-
TION | COEFFI-
CIENT OF
VARI- | PERCENT
OF
ANNUAL | PERIOD
(CON-
SECU- | | INTERVAL | , IN YEA | R INDICA
RS, AND A
BILITY, | ANNUAL NO | ON- | |-----------|---------|---------|---------------|---------------------------------|------------------------------|-------------------------|--------------------------|------------------|------------------|-----------|----------------------------------|------------------|-----------| | | (CFS) | (CFS) | MEAN
(CFS) | (CFS) | ATION | RUNOFF | TIVE
DAYS) | 2
50 % | 5
20 % | 10
10% | 20
5% | 50
2 % | 100
1% | | OCTOBER | 221 | 1852 | 464 | 331 | .71 | 3.4 | 1 | 276 | 242 | 224 | 209 | 193 | | | NOVEMBER | 212 | 2832 | 1097 | 736 | .67 | 8.0 | 3 | 278 | 243 | 225 | 210 . | 194 | | | DECEMBER | 324 | 4779 | 1637 | 1235 | .75 | 11.9 | 7 | 282 | 246 | 227 | 212 | 195 | | | JANUARY | 260 | 3904 | 1734 | 989 | .57 | 12.7 | 14 | 286 | 250 | 230 | 215 | 197 | | | FEBRUARY | 625 | 3313 | 1737 | 697 | .40 | 12.7 | 30 | 295 | 257 | 236 | 220 | 201 | | | MARCH | 554 | 2700 | 1530 | 533 | .35 | 11.2 | 60 | 313 | 270 | 247 | 229 | 208 | | | APRIL | 614 | 2751 | 1615 | 469 | .29 | 11.8 | 90 | 332 | 282 | 257 | 237 | 215 | | | MAY | 738 | 2435 | 1558 | 490 | .31 | 11.4 | 120 | 361 | 298 | 269 | 247 | 224 | | | JUNE | 344 | 2000 | 1146 | 466 | .41 | 8.4 | 183 | 537 | 395 | 333 | 288 | 244 | | | JULY | 272 | 884 | 523 | 167 | •32 | 3.8 | | | | | | | | | AUGUST | 233 | 441 | 343 | 60 | . 17 | 2.5 | | | | | | | | | SEPTEMBER | 246 | 389 | 317 | 45 | .14 | 2.3 | | | | | | | | | ANNUAL | 629 | 1735 | 1138 | 297 | .26 | 100 | | | | | | | | | DISCHARGE
YEARS, | | | | | NCE INTER | | PERIOD
(CON- | DISC | INTER | VAL, IN | YEARS, AI | ATED RECUIND ANNUAL | | |---------------------|------------------|------------------|-----------|----------|------------------|-----------|------------------------|------------------|------------------|-----------|-----------|---------------------|-----------| | 1.25
80% | 2
50 % | 5
20 % | 10
10% | 25
4% | 50
2 % | 100
1% | SECU-
TIVE
DAYS) | 2
50 % | 5
20 % | 10
10% | 25
4% | 50
2 % | 100
1% | | 6780 | 11800 | 20900 | 28200 | 39200 | 48400 | | | | | | | | | | | | | | | | | 1 | 9350 | 16000 | 21300 | 29000 | 35500 | | | WEIGHTE | D SKEW : | 082 | | | | | 3 | 7130 | 11300 | 14400 | 18800 | 22300 | | | | | | | | | | 7 | 5020 | 7390 | 9020 | 11100 | 12700 | | | | | | | | | | 15 | 3570 | 5040 | 6040 | 7330 | 8310 | | | | | | | | | | 30 | 2900 | 3880 | 4470 | 5140 | 5610 | | | | | | | | | | 60 | 2360 | 3080 | 3510 | 4020 | 4370 | | | | | | | | | | 90 | 2140 | 2720 | 3040 | 3380 | 3600 | | DURATION TABLE OF DAILY MEAN FLOW FOR PERIOD OF RECORD 1914-60 | | _ | DISC | CHARGE, | IN CFS, | WHICH WAS | EQUALED | OR EXCE | EDED FOR | INDICATED | PERCENT | OF TIME | Ε | | | |------|------|------|---------|---------|-----------|---------|---------|-------------|-----------|---------|---------|-----|-----|-----| | 5% | 10% | 15% | 20% | 25% | 30% | 40% | 50% | 60 % | 70% | 75% | 80% | 85% | 90% | 95% | | 3020 | 2290 | 1940 | 1680 | 1470 | 1300 | 1020 | 782 | 574 | 426 | 382 | 348 | 322 | 292 | 257 | # 14145500 MIDDLE FORK WILLAMETTE RIVER ABOVE SALT CREEK, NEAR OAKRIDGE, OR--Continued STATISTICAL SUMMARIES (AFTER THE COMPLETION OF HILLS CREEK DAM) MONTHLY AND ANNUAL MEAN DISCHARGES 1962-82 MAGNITUDE AND PROBABILITY OF ANNUAL LOW FLOW BASED ON PERIOD OF RECORD 1963-82 | | MINIMA | мауным | MEAN | STAN-
DARD
DEVIA- | COEFFI-
CIENT OF | PERCENT
OF | PERIOD
(CON- | DISCH | INTERVAL | ., IN YEA | R INDICA
RS, AND
BILITY, | ANNUAL NO | ON- | |-----------------------|------------------------------|------------------------|------------------|-------------------------------|---|-------------------------|--|--|--|--|---|--|------------| | IONTH | MINIMUM
(CFS) | (CFS) | MEAN
(CFS) | TION
(CFS) | VARI-
ATION | ANNUAL
RUNOFF | SECU-
TIVE
DAYS) | 2
50% | 5
20% | 10
10% | 20
5% | 50
2% | 100 | | CTOBER | 1.1 | 1956 | 1190 | 437 | .37 | 8.7 | 1 | 141 | 95 | 79 | 68 | | | | IOVEMBER | 9.4 | 2940 | 1614 | 670 | .42 | 11.8 | 3 | 163 | 108 | 86 | 71 | | | | ECEMBER | 513 | 4580 | 2167 | 1152 | .53 | 15.8 | 7 | 191 | 124 | 96 | 77 | | | | ANUARY | 370 | 5308 | 1871 | 1113 | .59 | 13.7 | 14 | 233 | 151 | 115 | 90 | | | | EBRUARY | 11 | 4391 | 927 | 996 | 1.07 | 6.8 | 30 | 289 | 187 | 143 | 113 | | | | MARCH | 139 | 1665 | 631 | 512 | .81 | 4.6 | 60 | 427 | 266 | 197 | 149 | | | | NPR1L | 93 | 1486 | 769 | 424 | .55 | 5.6 | 90 | 592 | 356 | 250 | 178 | | | | IAY | 92 | 1985 | 963 | 490 | .51 | 7.0 | 120 | 660 | 426 | 321 | 247 | | | | UNE | 108 | 1983 | 903 | 456 | .50 | 6.6 | 183 | 820 | 656 | 581 | 525 | | | | IULY | 371 | 1165 | 599 | 197 | .33 | 4.4 | | | | | | | | | UGUST | 293 | 1430 | 863 | 317 | . 37 | 6.3 | | | | | | | | | EPTEMBER | 793 | 2283 | 1199 | 325 | . 27 | 8.8 | | | | | | | | | NNUAL | 578 | 1821 | 1144 | 331 | .29 | 100 | | | | | | | | | ISCHARGE, | BASE | D ON PERIO | OD OF RE | CORD
CURRENCE | OUS PEAK F |
, IN | | BASE | D ON PER | IOD OF R | OF ANNUAL ECORD 19 R INDICAT | 962-82

TED RECUF | | | ISCHARGE, | BASE
IN CFS,
AND ANNUA | D ON PERIO | OD OF RE | CORD
CURRENCE | INTERVAL |
, IN | PERIOD
(CON-
SECU- | BASE
DISCH | D ON PER

ARGE, IN
INTERV | CFS, FO | ECORD 19 | 962-82

TED RECUR
O ANNUAL | RENCE | | SCHARGE,
YEARS, A | BASE
IN CFS, | FOR INDIA | OD OF RE | CORD
CURRENCE | INTERVAL | , IN
NT | PERIOD
(CON- | BASE
DISCH | D ON PER

ARGE, IN
INTERV | CFS, FO | ECORD 19 R INDICATEARS, AND | 962-82

TED RECUR
O ANNUAL | RRENCE | | ISCHARGE,
YEARS, A | BASE
IN CFS,
AND ANNUA | FOR INDIA
L EXCEEDA | OD OF RE | CORD
CURRENCE
BABILITY, | INTERVAL
IN PERCEI | , IN
NT | PERIOD
(CON-
SECU-
TIVE
DAYS) | BASE DISCH | D ON PER ARGE, IN INTERV EXCEEDAN 5 20% | CFS, FO
AL, IN Y
CE PROBA | ECORD 19 R INDICATEARS, AND BILITY, 1 25 4% | 962-82
TED RECUF
O ANNUAL
IN PERCEN
50
2% | 100
1% | | YEARS, A | BASE IN CFS, AND ANNUA 2 50% | FOR INDIA
L EXCEEDA | OD OF RE | CORD
CURRENCE
BABILITY, | INTERVAL
IN PERCEI | , IN
NT | PERIOD
(CON-
SECU-
TIVE
DAYS) | BASE DISCH | D ON PER ARGE, IN INTERV EXCEEDAN 5 20% | CFS, FO
AL, IN Y
CE PROBA | ECORD 19 R INDICATE ARS, AND BILITY, 125 4% 9480 | 962-82 TED RECUF O ANNUAL IN PERCEN 50 2% | 100
1% | | ISCHARGE,
YEARS, A | BASE IN CFS, AND ANNUA 2 50% | FOR INDIA
L EXCEEDA | OD OF RE | CORD
CURRENCE
BABILITY, | INTERVAL
IN PERCEI | , IN
NT | PERIOD (CON- SECU- TIVE DAYS) | BASE DISCH | D ON PER ARGE, IN INTERV EXCEEDAN 5 20% 6540 6320 | CFS, FO
AL, IN Y
CE PROBA
10
10% | ECORD 19 R INDICATE ARS, AND BILITY, 125 4% 9480 9380 | 962-82
TED RECUF
O ANNUAL
IN PERCEN
50
2% | 100
1% | | YEARS, A | BASE IN CFS, AND ANNUA 2 50% | FOR INDIA
L EXCEEDA | OD OF RE | CORD
CURRENCE
BABILITY, | INTERVAL
IN PERCEI | , IN
NT | PERIOD (CON- SECU- TIVE DAYS) 1 3 7 | BASE DISCH | D ON PER ARGE, IN INTERV EXCEEDAN 5 20% 6540 6320 5790 | CFS, FO AL, IN Y CE PROBA 10 10 7840 7650 6990 | ECORD 19 | 962-82 TED RECUF O ANNUAL IN PERCEN 50 2% | 100
1% | | YEARS, A | BASE IN CFS, AND ANNUA 2 50% | FOR INDIA
L EXCEEDA | OD OF RE | CORD
CURRENCE
BABILITY, | INTERVAL
IN PERCEI | , IN
NT | PERIOD
(CON-
SECU-
TIVE
DAYS) | DISCH 2 50% 4590 4370 3990 3340 | D ON PER ARGE, IN INTERV EXCEEDAN 5 20% 6540 6320 5790 4900 | 10D OF R CFS, FO AL, IN Y CE PROBA 10 10 7840 7650 6990 6000 | ECORD 19 | JED RECUP
D ANNUAL
IN PERCEN
50
2% | 100
1% | | YEARS, A | BASE IN CFS, AND ANNUA 2 50% | FOR INDIA
L EXCEEDA | OD OF RE | CORD
CURRENCE
BABILITY, | INTERVAL
IN PERCEI | , IN
NT | PERIOD (CON-
SECU-
TIVE DAYS) | BASE DISCH 2
50% 4590 4370 3990 3340 2660 | D ON PER ARGE, IN INTERV EXCEEDAN 5 20% 6540 6320 5790 4900 3790 | 10D OF R CFS, FO AL, IN Y CE PROBA 10 10 7840 7650 6990 6000 4630 | PARO PARO PARO PARO PARO PARO PARO PARO | JED RECUF
J ANNUAL
IN PERCEN
50
2% | 100
1% | | YEARS, A | BASE IN CFS, AND ANNUA 2 50% | FOR INDIA
L EXCEEDA | OD OF RE | CORD
CURRENCE
BABILITY, | INTERVAL
IN PERCEI | , IN
NT | PERIOD (CON- SECU- TIVE DAYS) 1 3 7 15 30 60 | BASE DISCH 2 50% 4590 4370 3990 3340 2660 2140 | D ON PER | TOD OF R CFS, F0 AL, IN Y CE PROBA 10 10 7650 6990 6000 4630 3630 | PARS PARS PARS PARS PARS PARS PARS PARS | JED RECUP
D ANNUAL
IN PERCEN
50
2% | 100
1% | | YEARS, A | BASE IN CFS, AND ANNUA 2 50% | FOR INDIA
L EXCEEDA | OD OF RE | CORD
CURRENCE
BABILITY, | INTERVAL
IN PERCEI | , IN
NT | PERIOD (CON-
SECU-
TIVE DAYS) | BASE DISCH 2 50% 4590 4370 3990 3340 2660 | D ON PER ARGE, IN INTERV EXCEEDAN 5 20% 6540 6320 5790 4900 3790 | 10D OF R CFS, FO AL, IN Y CE PROBA 10 10 7840 7650 6990 6000 4630 | PARO PARO PARO PARO PARO PARO PARO PARO | JED RECUF
J ANNUAL
IN PERCEN
50
2% | 100
17 | | YEARS, A | BASE IN CFS, AND ANNUA 2 50% | FOR INDIA
L EXCEEDA | CATED RE | CORD CURRENCE ABILITY, 25 4% | INTERVAL
IN PERCEI
50
2% | , IN
NT
100
1% | PERIOD (CON- SECU- TIVE DAYS) 1 3 7 15 30 60 | DISCH 2 50% 4590 4370 3990 3340 2660 2140 1930 | ARGE, IN INTERVEXCEEDAN 5 20% 6540 6320 5790 4900 3790 3000 2670 | TOD OF R CFS, FO AL, IN Y CE PROBA 10 10% 7840 7650 6990 4630 3630 3200 | PARS PARS PARS PARS PARS PARS PARS PARS | JED RECUF
J ANNUAL
IN PERCEN
50
2% | 100
118 | | YEARS, A | BASE IN CFS, AND ANNUA 2 50% | FOR INDII
L EXCEEDA | CATED RENCE PROB | CORD CURRENCE ABILITY, 25 4% | INTERVAL
IN PERCEI
50
2% | IN NT 100 1% | PERIOD
(CON-
SECU-
TIVE
DAYS)
 | DISCH 2 50% 4590 3340 2660 2140 1930 OF RECO | D ON PER | TOD OF R CFS, FO AL, IN Y CE PROBA 10 10\$ 7840 76590 6990 4630 3630 3200 82 | 9480
9380
8510
7480
5790
4510
3890 | JED RECUF
J ANNUAL
IN PERCEN
50
2% | 100
1% | | YEARS, A | BASE IN CFS, AND ANNUA 2 50% | FOR INDII
L EXCEEDA | CATED RENCE PROB | CORD CURRENCE ABILITY, 25 4% | INTERVAL
IN PERCEN
50
2%
OF DAILY N | IN NT 100 1% | PERIOD (CON- SECU- TIVE DAYS) 1 3 7 15 30 60 90 FOR PERIOD EXCEEDED FOR | DISCH 2 50% 4590 3340 2660 2140 1930 OF RECO | D ON PER | TOD OF R CFS, FO AL, IN Y CE PROBA 10 10\$ 7840 76590 6990 4630 3630 3200 82 | 9480
9380
8510
7480
5790
4510
3890 | JED RECUF
J ANNUAL
IN PERCEN
50
2% | 100
118 | #### WILLAMETTE RIVER BASIN #### 14146000 SALT CREEK NEAR OAKRIDGE, OR LOCATION.--Lat 43°43'45", long 122°25'35", in SW± sec.23, T.21 S., R.3 E., Lane County, Hydrologic Unit 17090001, on right bank 0.7 mi upstream from mouth and 2 mi southeast of Oakridge. DRAINAGE AREA. -- 113 mi2. PERIOD OF RECORD. -- July 1913 to September 1914, October 1933 to September 1951. GAGE.--Water-stage recorder. Datum of gage is 1,245.67 ft National Geodetic Vertical Datum of 1929. July 19, 1913, to Sept. 30, 1914, staff gage 0.5 mi downstream at different datum. REMARKS.--No regulation. Since spring of 1948, there has been a small intermittent, unmeasured diversion around gage to millpond downstream. AVERAGE DISCHARGE.--19 years (water years 1914, 1934-51), 293 ft³/s, 212,100 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 4,500 ft³/s Oct. 29, 1950, gage height, 8.00 ft, from rating curve extended above 2,600 ft³/s by logarithmic plotting; minimum, 55 ft³/s Jan. 8, 1937, result of freezeup; minimum daily, 66 ft³/s Jan. 8, 1937. #### STATISTICAL SUMMARIES MONTHLY AND ANNUAL MEAN DISCHARGES 1914-51 MAGNITUD MAGNITUDE AND PROBABILITY OF ANNUAL LOW FLOW BASED ON PERIOD OF RECORD 1935-51 | ONTH

CTOBER | (CFS) | MAXIMUM
(CFS) | | DEVIA-
TION | COEFFI-
CIENT OF
VARI- | PERCENT
OF
ANNUAL | PERIOD
(CON-
SECU- | | | , IN YEAR
DE PROBAE | | | DN− | |--------------------|------------------|------------------|---------------|----------------|------------------------------|-------------------------|--------------------------|----------|------------------|------------------------|------------------|-------------------|-----------| | | | | MEAN
(CFS) | (CFS) | ATION | RUNOFF | TIVE
DAYS) | 2
50% | 5
20 % | 10
10% | 20
5 % | 50
2% | 100
1% | | | 82 | 393 | 150 | 73 | •48 | 4.3 | 1 | 100 | 83 |
75 | 69 | | | | OVEMBER | 94 | 635 | 289 | 159 | .55 | 8.2 | 3 | 100 | 85 | 78 | 73 | | | | ECEMBER | 116 | 912 | 355 | 208 | .59 | 10.1 | 7 | 102 | 88 | 81 | 75 | | | | ANUARY | 98 | 649 | 350 | 157 | . 45 | 9.9 | 14 | 104 | 89 | 82 | 77 | | | | EBRUARY | 169 | 640 | 343 | 115 | .34 | 9.7 | 30 | 106 | 91 | 84 | 79 | | | | ARCH | 149 | 486 | 350 | 94 | . 27 | 9.9 | 60 | 110 | 95 | 88 | 82 | | | | PRIL | 186 | 541 | 423 | 99 | .23 | 12.0 | 90 | 115 | 98 | 90 | 84 | | | | AY | 173 | 729 | 483 | 148 | .31 | 13.7 | 120 | 123 | 102 | 93 | 87 | | | | UNE | 115 | 732 | 376 | 156 | .41 | 10.7 | 183 | 165 | 124 | 108 | 97 | | | | ULY | 90 | 312 | 173 | 56 | •32 | 4.9 | | | | | | | | | UGUST | 81 | 162 | 118 | 22 | . 19 | 3.3 | | | | | | | | | EPTEMBER | 86 | 154 | 117 | 20 | . 17 | 3.3 | | | | | | | | | NNUAL | 173 | 426 | 293 | 72 | .25 | 100 | | | | | | | | | I SCHARGE, | BASEI
IN CFS, | ON PERI | OD OF RE | CORD 191 | INTERVAL | . IN | | BASE | ON PER | ABILITY COLOR OF RE | CORD 19 | 14-51
ED RECUF | | | 1.25 | 2 | 5 EXCEEDA | 10 | 25 | IN PERCEI | 100 | PERIOD
(CON-
SECU- | | | AL, IN YE | | | 1T | | 80% | 50% | 20% | 10% | 4%
 | 2% | 1% | TIVE
DAYS) | 2
50% | 5
20 % | 10
10% | 25
4% | 50
2% | 100 | | | | | | ROBABILITY | | | PERIOD
(CON- | | INTERV | /AL, ÍN Y | EARS, AND | ANNUAL | | |-------------|--------------|------------------|-----------|------------|------------------|-----------|------------------------|----------|------------------|-----------|-----------|----------|-----------| | 1.25
80% | 2
50%
 | 5
20 % | 10
10% | 25
4% | 50
2 % | 100
1% | SECU-
TIVE
DAYS) | 2
50% | 5
20 % | 10
10% | 25
4% | 50
2% | 100
1% | | 1020 | 1700 | 2850 | 3720 | 4940 | | | | | | | | | | | | | | | | | | 1 | 1440 | 2270 | 2850 | 3610 | | | | WEIGHTED | SKEW = | 026 | | | | | 3 | 1170 | 1720 | 2100 | 2590 | | | | | | | | | | | 7 | 888 | 1240 | 1480 | 1800 | | | | | | | | | | | 15 | 700 | 922 | 1060 | 1240 | | | | | | | | | | | 30 | 612 | 764 | 844 | 928 | | | | | | | | | | | 60 | 538 | 666 | 733 | 803 | | | | | | | | | | | 90 | 490 | 592 | 641 | 689 | | | DURATION TABLE OF DAILY MEAN FLOW FOR PERIOD OF RECORD 1914-51 | | | DISC | HARGE, | IN CFS, | WHICH WAS | EQUALED | OR EXCE | EDED FOR | INDICATED | PERCENT | OF TIME | | | | |-----|-----|------|--------|---------|-----------|---------|---------|----------|-----------|---------|---------|-----|-----|-----| | 5% | 10% | 15% | 20% | 25% | 30\$ | 40% | 50% | 60% | 70% | 75% | 80% | 85% | 90% | 95% | | 676 | 554 | 490 | 441 | 395 | 356 | 288 | 227 | 181 | 147 | 135 | 124 | 114 | 105 | 95 | #### 14146500 SALMON CREEK NEAR OAKRIDGE. OR LOCATION.--Lat 43°45'45", long 122°22'18", in NEt sec.7, T.21 S., R.4 E., Lane County, Hydrologic Unit 17090001, in Willamette National Forest, on right bank 190 ft upstream from Salmon Creek Falls, 0.1 mi upstream from Needle Creek, 4.6 mi east of Oakridge, and at mile 5.84. DRAINAGE AREA.--117 mi², at measuring cable 0.6 mi downstream from gage. MONTHLY AND ANNUAL MEAN DISCHARGES 1914-82 PERIOD OF RECORD.--October to November 1909 (gage heights and one discharge measurement only), February 1913 to October 1919, October 1933 to September 1982. Monthly discharge only for some periods, published in WSP 1318. Published as "Kelsey River near Hazeldell" and "Salmon Creek near Hazeldell", 1909. GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 1,462.36 ft National Geodetic Vertical Datum of 1929. Prior to Oct. 1, 1914, nonrecording gage at several sites within 4 mi of present site at various datums. Oct. 1, 1914, to Oct. 14, 1919, water-stage recorder at site 1.8 mi downstream at different datum. Nov. 5, 1933, to Oct. 27, 1964, water-stage recorder at site 0.8 mi downstream at datum 40.53 ft lower. Oct. 28, 1964, to Aug. 27, 1965, nonrecording gage at site 0.6 mi downstream at different datum. REMARKS.--No regulation or diversion above station. All records given herein are for measuring cable site. AVERAGE DISCHARGE.--55 years (water years 1914-19, 1934-82), 426 ft³/s, 49.45 in/yr, 308,600 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 11,600 ft³/s Dec. 22, 1964, gage height, 9.15 ft, from floodmark, site and datum then in use, from rating curve extended above 2,100 ft³/s on basis of slope-area measurement of peak flow; minimum, 63 ft³/s Jan. 8, 1937. #### STATISTICAL SUMMARIES | | MINIMUM | MAXIMUM | MEAN | STAN-
DARD
DEVIA-
TION | COEFFI-
CIENT OF
VARI- | PERCENT
OF
ANNUAL | PERIOD
(CON-
SECU- | | INTERVAL | , IN YEAR | R INDICAT
RS, AND /
BILITY, I | ANNUAL N | 0N- | |-----------|---------|---------|-------|---------------------------------|------------------------------|-------------------------|--------------------------|----------|------------------|-----------|-------------------------------------|----------|-----------| | монтн | (CFS) | (CFS) | (CFS) | (CFS) | ATION | RUNOFF | . TIVE
DAYS) | 2
50% | 5
20 % | 10
10% | 20
5% | 50
2% | 100
1% | | OCTOBER | 107 | 477 | 186 | 70 | .37 | 3.6 | 1 | 123 | 106 | 98 | 92 | 85 | 81 | | NOVEMBER | 101 | 955 | 410 | 231 | .56 | 8.0 | 3 | 124 | 107 | 100 | 94 | 88 | 84 | | DECEMBER | 139 | 1886 | 621 | 386 | .62 | 12.1 | 7 | 125 | 109 | 102 | 96 | 91 | 87 | | JANUARY | 111. | 1297 | 604 | 305 | . 50 | 11.8 | 14 | 128 | 111 | 104 | 98 | 92 | 88 | |
FEBRUARY | 138 | 1282 | 583 | 237 | .41 | 11.4 | 30 | 133 | 116 | 108 | 102 | 96 | 92 | | MARCH | 180 | 1531 | 537 | 217 | . 40 | 10.5 | 60 | 141 | 123 | 115 | 109 | 102 | 98 | | APRIL | 202 | 1090 | 601 | 185 | .31 | 11.7 | 90 | 150 | 130 | 121 | 113 | 106 | 101 | | MAY | 215 | 1068 | 601 | 193 | .32 | 11.7 | 120 | 162 | 138 | 127 | 119 | 111 | 106 | | JUNE | 138 | 1070 | 436 | 193 | .44 | 8.5 | 183 | 220 | 174 | 155 | 141 | 127 | 118 | | JULY | 112 | 636 | 230 | 88 | .38 | 4.5 | | | | | | | | | AUGUST | 96 | 240 | 162 | 34 | .21 | 3.2 | | | | | | | | | SEPTEMBER | 108 | 201 | 149 | 23 | . 16 | 2.9 | | | | | | | | | ANNUAL | 217 | 681 | 426 | 107 | •25 | 100 | | | | | | | | MAGNITUDE AND PROBABILITY OF INSTANTANEOUS PEAK FLOW BASED ON PERIOD OF RECORD 1914-82 MAGNITUDE AND PROBABILITY OF ANNUAL HIGH FLOW BASED ON PERIOD OF RECORD 1914-82 MAGNITUDE AND PROBABILITY OF ANNUAL LOW FLOW BASED ON PERIOD OF RECORD 1915-82 | DISCHARGE,
YEARS, A | | | | | | | PERIOD
(CON- | | INTERV | I CFS, FO
AL, IN Y
ICE PROBA | EARS, AN | D ANNUAL | | |------------------------|----------|----------|-----------|----------|------------------|-----------|------------------------|----------|--------|------------------------------------|----------|----------|------| | 1.25
80% | 2
50% | 5
20% | 10
10% | 25
4% | 50
2 % | 100
1% | SECU-
TIVE
DAYS) | 2
50% | 5 20% | 10 | 25
4% | 50
2% | 100 | | 1910 | 3240 | 5460 | 7160 | 9530 | 11500 | 13500 | | | | | | | | | | | | | | | | 1 | 2590 | 4140 | 5290 | 6870 | 8130 | 9460 | | WE I GHTED | SKEW = | 043 | | | | | 3 | 2050 | 3160 | 4000 | 5200 | 6170 | 7230 | | | | | | | | | 7 | 1550 | 2260 | 2780 | 3480 | 4030 | 4620 | | | | | | | | | 15 | 1180 | 1610 | 1900 | 2260 | 2530 | 2800 | | | | | | | | | 30 | 964 | 1270 | 1460 | 1690 | 1850 | 2000 | | | | | | | | | 60 | 803 | 1040 | 1180 | 1340 | 1460 | 1570 | | | | | | | | | 90 | 731 | 929 | 1040 | 1170 | 1260 | 1340 | DURATION TABLE OF DAILY MEAN FLOW FOR PERIOD OF RECORD 1914-82 | | | DISC | HARGE, | IN CFS, | WHICH WAS | EQUALED | OR EXC | EDED FOR | INDICATED | PERCENT | OF TIME | | | | |------|-----|---------|--------|---------|-----------|---------|--------|----------|-----------|---------|---------|-----|-----|-----| | 5% | 10% | 15%
 | 20% | 25% | 30% | 40% | 50% | 60% | 70% | 75% | 80% | 85% | 90% | 95% | | 1060 | 829 | 706 | 621 | 555 | 499 | 400 | 318 | 243 | 195 | 177 | 163 | 150 | 136 | 121 | #### 14147000 WALDO LAKE OUTLET NEAR OAKRIDGE. OR LOCATION.--Lat 43°46'05", long 122°03'10", in SEtNWt sec.7, T.21 S., R.6 E., Lane County, Hydrologic Unit 17090001, in Willamette National Forest, on right bank of artificial outlet channel of Waldo Lake forming the headwaters of the North Fork of the Middle Fork of Willamette River, 20 mi east of Oakridge, and at mile 43.5. DRAINAGE AREA .-- 30.5 mi2, of which about 10.5 mi2 is Waldo Lake. PERIOD OF RECORD. -- October 1936 to September 1953, October 1969 to September 1982. GAGE.--Water-stage recorder and modified v-notch weir. Altitude of gage is 5,410 ft, from topographic map. October 1936 to September 1953, at site 120 ft upstream on left bank at same datum. REMARKS.--At times seiches from Waldo Lake cause rapid changes in stage at gage many times each hour. No regulation. Diversion tunnel into head of Black Creek, near south end of lake, built about 1914, is sealed off, but there was leakage of 0.51 ft³/s past control gates, measured Oct. 1, 1981. AVERAGE DISCHARGE.--30 years, 34.2 ft³/s, 24,780 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 150 ft³/s Jan. 20, 1971, from rating curve extended above 77 ft³/s and adjusted for overbank flow; maximum gage height, 2.98 ft Jan. 2, 1943; no flow at times. EXTREMES OUTSIDE PERIOD OF RECORD.--A high-water mark in the channel of a previous high stage in the lake was noted on Sept. 3, 1936, as 3.2 ft gage height, affected by seiche. #### STATISTICAL SUMMARIES | MONTHLY | AND ANNUAL MEAN | DISCHARGES | 1937-82 | MAGNITUDE AND PROBABILITY OF ANNUAL LOW FLOW | |---------|-----------------|------------|---------|--| | | | | | DACED ON DEDICE OF DECORD 1070 00 | | | MINIMUM | MAXIMUM | MEAN | STAN-
DARD
DEVIA-
TION | COEFFI-
CIENT OF | PERCENT
OF | PERIOD
(CON-
SECU- | | RGE, IN (
NTERVAL,
XCEEDANCE | IN YEARS | S, AND AN | INUAL NO | N | |-----------|---------|---------|-------|---------------------------------|---------------------|------------------|--------------------------|------------|------------------------------------|-----------|-----------|----------|-----------| | MONTH | (CFS) | (CFS) | (CFS) | (CFS) | ATION | ANNUAL
RUNOFF | TIVE
DAYS) | 2
50% | 5
20 % | 10
10% | 20
5% | 50
2% | 100
1% | | OCTOBER | 0.0 | 27 | 4.4 | 5.8 | 1.33 | 1.0 | 1 | | | | | | | | NOVEMBER | 0.0 | 65 | 12 | 14 | 1.16 | 2.8 | 3 | | | | | | | | DECEMBER | 0.0 | 90 | 31 | 27 | .86 | 7.5 | 7 | | | | | | | | JANUARY | 1.3 | 118 | 47 | 33 | .70 | 11.4 | 14 | | | | | | | | FEBRUARY | •5 | 99 | 57 | 29 | •50 | 13.7 | 30 | | | | | | | | MARCH | 6.9 | 129 | 58 | 27 | .47 | 13.8 | 60 | 2.7 | .6 | .2 | . 1 | 0.0 | | | APRIL | 2.4 | 100 | 50 | 21 | .42 | 12.1 | 90 | 3.2 | .8 | .4 | .2 | •1 | | | MAY | 10 | 76 | 48 | 15 | •31 | 11.5 | 120 | 6.1 | 2.0 | 1.0 | •5 | .2 | | | JUNE | 13 | 81 | 50 | 18 | •35 | 12.1 | 183 | 14 | 6.0 | 3.4 | 1.5 | 1.0 | | | JULY | 3.2 | 73 | 37 | 18 | . 49 | 8.8 | | | | | | | | | AUGUST | 0.0 | 38 | 15 | 11 | .69 | 3.7 | NOTE: | LOW-FLOW S | STATIST10 | CS UNCERT | TAIN DUE | TO EXCE | SSIVE | | SEPTEMBER | 0.0 | 19 | 6.1 | 6.1 | 1.00 | 1.5 | | ZERO EVEN | TS. | | | | | | ANNUAL | 8.0 | 67 | 35 | 15 | .42 | 100 | | | | | | | | #### MAGNITUDE AND PROBABILITY OF INSTANTANEOUS PEAK FLOW BASED ON PERIOD OF RECORD 1937-82 | MAGNITUDE | AND | PROBABIL | LITY | OF | ANNUAL | HIGH | FLOW | |-----------|------|----------|------|------|---------|-------|------| | BASE | D 01 | N PERIOD | OF | RECO | ORD 19: | 37-82 | | | | | | | RECURRENC
DBABILIT | | | PERIOD
(CON- | | INTERV | AL, ÎN Y | R INDICAT
EARS, AND
BILITY, I | ANNUAL | | |-------------|------------------|------------------|-----------|-----------------------|------------------|-----------|------------------------|----------|------------------|-----------|-------------------------------------|----------|-----| | 1.25
80% | 2
50 % | 5
20 % | 10
10% | 25
4% | 50
2 % | 100
1% | SECU-
Tive
Days) | 2
50% | 5
20 % | 10
10% | 25
4% | 50
2% | 100 | | 52 | 78 | 112 | 134 | 161 | 180 | | | | | | | | | | | | | | | | | 1 | 78 | 110 | 129 | 150 | 163 | - | | EIGHTED | SKEW = | 293 | | | | | 3 | 77 | 109 | 127 | 148 | 161 | - | | | | | | | | | 7 | 75 | 106 | 125 | 145 | 159 | - | | | | | | | | | 15 | 73 | 102 | 119 | 138 | 151 | - | | | | | | | | | 30 | 69 | 96 | 111 | 128 | 138 | - | | | | | | | | | 60 | 64 | 88 | 101 | 116 | 126 | - | | | | | | | | | 90 | 61 | 84 | 96 | 109 | 118 | - | DURATION TABLE OF DAILY MEAN FLOW FOR PERIOD OF RECORD 1937-82 |
 | | DISCHA | RGE, IN | CFS, | WHICH WAS | EQUALED | OR EXCEE | DED FOR | INDICATED | PERCENT | OF TIME | | | | |----------------|-----|--------|---------|------|-----------|---------|----------|---------|-----------|---------|---------|-----|-----|-----| |
5 % | 10% | 15% | 20% | 25% | 30% | 40% | 50% | 60% | 70% | 75% | 80% | 85% | 90% | 95% | | 90 | 76 | 69 | 61 | 56 | 51 | 42 | 32 | 23 | 14 | 9.4 | 6.1 | 3.0 | 1.1 | 0.0 | #### WILL AMETTE RIVER BASIN 3 1 95% 90% 152 85% 14147500 NORTH FORK OF MIDDLE FORK WILLAMETTE RIVER NEAR OAKRIDGE. OR LOCATION.--Lat 43°45'25", long 122°30'15", in SW\ sec.7, T.21 S., R.3 E., Lane County, Hydrologic Unit 17090001, on left bank 2.5 mi northwest of Oakridge and at mile 1.0. DRAINAGE AREA.--246 mi², at measuring section 0.5 mi downstream. 5% 2170 10% 1650 15% 1410 20% 1220 25% 1060 30% 929 PERIOD OF RECORD.--October 1909 to March 1916, September 1935 to September 1982. Monthly discharge only for some periods, published in WSP 1318. Prior to October 1912, published as "near Hazeldell." GAGE.--Water-stage recorder. Datum of gage is 1,029.6 ft National Geodetic Vertical Datum of 1929 (river profile survey). Oct. 1, 1909, to March 31, 1916, water-stage recorder or nonrecording gage at several sites within 0.8 mi of present site at various datums. Sept. 10, 1935, to Oct. 3, 1938, nonrecording gage at present site and datum. REMARKS.--Slight regulation by Waldo Lake; occasional fluctuations during low-water periods caused by log-ponds above station. No diversions above station. All records given herein are for measuring site. AVERAGE DISCHARGE.--53 years (water years 1910-15, 1936-82), 789 ft³/s, 43.56 in/yr, 571,600 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 24,400 ft³/s Dec. 22, 1964, gage height, 19.14 ft, from floodmark, from rating curve extended above 7,100 ft³/s on basis of slope-area measurement of peak flow; minimum, 22 ft³/s Aug. 20, 1966. #### STATISTICAL SUMMARIES MAGNITUDE AND PROBABILITY OF ANNUAL LOW FLOW MONTHLY AND ANNUAL MEAN DISCHARGES 1910-82 BASED ON PERIOD OF RECORD 1911-82 DISCHARGE, IN CFS, FOR INDICATED RECURRENCE INTERVAL, IN YEARS, AND ANNUAL NON-STAN-COEFFI- PERCENT PERIOD DARD DEVIA-CIENT OF (CON-EXCEEDANCE PROBABILITY, IN PERCENT 0F MINIMIM MAXIMIM MEAN TION VARI-ANNUAL SECU-MONTH (CFS) (CFS) (CFS) (CFS) ATION RUNOFF TIVE 20 100 50% 24 DAYS) 20% 10% 5% 1% **OCTOBER** 114 904 2.7 125 100 94 88 85 260 152 .58 108 1 NOVEMBER 119 2287 528 8.9 127 107 103 99 97 845 .62 113 DECEMBER 163 4242 1275 842 13.4 130 115 109 105 101 99 .66 JANUARY 182 2708 1266 107 103 100 713 .56 13.3 134 112 **FEBRUARY** 163 2543 1230 12.9 30 142 107 104 528 .43 125 112 MARCH 330 2970 1115 473 .42 60 154 134 126 119 113 109 11.7 APRIL 373 2072 1151 365 .32 12.1 an 171 146 135 127 119 114 MAY 431 1895 1050 372 . 35 11.0 120 194 161 147 137 127 121 JUNE 1394 201
668 315 .47 7.0 183 315 238 206 183 160 147 JULY 124 650 295 101 .34 3.1 AUGUST 298 .23 98 182 42 1.9 SEPTEMBER 307 35 116 167 .21 1.8 ANNUAL 350 1201 789 204 100 MAGNITUDE AND PROBABILITY OF INSTANTANEOUS PEAK FLOW MAGNITUDE AND PROBABILITY OF ANNUAL HIGH FLOW BASED ON PERIOD OF RECORD 1910-82 BASED ON PERIOD OF RECORD 1910-82 DISCHARGE, IN CFS, FOR INDICATED RECURRENCE INTERVAL, IN DISCHARGE, IN CFS, FOR INDICATED RECURRENCE YEARS, AND ANNUAL EXCEEDANCE PROBABILITY, IN PERCENT PERIOD INTERVAL, IN YEARS, AND ANNUAL (CON-EXCEEDANCE PROBABILITY, IN PERCENT 1.25 10 25 50 100 SECU-20% 80% 50% 10% 4% 2% 1% TIVE 2 10 25 50 100 10% 49 2% DAYS) 50% 20% 1% 4830 7430 11500 14600 18700 22100 25600 11900 14800 6000 WEIGHTED SKEW = 7380 13300 15100 .074 4720 9210 11600 7 3460 5110 6230 7640 8700 9770 15 2550 3550 4200 5000 5580 6150 30 2070 2760 3200 3720 4090 4450 2480 3370 2850 60 1670 2170 3120 90 1500 1920 2160 2450 2640 2830 DURATION TABLE OF DAILY MEAN FLOW FOR PERIOD OF RECORD 1910-82 DISCHARGE, IN CFS, WHICH WAS EQUALED OR EXCEEDED FOR INDICATED PERCENT OF TIME 50% 60% 386 70% 262 75% 223 80% 40% 730 #### 14148000 MIDDLE FORK WILLAMETTE RIVER BELOW NORTH FORK, NEAR OAKRIDGE, OR LOCATION.--Lat 43°48'05", long 122°33'35", in SW\ sec.27, T.20 S., R.2 E., Lane County, Hydrologic Unit 17090001, on left bank 0.5 mi downstream from Whitehead Creek, 4.2 mi downstream from North Fork of Middle Fork Willamette River, 7.0 mi northwest of Oakridge, and at mile 220.2. DRAINAGE AREA .-- 924 mi2. PERIOD OF RECORD.--March 1911 to September 1912, July 1923 to September 1982. Monthly discharge only for some periods, published in WSP 1318. Published as "near Hazeldell" 1911-12 and as "at Eula" 1923-50. GAGE.--Water-stage recorder. Datum of gage is 934.76 ft National Geodetlc Vertical Datum of 1929. Mar. 22, 1911, to Sept. 30, 1912, nonrecording gage at site 4.0 mi upstream, just below North Fork at different datum. July 1, 1923, to Aug, 11, 1935, nonrecording gage and Aug. 12, 1935, to Sept. 30, 1950, water-stage recorder at site 4.0 mi downstream at different datum. REMARKS.--Flow regulated since 1961 by Hills Creek Lake; slight regulation at times by logponds above station. No diversion above station. AVERAGE DISCHARGE.--60 years, 2,767 ft^3/s , 2,005,000 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 81,800 ft³/s Dec. 28, 1945, gage height, 18.8 ft, from floodmark, site and datum then in use, from rating curve extended above 39,000 ft³/s; minimum, 322 ft³/s Aug. 30, 1961, caused by closing outlet gates at Hills Creek Dam. EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since 1861 and prior to beginning of record, 17.0 ft in February 1890 at site used 1923-50, from information by local resident, discharge, about 55,000 ft³/s. #### STATISTICAL SUMMARIES (BEFORE THE CONSTRUCTION OF HILLS CREEK DAM) MONTHLY AND ANNUAL MEAN DISCHARGES 1912-60 MAGNITUDE AND PROBABILITY OF ANNUAL LOW FLOW BASED ON PERIOD OF RECORD 1925-60 | | MINIMUM | MAXIMUM | MEAN | STAN-
DARD
DEVIA-
TION | COEFFI-
CIENT OF
VARI- | PERCENT
OF
ANNUAL | PERIOD
(CON-
SECU- | | INTERVAL | , IN YEA | R INDICATRS, AND A | ANNUAL N | ON- | |-----------|---------|---------|-------|---------------------------------|------------------------------|-------------------------|--------------------------|------------------|-----------------|-----------|--------------------|----------|-----------| | MONTH | (CFS) | (CFS) | (CFS) | (CFS) | ATION | RUNOFF | TIVE
DAYS) | 2
50 % | 5
20% | 10
10% | 20
5% | 50
2% | 100
1% | | OCTOBER | 541 | 4185 | 1095 | 670 | .61 | 3.3 | 1 | 619 | 531 | 488 | 455 | 420 | | | NOVEMBER | 500 | 6703 | 2679 | 1806 | .67 | 8.2 | 3 | 622 | 533 | 490 | 456 | 421 | | | DECEMBER | 959 | 11640 | 3794 | 2524 | .67 | 11.6 | 7 | 632 | 544 | 501 | 468 | 433 | | | JANUARY | 771 | 8988 | 3999 | 2108 | .53 | 12.2 | 14 | 645 | 553 | 509 | 475 | 438 | | | FEBRUARY | 1352 | 7859 | 4264 | 1799 | .42 | 13.0 | 30 | 666 | 570 | 525 | 490 | 452 | | | MARCH | 1293 | 8423 | 3774 | 1475 | .39 | 11.5 | 60 | 709 | 600 | 549 | 510 | 468 | | | APRIL | 1454 | 6785 | 3984 | 1202 | .30 | 12.1 | 90 | 757 | 629 | 569 | 524 | 476 | | | MAY | 1288 | 6408 | 3712 | 1346 | .36 | 11.3 | 120 | 824 | 671 | 604 | 554 | 503 | | | JUNE | 837 | 7098 | 2741 | 1375 | •50 | 8.4 | 183 | 1190 | 891 | 770 | 686 | 604 | | | JULY | 591 | 2139 | 1232 | 417 | .34 | 3.8 | | | | | | | | | AUGUST | 491 | 1095 | 798 | 163 | .20 | 2.4 | | | | | | | | | SEPTEMBER | 494 | 1125 | 752 | 149 | .20 | 2.3 | | | | | | | | | ANNUAL | 1520 | 4337 | 2724 | 717 | . 26 | 100 | | | | | | | | MAGNITUDE AND PROBABILITY OF INSTANTANEOUS PEAK FLOW BASED ON PERIOD OF RECORD 1912-60 MAGNITUDE AND PROBABILITY OF ANNUAL HIGH FLOW BASED ON PERIOD OF RECORD 1912-60 | YEARS, | | | DANCE P | | ICE INTER | | PERIOD
(CON- | DISC | INTER | VAL, ÍN ' | YEARS, AI | ATED RECUI
ND ANNUAL
IN PERCEI | | |-----------------|--------------|----------------------|-----------|----------|-----------------|-----------|------------------------|----------|----------|-----------|------------------|--------------------------------------|-----| | 1.25
80% | 2
50%
 | 5
20 %
 | 10
10% | 25
4% | 50
2% | 100
1% | SECU-
TIVE
DAYS) | 2
50% | 5
20% | 10
10% | 25
4 % | 50
2% | 100 | | 16200 | 26700 | 44100 | 57400 | 76000 | 91000 | | | | | | | | | | | | | | | | | 1 | 22000 | 34500 | 43500 | 55500 | 64800 | | | NE 1GHTE | D SKEW = | 0.000 | | | | | 3 | 16500 | 24300 | 29800 | 37000 | 42500 | | | | | | | | | | 7 | 11800 | 16400 | 19300 | 23000 | 25600 | | | | | | | | | | 15 | 8610 | 11500 | 13300 | 15400 | 16900 | | | | | | | | | | 30 | 6830 | 8830 | 10000 | 11400 | 12400 | _ | | | | | | | | | 60 | 5580 | 7090 | 8020 | 9110 | 9890 | - | | | | | | | | | 90 | 5050 | 6300 | 7030 | 7850 | 8410 | - | DURATION TABLE OF DAILY MEAN FLOW FOR PERIOD OF RECORD 1912-60 | | | DIS | CHARGE, | IN CFS, | WHICH WAS | EQUALED | OR EXC | EEDED FOR | INDICATED | PERCENT | OF TIME | | | | |------|------|------|---------|---------|-----------|---------|--------|-----------|-----------|-------------|---------|-----|-----|-----| | 5% | 10% | 15% | 20% | 25% | 30% | 40% | 50% | 60% | 70% | 75 % | 80% | 85% | 90% | 95% | | 7180 | 5600 | 4740 | 4100 | 3600 | 3190 | 2500 | 1910 | 1410 | 1040 | 915 | 826 | 751 | 679 | 592 | #### WILLAMETTE RIVER BASIN #### 14148000 MIDDLE FORK WILLAMETTE RIVER BELOW NORTH FORK, NEAR OAKRIDGE, OR--Continued STATISTICAL SUMMARIES (AFTER THE COMPLETION OF HILLS CREEK DAM) MONTHLY AND ANNUAL MEAN DISCHARGES 1962-82 MAGNITUDE AND PROBABILITY OF ANNUAL LOW FLOW BASED ON PERIOD OF RECORD 1963-82 | MONTH | MINIMUM | MAXIMUM | MEAN | STAN-
DARD
DEVIA-
TION | COEFFI-
CIENT OF
VARI-
ATION | PERCENT
OF
ANNUAL | PERIOD
(CON-
SECU-
TIVE
DAYS) | DISCHARGE, IN CFS, FOR INDICATED RECURRENCE
INTERVAL, IN YEARS, AND ANNUAL NON-
EXCEEDANCE PROBABILITY, IN PERCENT | | | | | | | |-------------------------|------------------------------|-----------------------|---|---------------------------------|---------------------------------------|-------------------------|--|--|--|--|--|---|-----------|--| | | (CFS) | (CFS) | (CFS) | (CFS) | | RUNOFF | | 2
50% | 5
20% | 10
10% | 20
5% | 50
2% | 100
1% | | | OCTOBER | 625 | 2929 | 1784 | 513 | .29 | 5.2 | 1 | 808 | 648 |
568 | 504 | | | | | NOVEMBER | 1466 | 6263 | 3260 | 1374 | .42 | 9.6 | 3 | 840 | 683 | 604 | 542 | | | | | DECEMBER | 1073 | 13540 | 5205 | 3002 | .58 | 15.3 | 7 | 884 | 721 | 636 | 568 | | | | | JANUARY | 874 | 10120 | 4871 | 2343 | .48 | 14.3 | 14 | 924 | 753 | 663 | 590 | | | | | EBRUARY | 710 | 8093 | 3264 | 1738 | .53 | 9.6 | 30 | 1000 | 812 | 722 | 652 | | | | | 1ARCH | 1292 | 7802 | 2812 | 1568 | .56 | 8.2 | 60 | 1170 | 962 | 865 | 791 | | | | | \PRIL | 1464 | 4575 | 2993 | 958 | .32 | 8.8 | 90 | 1300 | 1090 | 994 | 916 | | | | | 4AY | 1378 | 5036 | 3211 | 1070 | .33 | 9.4 | 120 | 1400 | 1210 | 1110 | 1030 | | | | | JUNE | 1037 | 4969 | 2400 | 1110 | .46 | 7.0 | 183 | 1700 | 1440 | 1330 | 1240 | | | | | JULY | 766 | 1901 | 1329 | 363 | . 27 | 3.9 | | | | | | | | | | AUGUST | 700 | 1753 | 1354 | 325 | . 24 | 4.0 | | | | | | | | | | SEPTEMBER | 1262 | 2639 | 1642 | 345 | .21 | 4.8 | | | | | | | | | | ANNUAL | 1416 | 4301 | 2844 | 779 | .27 | 100 | | | • | | | | | | | OISCHARGE, | BASE
IN CFS, | D ON PERIO | OD OF RE | CORD | OUS PEAK I | , IN | | BASE | D ON PER | CFS, FO | OF ANNUA RECORD 1 | 962-82

TED RECU | | | |) I SCHARGE , | BASE
IN CFS, | D ON PERIO | OD OF RE | CORD
CURRENCE | INTERVAL
IN PERCEI | , IN
NT | PERIOD
(CON-
SECU- | BASE | ARGE, IN | CES, FO | RECORD 1 | 962-82

TED RECUI
D ANNUAL | RRENCE | | |) SCHARGE,
YEARS, / | BASE
IN CFS, | FOR INDIC | OD OF RE | CORD | INTERVAL
IN PERCEI | , IN | PERIOD
(CON- | BASE | ARGE, IN | CES, FO | RECORD 1

OR INDICA
YEARS, AN | 962-82

TED RECUI
D ANNUAL | RRENCE | | |) SCHARGE,
YEARS, / | BASE
IN CFS,
AND ANNUA | FOR INDIC
EXCEEDAL | OD OF RECORD | CORD
CURRENCE
ABILITY, | INTERVAL
IN PERCEI | , IN
NT
 | PERIOD
(CON-
SECU-
TIVE
DAYS) | DISCH | IARGE, IN
INTERV
EXCEEDAN
5
20% | I CFS, FC
VAL, IN N
ICE PROBA | RECORD 1 OR INDICA YEARS, AN ABILITY, 25 4% | 962-82 TED RECUID ANNUAL IN PERCENTED | RRENCE | | | YEARS, /
1.25
80% | BASE IN CFS, AND ANNUA 2 50% | FOR INDIC
EXCEEDAL | OD OF RECORD | CORD
CURRENCE
ABILITY, | INTERVAL
IN PERCEI | , IN
NT
 | PERIOD
(CON-
SECU-
TIVE
DAYS) | DISCH | HARGE, IN
INTERV
EXCEEDAN
20% | I CFS, FC IAL, IN N ICE PROBA | RECORD 1 OR INDICA YEARS, AN ABILITY, 25 4% 32400 | 962-82 TED RECUID ANNUAL IN PERCENTED SO 2% | RRENCE | | | DISCHARGE,
YEARS, / | BASE IN CFS, AND ANNUA 2 50% | FOR INDIC
EXCEEDAL | OD OF RECORD | CORD
CURRENCE
ABILITY, | INTERVAL
IN PERCEI | , IN
NT
 | PERIOD
(CON-
SECU-
TIVE
DAYS) | DISCH | IARGE, IN
INTERV
EXCEEDAN
5
20% | 1 CFS, FC (AL, IN) (CE PROBA- 10 10% | RECORD 1 OR INDICA YEARS, AN ABILITY, 25 4% 32400 28700 | 962-82 TED RECUI D ANNUAL IN PERCEI 50 2% | RRENCE | | | YEARS, /
1.25
80% | BASE IN CFS, AND ANNUA 2 50% | FOR INDIC
EXCEEDAL | OD OF RECORD | CORD
CURRENCE
ABILITY, | INTERVAL
IN PERCEI | , IN
NT
 | PERIOD
(CON-
SECU-
TIVE
DAYS) | DISCH | 1ARGE, IN
INTERV
EXCEEDAN
5
20%
22600
18500
14300 | 10 OF F | RECORD 1 OR INDICA YEARS, AN ABILITY, 25 4% 32400 28700 21800 | 962-82 TED RECUID ANNUAL IN PERCENTED SO 2% | RRENCE | | | 1.25
80% | BASE IN CFS, AND ANNUA 2 50% | FOR INDIC
EXCEEDAL | OD OF RECORD | CORD
CURRENCE
ABILITY, | INTERVAL
IN PERCEI | , IN
NT
 | PERIOD
(CON-
SECU-
TIVE
DAYS) | DISCH
2
50%
14900
12000
9540
7910 | HARGE, IN INTERVEXCEEDAN 5 20% 22600 18500 14300 11200 | 10 OF F | RECORD 1 OR INDICA YEARS, AN ABILITY, 25 4% 32400 28700 21800 15700 | 962-82 TED RECUE D ANNUAL IN PERCEE 50 2% | RRENCE | | | YEARS, /
1.25
80% | BASE IN CFS, AND ANNUA 2 50% | FOR INDIC
EXCEEDAL | OD OF RECORD | CORD
CURRENCE
ABILITY, | INTERVAL
IN PERCEI | , IN
NT
 | PERIOD
(CON-
SECU-
TIVE
DAYS) | DISCH
2
50%
14900
12000
9540
7910
6490 | HARGE, IN INTERVEXCEEDAN 5 20% 22600 18500 14300 11200 9070 | 10 10% | DR INDICA YEARS, AN ABILITY, 25 4% 32400 28700 21800 15700 12500 | 962-82 TED RECUE D ANNUAL IN PERCEE 50 2% | RRENCE | | | 1.25
80% | BASE IN CFS, AND ANNUA 2 50% | FOR INDIC
EXCEEDAL | OD OF RECORD | CORD
CURRENCE
ABILITY, | INTERVAL
IN PERCEI | , IN
NT
 | PERIOD
(CON-
SECU-
TIVE
DAYS)
 | DISCH
2
50%
14900
12000
9540
7910
6490
5250 | ARGE, IN PER INTERVENCEDAN 5 20% 22600 18500 14300 11200 9070 7370 | 10 10%
10%
10%
10%
10%
27200
23000
17600
13200
10700
8760 | DR INDICA YEARS, AN ABILITY, 25 4% 32400 28700 21800 15700 12500 10500 | 962-82 TED RECUE D ANNUAL IN PERCEE 50 2% | RRENCE | | | YEARS, /
1.25
80% | BASE IN CFS, AND ANNUA 2 50% | FOR INDIC
EXCEEDAL | OD OF RECORD | CORD
CURRENCE
ABILITY, | INTERVAL
IN PERCEI | , IN
NT
 | PERIOD
(CON-
SECU-
TIVE
DAYS) | DISCH
2
50%
14900
12000
9540
7910
6490 | HARGE, IN INTERVEXCEEDAN 5 20% 22600 18500 14300 11200 9070 | 10 10% | DR INDICA YEARS, AN ABILITY, 25 4% 32400 28700 21800 15700 12500 | 962-82 TED RECUE D ANNUAL IN PERCEE 50 2% | RRENCI | | | PISCHARGE, YEARS, / | BASE IN CFS, AND ANNUA 2 50% | FOR INDIC
EXCEEDAL | CATED RENCE PROB | CURRENCE ABBILITY, 25 4% | INTERVAL
IN PERCEI
50
2% | , IN NT 100 18 | PERIOD
(CON-
SECU-
TIVE
DAYS)
 | DISCH
2
50%
14900
12000
9540
7910
6490
5250
4730 | ARGE, IN INTERVEXCEEDAN 20% 22600 18500 14300 141200 9070 7370 6550 | 10 CFS, F(AL, IN NCE PROBA
10 10%
27200
27300
17600
17600
17600
17600
7680 | DR INDICA YEARS, AN ABILITY, 25 4% 32400 28700 21800 15700 12500 10500 | 962-82 TED RECUE D ANNUAL IN PERCEE 50 2% | RRENCE | | | 1.25
80% | BASE IN CFS, AND ANNUA 2 50% | FOR INDIC | CATED RENCE PROB | CURRENCE ABILITY, 25 4% | INTERVAL
IN PERCEI
50
2% | , IN NT 100 1% | PERIOD (CON-
SECU-
TIVE DAYS) 1 3 7 15 30 60 90 | DISCH 2 50% 14900 12000 9540 7910 6490 5250 4730 OF RECC | ARRGE, IN INTERVEXCEEDAN 22600 11200 9070 7370 6550 | 10 CFS, F(AL, IN) ICE PROBA | DR INDICA
YEARS, AN
ABILITY,
25
4%
32400
28700
21800
15700
12500
10500
9030 | 962-82 TED RECUE D ANNUAL IN PERCEE 50 2% | RRENCE | | | PISCHARGE, YEARS, / | BASE IN CFS, AND ANNUA 2 50% | FOR INDIC | CATED RENCE PROB | CURRENCE ABILITY, 25 4% | INTERVAL IN PERCEI 50 2% OF DAILY N | , IN NT 100 1% | PERIOD (CON- SECU- TIVE DAYS) 1 3 7 15 30 60 90 FOR PERIOD | DISCH 2 50% 14900 12000 9540 7910 6490 5250 4730 OF RECC | ARRGE, IN INTERVEXCEEDAN 22600 11200 9070 7370 6550 | 10 CFS, F(AL, IN) ICE PROBA | DR INDICA
YEARS, AN
ABILITY,
25
4%
32400
28700
21800
15700
12500
10500
9030 | 962-82 TED RECUE D ANNUAL IN PERCEE 50 2% | RRENCE | | #### 14150000 MIDDLE FORK WILLAMETTE RIVER NEAR DEXTER, OR LOCATION.--Lat 43°56'45", long 122°50'10", in SE‡NW‡ sec.5, T.19 S., R.1 W., Lane County, Hydrologic Unit 17090001, on right bank 0.6 mi upstream from Lost Creek, 2.0 mi northwest of Dexter, 2.6 mi downstream from Dexter Dam, and at mile 201.2. DRAINAGE AREA .-- 1,001 mi2. PERIOD OF RECORD.--October 1946 to September 1954 (published as "at Lowell"), June 1955 to September 1982. Monthly discharge only for October 1954 to June 1955, published in WSP 1738. GAGE.--Water-stage recorder. Datum of gage is 592.30 ft National Geodetic Vertical Datum of 1929 (levels by Corps of Engineers). Prior to Aug. 23, 1950, nonrecording gage and Aug. 23, 1950, to Sept. 30, 1954, at site 4.0 mi upstream at different datum, and June 9, 1955, to Feb. 18, 1977, at datum 3.00 ft higher. REMARKS.--Flow regulated since 1953 by Lookout Point Lake, since 1955 by Dexter Lake (re-regulating), and since 1961 by Hills Creek lake. AVERAGE DISCHARGE.--36 years, 3,158 ft3/s, 2,288,000 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 62,600 ft³/s Jan. 18, 1953, gage height, 12.46 ft, site and datum then in use, from rating curve extended above 33,000 ft³/s; minimum daily, 100 ft³/s Nov. 25, 1960. EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage, 13.9 ft Dec. 28, 1945, former site and datum. #### STATISTICAL SUMMARIES (AFTER THE COMPLETION OF HILLS CREEK DAM) MONTHLY AND ANNUAL MEAN DISCHARGES 1962-82 MAGNITUDE AND PROBABILITY OF ANNUAL LOW FLOW BASED ON PERIOD OF RECORD 1963-82 | | MINIMA | MAVIMINA | MEAN | STAN-
DARD
DEVIA- | COEFFI-
CIENT OF | PERCENT
OF | PERIOD
(CON- | | INTERVAL | , IN YEA | R INDICAT
RS, AND A
BILITY, I | NNUAL N | -AC | |-----------|------------------|------------------|---------------|-------------------------|---------------------|------------------|------------------------|----------|------------------|-----------|-------------------------------------|----------|-----------| | НТИОМ | MINIMUM
(CFS) | MAXIMUM
(CFS) | MEAN
(CFS) | (CFS) | VARI-
ATION | ANNUAL
RUNOFF | SECU-
TIVE
DAYS) | 2
50% | 5
20 % | 10
10% | 20
5% | 50
2% | 100
1% | | OCTOBER | 1847 | 5266 | 3237 | 688 | .21 | 9.0 | 1 | 801 | 440 | 292 | 198 | | | | NOVEMBER | 2076 | 7748 | 4597 | 1487 | .32 | 12.7 | 3 | 985 | 697 | 548 | 434 | | | | DECEMBER | 1231 | 11300 | 5785 | 2848 | .49 | 16.0 | 7 | 1100 | 777 | 599 | 463 | | | | JANUARY | 1050 | 13510 | 5219 | 2787 | •53 | 14.4 | 14 | 1120 | 794 | 612 | 472 | | | | FEBRUARY | 668 | 7634 | 2713 | 2137 | .79 | 7.5 | 30 | 1170 | 841 | 659 | 518 | | | | MARCH | 525 | 7363 | 2082 | 1562 | .75 | 5.8 | 60 | 1270 | 898 | 720 | 587 | | | | APRIL | 437 | 4070 | 1891 | 1044 | .55 | 5.2 | 90 | 1440 | 1020 | 835 | 698 | | | | MAY | 526 | 5088 | 2366 | 1283 | . 54 | 6.5 | 120 | 1570 | 1130 | 947 | 815 | | | | JUNE | 816 | 4564 | 2197 | 1137 | .52 | 6.1 | 183 | 1910 | 1480 | 1290 | 1160 | | | | JULY | 1088 | 1944 | 1556 | 271 | . 17 | 4.3 | | | | | | | | | AUGUST | 1083 | 2380 | 1827 | 335 | .18 | 5.1 | | | | | | | | | SEPTEMBER |
1405 | 3932 | 2671 | 762 | .29 | 7.4 | | | | | | | | | ANNUAL | 1392 | 4586 | 3016 | 868 | .29 | 100 | | | | | | | | ## MAGNITUDE AND PROBABILITY OF INSTANTANEOUS PEAK FLOW BASED ON PERIOD OF RECORD MAGNITUDE AND PROBABILITY OF ANNUAL HIGH FLOW BASED ON PERIOD OF RECORD 1962-82 | DISCHARGE,
YEARS, A | | | | | | | PERIOD
(CON- | DISC | INTER | VAL, ÎN | OR INDICAT
YEARS, AND
ABILITY, I | ANNUAL | | |------------------------|------------------|----------|-----------|------------------|----------|-----------|------------------------|----------|----------|---------|--|----------|-----| | 1.25
80% | 2
50 % | 5
20% | 10
10% | 25
4 % | 50
2% | 100
1% | SECU-
TIVE
DAYS) | 2
50% | 5
20% | 10 | 25
4% | 50
2% | 100 | 1 | 11600 | 15600 | 17900 | 20600 | | | | WE I GHTED | SKEW = | | | | | | 3 | 11500 | 15200 | 17200 | 19300 | | | | | | | | | | | 7 | 10900 | 14500 | 16300 | 18200 | | | | | | | | | | | 15 | 9430 | 12500 | 14100 | 15900 | | | | | | | | | | | 30 | 7370 | 10100 | 11800 | 14100 | | | | | | | | | | | 60 | 6000 | 8180 | 9670 | 11600 | | | | | | | | | | | 90 | 5390 | 7250 | 8430 | 9870 | | | DURATION TABLE OF DAILY MEAN FLOW FOR PERIOD OF RECORD 1962-82 | | | | DISC | HARGE, | IN CFS, | WHICH WAS | EQUALED | OR EXC | CEEDED FOR | INDICATED | PERCENT | OF TIM | E | | | |-----|----|------|------|--------|---------|-----------|---------|--------|------------|-----------|---------|--------|------|------|------| | | 5% | 10% | 15% | 20% | 25% | 30% | 40% | 50% | 60% | 70% | 75% | 80% | 85% | 90% | 95% | | 906 | 50 | 6200 | 4610 | 3980 | 3700 | 3410 | 2680 | 2080 | 1660 | 1410 1 | 300 1 | 260 | 1220 | 1150 | 1010 | ## 14150300 FALL CREEK NEAR LOWELL, OR LOCATION.--Lat 43°58'15", long 122°38'15", in SWt sec.25, T.18 S., R.1 E., Lane County, Hydrologic Unit 17090001, on right bank 0.1 mi downstream from North Fork, 8.0 mi northeast of Lowell, and at mile 14.4. DRAINAGE AREA .-- 118 mi2. PERIOD OF RECORD. -- August 1963 to September 1982. GAGE.--Water-stage recorder. Datum of gage is 844.42 ft National Geodetic Vertical Datum of 1929. REMARKS.--No regulation or diversion above station. AVERAGE DISCHARGE.--19 years, 411 ft3/s, 47.30 in/yr, 297,800 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 12,100 ft³/s Jan. 21, 1972, which may have been caused by release from breakup of temporary logjam 12 mi upstream, gage height, 11.84 ft; minimum, 16 ft³/s Oct. 3, 4, 1965. STATISTICAL SUMMARIES | М | ONTHLY A | ND ANNUAL | MEAN DIS | SCHARGES | 1964-82 | | MA | - | | | OF ANNUAI
RECORD 19 | |)W | |--|--|--|--|--|---|----------------------|---|---|---|--|---|--|------------| | | MINIMIM | MAXIMUM | MEAN | STAN-
DARD
DEVIA-
TION | COEFFI-
CIENT OF | | PERIOD
(CON-
SECU- | | INTERVAL | , IN YEA | OR INDICA
ARS, AND A | ANNUAL NO | N- | | MONTH | (CFS) | (CFS) | (CFS) | (CFS) | ATION | RUNOFF | TIVE
DAYS) | 2
50% | 5
20% | 10
10% | 20
5% | 50
2 % | 100
1% | | OCTOBER | 31 | 296 | 111 | 75 | .68 | 2.2 | 1 | 24 | 20 | 18 | 17 | | | | NOVEMBER | 83 | 1389 | 519 | 374 | .72 | 10.5 | 3 | 24 | 20 | 19 | 18 | | | | DECEMBER | 61 | 2282 | 895 | 540 | .60 | 18.1 | 7 | 25 | 21 | 20 | 19 | | | | JANUARY | 102 | 1849 | 1002 | 509 | .51 | 20.3 | 14 | 26 | 22 | 21 | 20 | | | | FEBRUARY | 92 | 1179 | 638 | 288 | .45 | 12.9 | 30 | 29 | 24 | 22 | 21 | | | | MARCH | 194 | 1326 | 622 | 313 | .50 | 12.6 | 60 | 37 | 29 | 27 | 25 - | | | | APRIL | 233 | 862 | 503 | 175 | .35 | 10.2 | 90 | 44 | 34 | 30 | 27 | | | | MAY | 99 | 589 | 306 | 118 | .39 | 6.2 | 120 | 53 | 41 | 3 6 | 33 | | | | JUNE | 54 | 375 | 170 | 97 | .57 | 3.4 | 183 | 104 | 78 | 6 6 | 57 | | | | JULY | 4 6 | 144 | 67 | 24 | .36 | 1.4 | | | | | | | | | AUGUST | 25 | 100 | 4 6 | 21 | .4 6 | .9 | | | | | | | | | | 24 | 176 | 59 | 39 | •66 | 1.2 | | | | | | | | | SEPTEMBER | | | | | | | | | | | | | | | ANNUAL | 183 | 644 | | | .30
EOUS PEAK | 100
FLOW |
MA(| | | | OF ANNUAL | | | | DISCHARGE, | 183 FUDE AND BASE | PROBABIL
D ON PER | ITY OF IN | NSTANTANE
ECORD 196 | EOUS PEAK
64-82 | FLOW | PERIOD | BASE
DISCH | D ON PER ARGE, IN INTERV | CFS, FO | | 964-82
TED RECUR
O ANNUAL | RENCE | | MAGNIT
DISCHARGE,
YEARS, # | 183 TUDE AND BASE IN CFS, AND ANNUA | PROBABIL
D ON PER
FOR IND
L EXCEED/ | ITY OF IN
IOD OF RE
ICATED RE | NSTANTANE
ECORD 196
ECURRENCE
BABILITY, | EOUS PEAK
64-82
E INTERVAL
IN PERCE | FLOW | PERIOD | BASE
DISCH | D ON PER ARGE, IN INTERV | CFS, FO | RECORD 19
R INDICAT | 964-82
TED RECUR
O ANNUAL | RENCE | | MAGNIT | 183 FUDE AND BASE | PROBABIL
DON PER
FOR INDI | ITY OF IN
IOD OF RE
ICATED RE | NSTANTANE
ECORD 196
ECURRENCE
BABILITY, | EOUS PEAK
64-82
INTERVAL | FLOW
, IN | PERIOD
(CON-
SECU-
TIVE | BASE
DISCH | D ON PER ARGE, IN INTERV EXCEEDAN | CFS, FO
AL, IN Y
CE PROBA | ECORD 19 PR INDICATE EARS, AND BILITY, I | 964-82
FED RECUR
O ANNUAL
IN PERCEN | RENCE
T | | MAGNIT
DISCHARGE,
YEARS, # | 183 TUDE AND BASE IN CFS, AND ANNUA | PROBABIL
D ON PER
FOR IND
L EXCEED/ | ITY OF IN
IOD OF RE
ICATED RE |
NSTANTANE
ECORD 196
ECURRENCE
BABILITY, | EOUS PEAK
64-82
E INTERVAL
IN PERCE | FLOW
, IN
NT | PERIOD
(CON-
SECU- | BASE
DISCH | D ON PER ARGE, IN INTERV EXCEEDAN | CFS, FO
AL, IN Y | ECORD 19 PR INDICATE EARS, AND BILITY, I | FED RECUR
ANNUAL | RENCE | | MAGNIT
DISCHARGE,
YEARS, # | 183 TUDE AND BASE IN CFS, AND ANNUA | PROBABIL
ED ON PER
FOR IND
L EXCEED/ | ITY OF IN
IOD OF RE
ICATED RE
ANCE PROE | NSTANTANE
ECORD 196
ECURRENCE
BABILITY, | EOUS PEAK
64-82
E INTERVAL
IN PERCE | FLOW
, IN
NT | PERIOD
(CON-
SECU-
TIVE
DAYS) | DISCH | D ON PER ARGE, IN INTERV EXCEEDAN 5 20% | CFS, FO
AL, IN Y
CE PROBA | RECORD 19 PR INDICATE REARS, AND BILITY, 1 25 4% | 964-82
FED RECUR
O ANNUAL
IN PERCEN | RENCE
T | | MAGNITON MAG | 183 FUDE AND BASE , IN CFS, ND ANNUA 2 50% | PROBABIL
D ON PER
FOR IND
L EXCEED/
5
20% | ITY OF IN
IOD OF RE
ICATED RE
ANCE PROE | NSTANTANE
ECORD 196
ECURRENCE
BABILITY,
25
4% | EOUS PEAK
64-82
E INTERVAL
IN PERCE | FLOW
, IN
NT | PERIOD
(CON-
SECU-
TIVE
DAYS) | DISCH | D ON PER ARGE, IN INTERV EXCEEDAN 20% 6930 | CFS, FO
AL, IN Y
CE PROBA
10% | RECORD 19 PR INDICATE FARS, AND BILITY, 1 25 4% 9890 | 964-82
FED RECUR
O ANNUAL
IN PERCEN | RENCE
T | | MAGNITO | 183 FUDE AND BASE , IN CFS, AND ANNUA | PROBABIL
D ON PER
FOR IND
L EXCEED/
5
20% | ITY OF IN
IOD OF RE
ICATED RE
ANCE PROE | NSTANTANE
ECORD 196
ECURRENCE
BABILITY,
25
4% | EOUS PEAK
64-82
E INTERVAL
IN PERCE | FLOW
, IN
NT | PERIOD (CON- SECU- TIVE DAYS) | DISCH | D ON PER ARGE, IN INTERV EXCEEDAN 5 20% 6930 5010 | CFS, FO
AL, IN Y
CE PROBA
10
10%
8290
6040 | RECORD 19 RE INDICAT FEARS, AND BILITY, 1 25 4% 9890 7290 | 964-82 FED RECUF O ANNUAL IN PERCEN 50 2% | RENCE
T | | MAGNITON MAG | 183 FUDE AND BASE , IN CFS, ND ANNUA 2 50% | PROBABIL
D ON PER
FOR IND
L EXCEED/
5
20% | ITY OF IN
IOD OF RE
ICATED RE
ANCE PROE | NSTANTANE
ECORD 196
ECURRENCE
BABILITY,
25
4% | EOUS PEAK
64-82
E INTERVAL
IN PERCE | FLOW
, IN
NT | PERIOD (CON- SECU- TIVE DAYS) 1 3 7 | DISCH | D ON PER ARGE, IN INTERV EXCEEDAN 5 20% 6930 5010 3510 | CFS, FO
AL, IN Y
CE PROBA
10
10%
8290
6040
4190 | RECORD 19 RE INDICATE ARS, AND BILITY, 1 | 964-82 FED RECUF D ANNUAL IN PERCEN 50 2% | RENCE
T | | MAGNITO | 183 FUDE AND BASE , IN CFS, ND ANNUA 2 50% | PROBABIL
D ON PER
FOR IND
L EXCEED/
5
20% | ITY OF IN
IOD OF RE
ICATED RE
ANCE PROE | NSTANTANE
ECORD 196
ECURRENCE
BABILITY,
25
4% | EOUS PEAK
64-82
E INTERVAL
IN PERCE | FLOW
, IN
NT | PERIOD
(CON-
SECU-
TIVE
DAYS) | DISCH 2 50% 4730 3430 2440 1760 | D ON PER ARGE, IN INTERV EXCEEDAN 5 20% 6930 5010 3510 2440 | CFS, FO
AL, IN Y
CE PROBA
10
10%
8290
6040
4190
2850 | RECORD 19 RE INDICAT EARS, AND BILITY, I 25 4% 9890 7290 5030 3350 | 964-82 FED RECUF O ANNUAL IN PERCEN 50 2% | T 100 1% | | MAGNITO | 183 FUDE AND BASE , IN CFS, ND ANNUA 2 50% | PROBABIL
D ON PER
FOR IND
L EXCEED/
5
20% | ITY OF IN
IOD OF RE
ICATED RE
ANCE PROE | NSTANTANE
ECORD 196
ECURRENCE
BABILITY,
25
4% | EOUS PEAK
64-82
E INTERVAL
IN PERCE | FLOW
, IN
NT | PERIOD (CON-
SECU-
TIVE DAYS) | DISCH 2 50% 4730 3430 2440 1760 1350 | D ON PER ARGE, IN INTERV EXCEEDAN 5 20% 6930 5010 3510 2440 1800 | CFS, FO
AL, IN Y
CE PROBA
10
10%
8290
6040
4190
2850
2050 | PRECORD 19 | FED RECUF
D ANNUAL
IN PERCEN
50
2% | T 100 1% | | MAGNITO | 183 FUDE AND BASE , IN CFS, ND ANNUA 2 50% | PROBABIL
D ON PER
FOR IND
L EXCEED/
5
20% | ITY OF IN
IOD OF RE
ICATED RE
ANCE PROE | NSTANTANE
ECORD 196
ECURRENCE
BABILITY,
25
4% | EOUS PEAK
64-82
E INTERVAL
IN PERCE | FLOW
, IN
NT | PERIOD (CON-
SECU-
TIVE DAYS) | DISCH 2 50% 4730 3430 2440 1760 1350 1030 | D ON PER ARGE, IN INTERV EXCEEDAN 5 20\$ 6930 5010 3510 2440 1800 1410 | CFS, FO AL, IN Y CE PROBA 10 10% | 9890
7290
5030
3350
2340
1930 | 964-82 FED RECUF D ANNUAL IN PERCEN 50 2% | T 100 1% | | MAGNITON MAG | 183 FUDE AND BASE , IN CFS, ND ANNUA 2 50% | PROBABIL
D ON PER
FOR IND
L EXCEED/
5
20% | ITY OF IN
IOD OF RE
ICATED RE
ANCE PROE | NSTANTANE
ECORD 196
ECURRENCE
BABILITY,
25
4% | EOUS PEAK
64-82
E INTERVAL
IN PERCE | FLOW
, IN
NT | PERIOD (CON-
SECU-
TIVE DAYS) | DISCH 2 50% 4730 3430 2440 1760 1350 | D ON PER ARGE, IN INTERV EXCEEDAN 5 20% 6930 5010 3510 2440 1800 | CFS, FO
AL, IN Y
CE PROBA
10
10%
8290
6040
4190
2850
2050 | PRECORD 19 | FED RECUF
D ANNUAL
IN PERCEN
50
2% | T 100 1% | | MAGNITON MAG | 183 FUDE AND BASE , IN CFS, ND ANNUA 2 50% | PROBABIL
D ON PER
FOR IND
L EXCEED/
5
20% | ITY OF IN
IOD OF RE
ICATED REANCE PROE | STANTANE
CORD 196
CCURRENCE
BABILITY,
25
4% | EOUS PEAK
4-82
INTERVAL
IN PERCE | FLOW , IN NT 100 1% | PERIOD (CON-
SECU-
TIVE DAYS) | DISCH 2 50% 4730 3430 2440 1760 1350 1030 927 | ARGE, IN INTERVEXCEEDAN 6930 5010 3510 32440 1800 1410 1240 | CFS, FO AL, IN Y CE PROBA 10 10% 8290 6040 4190 2850 2050 1640 1430 | 9890
7290
5030
3350
2340
1930 | FED RECUF
D ANNUAL
IN PERCEN
50
2% | T 100 1% | | MAGNITON MAG | 183 FUDE AND BASE , IN CFS, ND ANNUA 2 50% | PROBABIL
D ON PER
FOR IND
L EXCEED/
5
20% | ITY OF IN
IOD OF RE
CATED RE
ANCE PROE
10
10% | STANTANE
CORD 196
CCURRENCE
BABILITY,
25
4% | EOUS PEAK 4-82 E INTERVAL IN PERCE 50 2% OF DAILY | FLOW , IN NT 100 1% | PERIOD (CON-
SECU-
TIVE DAYS) | DISCH 2 50% 4730 3430 1760 1350 1030 927 OF RECO | D ON PER | CFS, FO AL, IN Y CE PROBA 10 10% 8290 6040 4190 2850 2050 1640 1430 | 9890 7290 5030 3350 2340 1950 | FED RECUF
D ANNUAL
IN PERCEN
50
2% | T 100 1% | #### 14150800 WINBERRY CREEK NEAR LOWELL. OR LOCATION.--Lat 43°54'50", long 122°41'15", in NEtSEt sec.16, T.19 S., R.1 E., Lane County, Hydrologic Unit 17090001, on right bank 0.9 mi upstream from Nelson Creek, 4.6 mi east of Lowell, and at mile 4.4. DRAINAGE AREA .-- 43.9 mi2. 404 282 220 183 153 PERIOD OF RECORD.--August 1963 to September 1981. GAGE.--Water-stage recorder. Datum of gage is 863.70 ft National Geodetic Vertical Datum of 1929 (levels by Corps of Engineers). REMARKS.--No regulation or diversion above station. AVERAGE DISCHARGE.--18 years, 118 ft^3/s , 36.50 in/yr, 85,490 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Msximum discharge, 4,500 ft 3 /s Dec. 22, 1964, gage height, 8.07 ft; minimum, 1.5 ft 3 /s Sept. 4, 5, 8-10, 1967. #### STATISTICAL SUMMARIES | ., | ONTHLY AN | ið A nnual | MEAN DIS | SCHARGES | 1964-81 | | MA | | AND PROBA
O ON PERI | | OF ANNUAL
ECORD 19 | LOW FLO
65-81 | WC | |---------------------|-----------------------|-------------------|-----------------------------------|-------------------------|---------------------|------------------|-------------------------------------|--|--|--|--|--------------------------------|------------| | | MINIMIN | MAYIMIN | MEAN | STAN-
DARD
DEVIA- | COEFFI-
CIENT OF | | PERIOD
(CON- | 1 | INTERVAL, | IN YEAR | R INDICATI
RS, AND AI
BILITY, II | NNUAL NO | ON- | | MONTH | MINIMUM
(CFS) | MAXIMUM
(CFS) | MEAN
(CFS) | TION
(CFS) | VARI-
ATION | ANNUAL
RUNOFF | SECU-
TIVE
DAYS) | 2
50% | 5
20% | 10
10% | 20
5% | 50
2% | 100
1% | | OCTOBER | 7.9 | 83 | 27 | 20 | .74 | 1.9 | 1 | 4.3 | 3.1 | 2.6 | 2.2 | | | | NOVEMBER | 22 | 429 | 146 | 116 | .79 | 10.2 | 3 | 4.4 | 3.2 | 2.7 | 2.3 | | | | DECEMBER | 16 | 668 | 235 | 148 | .63 | 16.5 | 7 | 4.7 | 3.4 | 2.9 | 2.5 | | | | JANUARY | 32 | 512 | 277 | 140 | .51 | 19.4 | 14 | 5.1 | 3.7 | 3.2 | 2.7 | | | | FEBRUARY | 20 | 311 | 162 | 73 | .45 | 11.4 | 30 | 5.8 | 4.1 | 3.5 | 3.1 | | | | MARCH | 58 | 399 | 182 | 92 | •51 | 12.8 | 60 | 7.7 | 5.6 | 4.8 | 4.3 | | | | APRIL | 80 | 362 | 166 | 66 | .40 | 11.7 | 90 | 9.4 | 6.8 | 5.9 | 5.3 | | | | MAY | 36 | 258 | 122 | 51 | .42 | 8.6 | 120 | 12 | 9.0 | 7.9 | 7.3 | | | | JUNE | 14 | 170 | 63 | 48 | .76 | 4.4 | 183 | 29 | 20 | 16 | 14 | | | | JULY | 8.6 | 47 | 18 | 9.3 | .52 | 1.2 | | | | | | | | | AUGUST | 3.8 | 33 | 11 | 8.5 | .75 | .8 | | | | | | | | | SEPTEMBER | 4.3 | 73 | 15 | 16 | 1.07 | 1.1 | | | | | | | | | ANNUAL | 61 | 182 | 118 | 36 | .30 | 100 | | | | | | | | | DISCHARGE | , IN CFS, | D ON PERI | OD OF RE | CORD 196 | 4-81 | | | BASE | ON PERI | OD OF R | ECORD 19 | 64-81 | | | | | AL EXCEEDA | NCE PROE | BABILITY, | IN PERCE | NT
 | PERIOD
(CON- | | INTERVA | L, IN Y | R INDICATI
EARS, AND
BILITY, II | ANNUAL | | | 1.25 | AND ANNUA
2
50% | | NCE PROE | | IN PERCE
50 | NT

100 | (CON-
SECU- | E | INTERVA
EXCEEDANC | L, IN YE | EARS, AND
BILITY, II | ANNUAL
N PERCEN | Ι Τ | | 1.25 | 2 | AL EXCEEDA
5 | NCE PROE | BABILITY,
25 | IN PERCE | NT
 | (CON- | | INTERVA | L, IN Y | EARS, AND | ANNUAL | | | 1.25 | 2 | 5
20% | NCE PROE | BABILITY,
25 | IN PERCE
50 | NT

100 | (CON-
SECU-
TIVE
DAYS) | 2
50% | INTERVA
EXCEEDANC
5
20% | L, IN YEE PROBAB | EARS, AND
BILITY, II
 | ANNUAL
N PERCEN

50 | IT
100 | | 1.25
80%
1090 | 2
50%
1800 | 5
20%
2890 | 10
10% | 25
4% | IN PERCE
50 | NT

100 | (CON-
SECU-
TIVE
DAYS) | 2
50% | INTERVA
EXCEEDANC
5
20% | L,
IN YEE PROBAGE 10 10% | 25
25
29
2990 | ANNUAL
N PERCEN
50
2% | IT
100 | | 1.25
80%
1090 | 2
50% | 5
20%
2890 | 10
10% | 25
4% | IN PERCE
50 | NT

100 | (CON-
SECU-
TIVE
DAYS) | 2
50%
1300
990 | 1NTERVA
EXCEEDANC
5
20%
1980
1490 | 10
10%
2430
1830 | 25
4%
2990
2270 | ANNUAL
N PERCEN
50
2% | 100
1% | | 1.25
80%
1090 | 2
50%
1800 | 5
20%
2890 | 10
10% | 25
4% | IN PERCE
50 | NT

100 | (CON-
SECU-
TIVE
DAYS)
 | 2
50%
1300
990
687 | INTERVA
EXCEEDANC
5
20%
1980
1490
1010 | 10
10%
2430
1830
1240 | 25
4%
2990
2270
1550 | ### ANNUAL N PERCEN 50 2% | 100
1% | | 1.25
80%
1090 | 2
50%
1800 | 5
20%
2890 | 10
10% | 25
4% | IN PERCE
50 | NT

100 | (CON-
SECU-
TIVE
DAYS)
 | 2
50%
1300
990
687
483 | 1980
1490
1010
669 | L, IN YEE PROBABLE 10 10% | 25
4%
2990
2270
1550
947 | ANNUAL
N PERCEN
50
2% | 100
1% | | 1.25
80%
1090 | 2
50%
1800 | 5
20%
2890 | 10
10% | 25
4% | IN PERCE
50 | NT

100 | (CON-
SECU-
TIVE
DAYS)
 | 2
50%
1300
990
687
483
373 | 1980
1490
1010
669
493 | 10
10%
2430
1830
1240
792
566 | 2990
2270
1550
947
651 | ### ANNUAL N PERCEN 50 2% | 100
1% | | 1.25
80%
1090 | 2
50%
1800 | 5
20%
2890 | 10
10% | 25
4% | IN PERCE
50 | NT

100 | (CON-
SECU-
TIVE
DAYS)
 | 1300
990
687
483
373
286 | 1980
1490
1010
669
493
383 | 10
10%
2430
1830
1240
792
566
445 | 2990
2270
1550
947
651
522 | ### ANNUAL N PERCEN 50 2% | 100
1% | | 1.25
80%
1090 | 2
50%
1800 | 5
20%
2890 | 10
10%
3650 | 25
48
4650 | 50
2% | NT | (CON-
SECU-
TIVE
DAYS)
 | 2
50%
1300
990
687
483
373
286
258 | 1980
1490
1010
669
493
383
383 | L, IN YEE PROBAGE 10 10 10 10 2430 1830 1240 792 566 445 385 | 2990
2270
1550
947
651 | ### ANNUAL N PERCEN 50 2% | 100
1% | | 1.25
80%
1090 | 2
50%
1800 | 2890
223 | 10
10
10
3650
DURATIO | 25
4%
4650 | IN PERCE 50 2% | NT | (CON-
SECU-
TIVE
DAYS)
 | 2
50%
1300
990
687
483
373
286
258 | 1980
1980
1010
669
493
383
383
38D 1964-8 | L, IN YEE PROBAGE 10 10 10% | 25
4%
2990
2270
1550
947
651
522
440 | ### ANNUAL N PERCEN 50 2% | 100
1% | 5.3 #### 14151000 FALL CREEK BELOW WINBERRY CREEK. NEAR FALL CREEK. OR LOCATION.--Lat 43°56'40", long 122°46'25", in NW\SE\ sec.2, T.19 S., R.1 W., Lane County, Hydrologic Unit 17090001, on right bank 10 ft upstream from highway bridge, 1.1 mi downstream from Fall Creek Dam, 2.3 mi southeast of town of Fall Creek, and at mile 6.1. Prior to Aug. 27, 1982 at site on left bank. DRAINAGE AREA .-- 186 mi2. PERIOD OF RECORD.--October to December 1911 (published as "Big Fall Creek near Fall Creek"; gage heights and discharge measurements only), September 1935 to September 1982. GAGE.--Water-stage recorder. Datum of gage is 637.81 ft National Geodetic Vertical Datum of 1929 (Corps of Engineers bench mark). Oct. 1 to Dec. 31, 1911, nonrecording gage at site 0.25 mi downstream at different datum. Sept. 9, 1935, to Aug. 3, 1950, nonrecording gage at present site and datum. REMARKS.--Flow regulated since 1966 by Fall Creek Lake. No diversion above station. AVERAGE DISCHARGE.--47 years, 582 ft³/s, 42.49 in/yr, 421,700 acre-ft/yr, adjusted for storage since January 1965. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 24,700 ft³/s Dec. 11, 1956, gage height, 18.80 ft, from rating curve extended above 9,700 ft³/s; minimum, 1.5 ft³/s Oct. 7, 8, 1965. ## STATISTICAL SUMMARIES (BEFORE THE CONSTRUCTION OF FALL CREEK DAM) MONTHLY AND ANNUAL MEAN DISCHARGES 1936-65 MAGNITUDE AND PROBABILITY OF ANNUAL LOW FLOW BASED ON PERIOD OF RECORD 1937-65 | | MINIMUM | MAXIMUM | MEAN | STAN-
DARD
DEVIA- | COEFFI-
CIENT OF | PERCENT
OF | PERIOD
(CON-
SECU- | DISC | INTERVA | L, IN YE | ARS, AND | ATED RECU
ANNUAL N
IN PERCE | ON- | |-----------------------------------|---|--|---|--|--|---------------------------|---|---|--|--|--|--|--------------| | 40NTH | (CFS) | (CFS) | MEAN
(CFS) | TION
(CFS) | VARI-
ATION | ANNUAL
RUNOFF | TIVE
DAYS) | 2
50% | 5
20 % | 10
10% | 20
5% | 50
2 % | 100 | | CTOBER | 27 | 1001 | 207 | 228 | 1.10 | 2.9 | 1 | 32 | 25 | 23 | 20 | . 18 | | | OVEMBER | 26 | 1588 | 751 | 487 | .65 | 10.6 | 3 | 32 | 26 | 23 | 21 | 19 | | | ECEMBER | 139 | 3180 | 1125 | 811 | •72 | 15.9 | 7 | 33 | 27 | 24 | 22 | 19 | | | ANUARY | 169 | 2265 | 1041 | 630 | .61 | 14.7 | 14 | 35 | 28 | 25 | 22 | 20 | | | EBRUARY | 254 | 2330 | 1158 | 432 | .37 | 16.3 | 30 | 39 | 31 | 27 | 25 | 22 | | | ARCH | 149 | 1806 | 1020 | 432 | .42 | 14.4 | 60 | 46 | 36 | 31 | 28 | 25 | | | PRIL | 214 | 1729 | 765 | 350 | .46 | 10.8 | 90 | 53 | 41 | 36 | 32 | 28 | | | AY | 151 | 1149 | 520 | 266 | .51 | 7.3 | 120 | 71 | 51 | 42 | 36 | 30 | | | UNE | 68 | 667 | 294 | 160 | .54 | 4 - 1 | 183 | 158 | 110 | 89 | 74 | 59 | | | ULY | 38 | 169 | 100 | 38 | .38 | 1.4 | | | | | | | | | UGUST | 23 | 79 | 52 | 14 | .27 | • 7 | | | | | | | | | | 71 | 121 | 65 | 27 | | | | | | | | | | | EPTEMBER | | 121 | 55 | 23 | •42 | .8 | | | | | | | | | EPTEMBER | 306 | 924 | 588 | 136 | .23 | 100 |
MA(| SNITUDE | AND PROF | | OF ANNUA | AL HIGH F | | | MAGNI
ISCHARGE
YEARS, | JOE AND BASE | 924 PROBABILI D ON PERI FOR INDI | 588 TY OF IN OD OF RE | 136 ISTANTANE CORD 193 CURRENCE IABILITY, | .23
COUS PEAK I
66-65
INTERVAL
IN PERCEI | 100
FLOW
, IN | PERIOD
(CON- | BAS | HARGE, II | N CFS, F | RECORD OR INDICATE | AL HIGH FI
1936-65
ATED RECU
ND ANNUAL
IN PERCE | RRENCE | | EPTEMBER NNUAL MAGNI ISCHARGE | 306
TUDE AND
BASE | 924 PROBABILI D ON PERI | 588 TY OF IN | 136 ISTANTANE CORD 193 CURRENCE | .23
COUS PEAK I
66-65
INTERVAL
IN PERCEI | 100

FLOW
, IN | PERIOD
(CON-
SECU-
TIVE | DISCI | HARGE, II
INTERI
EXCEEDAN | N CFS, FOUNT OF THE PROBLEM TO | OR INDICATE ARILITY, | 1936-65 ATED RECUIND ANNUAL IN PERCE | RRENCE | | MAGNI SCHARGE YEARS, 1.25 80\$ | 306 TUDE AND BASE , IN CFS, AND ANNUA | 924 PROBABILI D ON PERI FOR INDI L EXCEEDA 5 20% | 588 TY OF IN OD OF RE CATED RE NCE PROB | 136 ISTANTANE CORD 193 CURRENCE ABILITY, 25 4% | .23
OUS PEAK I
6-65
INTERVAL
IN PERCEI | 100
FLOW
, IN
NT | PERIOD
(CON-
SECU- | BASI
DISCI | HARGE, II | N CFS, FO | RECORD OR INDICATE YEARS, AN | 1936-65
ATED RECU
ND ANNUAL
IN PERCE | RRENCE | | MAGNI SCHARGE YEARS, | 306 TUDE AND BASE , IN CFS, AND ANNUA | 924 PROBABILI D ON PERI FOR INDI L EXCEEDA 5 20% | 588 TY OF IN OD OF RE CATED RE NCE PROB | 136 ISTANTANE CORD 193 CURRENCE ABILITY, 25 4% | .23
OUS PEAK I
66-65
INTERVAL
IN PERCEI | 100
FLOW
, IN
NT | PERIOD
(CON-
SECU-
TIVE
DAYS) | DISCI | HARGE, II
INTER
EXCEEDAN | N CFS, FE
VAL, IN
NCE PROB. | DR INDICA
YEARS, AN
ABILITY,
25
4% | 1936-65
ATED RECU
ND
ANNUAL
IN PERCE
50
2% | RRENCE
NT | | MAGNI SCHARGE YEARS, 1.25 80\$ | 306 TUDE AND BASE , IN CFS, AND ANNUA 2 50% | 924 PROBABILI D ON PERI FOR INDI L EXCEEDA 5 20% | 588 TY OF IN OD OF RE CATED RE NCE PROB | 136 ISTANTANE CORD 193 CURRENCE ABILITY, 25 4% | .23
OUS PEAK I
6-65
INTERVAL
IN PERCEI | 100
FLOW
, IN
NT | PERIOD (CON-
SECU-
TIVE
DAYS) | DISCI 2 50% | HARGE, II
INTER
EXCEEDAN
5
20% | N CFS, FOUNT OF THE PROBLEM TO P | DR INDICA
YEARS, AN
ABILITY,
25
4% | 1936-65 ATED RECUIND ANNUAL IN PERCE 50 2% | RRENCE
NT | | MAGNI SCHARGE YEARS, 1, 25, 80\$ | 306 TUDE AND BASE , IN CFS, AND ANNUA | 924 PROBABILI D ON PERI FOR INDI L EXCEEDA 5 20% | 588 TY OF IN OD OF RE CATED RE NCE PROB | 136 ISTANTANE CORD 193 CURRENCE ABILITY, 25 4% | .23
OUS PEAK I
6-65
INTERVAL
IN PERCEI | 100
FLOW
, IN
NT | PERIOD
(CON-
SECU-
TIVE
DAYS) | DISCI | HARGE, INTERNEXCEEDAN 5 20% 10700 7550 | N CFS, F
VAL, IN
NCE PROB.
10
10% | OR INDIC/
YEARS, AN
ABILITY,
25
4% | 1936-65
ATED RECUIND ANNUAL
IN PERCE
50
2%
16400
11500 | RRENCE
NT | | MAGNI SCHARGE YEARS, 1, 25, 80\$ | 306 TUDE AND BASE , IN CFS, AND ANNUA 2 50% | 924 PROBABILI D ON PERI FOR INDI L EXCEEDA 5 20% | 588 TY OF IN OD OF RE CATED RE NCE PROB | 136 ISTANTANE CORD 193 CURRENCE ABILITY, 25 4% | .23
OUS PEAK I
6-65
INTERVAL
IN PERCEI | 100
FLOW
, IN
NT | PERIOD
(CON-
SECU-
TIVE
DAYS) | DISCI
2
50%
7510
5410
3530 | HARGE, II
INTERN
EXCEEDAN
5
20%
10700
7550
4860 | N CFS, FI
VAL, IN
NCE PROB.
10
10% | OR INDIC/
YEARS, AN
ABILITY,
25
4%
14900
10400
6700 | 1936-65 ATED RECUND ANNUAL IN PERCE 50 2% 16400 11500 7420 | RRENCE
NT | | MAGNI SCHARGE YEARS, 1.25 80\$ | 306 TUDE AND BASE , IN CFS, AND ANNUA 2 50% | 924 PROBABILI D ON PERI FOR INDI L EXCEEDA 5 20% | 588 TY OF IN OD OF RE CATED RE NCE PROB | 136 ISTANTANE CORD 193 CURRENCE ABILITY, 25 4% | .23
OUS PEAK I
6-65
INTERVAL
IN PERCEI | 100
FLOW
, IN
NT | PERIOD (CON-
SECU-
TIVE DAYS) | DISCI
2
50%
7510
5410
3530
2490 | HARGE, II
INTERN
EXCEEDAN
5
20%
10700
7550
4860
3240 | N CFS, F
VAL, IN
NCE PROB.
10
10%
12700
8870
5700
3670 | DR INDIC/
YEARS, AM
ABILITY,
25
4%
14900
10400
6700
4160 | 1936-65 ATED RECUIND ANNUAL IN PERCE 50 2\$ 16400 11500 7420 4480 | RRENCE
NT | | MAGNI ISCHARGE YEARS, 1.25 80\$ | 306 TUDE AND BASE , IN CFS, AND ANNUA 2 50% | 924 PROBABILI D ON PERI FOR INDI L EXCEEDA 5 20% | 588 TY OF IN OD OF RE CATED RE NCE PROB | 136 ISTANTANE CORD 193 CURRENCE ABILITY, 25 4% | .23
OUS PEAK I
6-65
INTERVAL
IN PERCEI | 100
FLOW
, IN
NT | PERIOD
(CON-
SECU-
TIVE
DAYS) | DISCI
2
50%
7510
5410
3530 | HARGE, II
INTERN
EXCEEDAN
5
20%
10700
7550
4860 | N CFS, FI
VAL, IN
NCE PROB.
10
10% | OR INDIC/
YEARS, AN
ABILITY,
25
4%
14900
10400
6700 | 1936-65 ATED RECUND ANNUAL IN PERCE 50 2% 16400 11500 7420 | RRENCE
NT | | | | DISCH | ARGE, IN | CFS, | WHICH WAS | EQUALED | OR EXCEE | DED FOR | INDICATED | PERCENT | OF TIME | | | | |------|------|-------|----------|------|-----------|---------|-------------|---------|-----------|---------|---------|-----|-----|-----| | 5% | 10% | 15% | 20% | 25% | 30% | 40% | 50 % | 60% | 70% | 75% | 80% | 85% | 90% | 95% | | 2120 | 1440 | 1110 | 894 | 731 | 605 | 426 | 291 | 183 | 104 | 78 | 60 | 49 | 41 | 33 | ## 14151000 FALL CREEK BELOW WINBERRY CREEK, NEAR FALL CREEK, OR--Continued ## STATISTICAL SUMMARIES (AFTER THE COMPLETION OF FALL CREEK DAM) MONTHLY AND ANNUAL MEAN DISCHARGES 1967-82 MAGNITUDE AND PROBABILITY OF ANNUAL LOW FLOW BASED ON PERIOD OF RECORD 1968-82 | | MINIMUM | MAXIMUM | MEAN | STAN-
DARD
DEVIA-
TION | COEFFI-
CIENT OF
VARI- | PERCENT
OF
ANNUAL | PERIOD
(CON-
SECU- | DISCH | INTERVAL | , IN YEA | R INDICAT
RS, AND A
BILITY, I | NNUAL N | ON- | |------------------------------------|--|--|--|---|---|-------------------------|--|---|---|---|---|--|---------------------| | MONTH | (CFS) | (CFS) | (CFS) | (CFS) | ATION | RUNOFF | TIVE
DAYS) | 2
50% | 5
20% | 10
10% | 20
5% | 50
2% | 100
1% | | OCTOBER | 127 | 1396 | 649 | 340 | .52 | 9.4 | 1 | 35 | 22 | 15 | 11 | | | | NOVEMBER | 312 | 1838 | 861 | 442 | .51 | 12.4 | 3 | 36 | 22 | 15 | 11 | | | | DECEMBER | 183 | 2312 | 1272 | 672 | .53 | 18.4 | 7 | 40 | 26 | 19 | 14 | | | | JANUARY | 153 | 2093 | 1123 | 604 | . 54 | 16.2 | 14 | 46 | 29 | 21 | 15 | | | | EBRUARY | 24 | 1391 | 470 | 409 | .87 | 6.8 | 30 | 61 | 33 | 23 | 17 | | | | MARCH | 11 | 1618 | 424 | 487 | 1.15 | 6.1 | 60 | 95 | 49 | 34 | 24 | | | | \PR!L | 43 | 1010 | 363 | 288 | .79 | 5.2 | 90 | 155 | 96 | 74 | 60 | | | | MAY | 50 | 557 | 267 | 148 | .55 | 3.9 | 120 | 220 | 129 | 94 | 71 | | | | JUNE | 92 | 512 | 240 | 138 | .58 | 3.5 | 183 | 351 | 257 | 208 | 170 | | | | JULY | 47 | 970 | 300 | 292 | .97 | 4.3 | | | | | | | | | AUGUST | 78 | 934 | 387 | 29 1 | .75 | 5.6 | | | | | | | | | SEPTEMBER | 115 | 913 | 565 | 243 | .43 | 8.2 | | | | | | | | | ANNUAL | 236 | 936 | 578 | 198 |
.34 | 100 | | | | | | | | | DI SCH A RGE | BASE
, IN CFS, | D ON PERIO | OD OF RE | ECORD
ECURRENCE | OUS PEAK, I | . IN | | BASE | D ON PER | OD OF R | OF ANNUAL
ECORD 19
R INDICAT | 67-82
ED RECUR | | |) I SCHARGE | BASE
, IN CFS, | D ON PERIO | OD OF RE | ECORD
ECURRENCE | INTERVAL, | . IN | PERIOD
(CON-
SECU- | BASE
DISCH | D ON PER ARGE, IN INTERV | OD OF R CFS, FO AL, IN Y | ECORD 19 | 67-82
ED RECUR | RRENCE | |) I SCHARGE
YEARS, | BASE
, IN CFS,
AND ANNUA | FOR INDIC | OD OF RE | ECORD
ECURRENCE
BABILITY, | INTERVAL, | , IN
NT | PERIOD
(CON- | BASE
DISCH | D ON PER ARGE, IN INTERV | OD OF R CFS, FO AL, IN Y | ECORD 19R INDICAT EARS, AND | 67-82
ED RECUR | RRENCE | | OISCHARGE
YEARS, | BASE
, IN CFS,
AND ANNUA | FOR INDIC
L EXCEEDAL | OD OF RECEIVED REPORTED REPORTED RECEIVED RECEIV | ECORD
ECURRENCE
BABILITY, | INTERVAL
IN PERCEI | , IN
NT | PERIOD
(CON-
SECU-
TIVE
DAYS) | BASE DISCH | D ON PER ARGE, IN INTERV. EXCEEDAN 5 20% | CFS, FO
AL, IN Y
CE PROBA | ECORD 19 R INDICAT EARS, AND BILITY, ! | ED RECUF
ANNUAL
N PERCEN
50
2% | RRENCE
NT
100 | | DISCHARGE
YEARS,
1.25
80% | BASE , IN CFS, AND ANNUA 2 50% | FOR INDIC
L EXCEEDAL | OD OF RECEIVED REPORTED REPORTED RECEIVED RECEIV | ECORD
ECURRENCE
BABILITY, | INTERVAL
IN PERCEI | , IN
NT | PERIOD
(CON-
SECU-
TIVE
DAYS) | DISCH | D ON PER ARGE, IN INTERV EXCEEDANG 20% 4310 | CFS, FO
AL, IN Y
CE PROBA
10
10% | ECORD 19 R INDICAT EARS, AND BILITY, 1 25 4% | ED RECUF
ANNUAL
N PERCEN
50
2% | RRENCE
NT
100 | | DISCHARGE
YEARS,
1.25
80% | BASE
, IN CFS,
AND ANNUA | FOR INDIC
L EXCEEDAL | OD OF RECEIVED REPORTED REPORTED RECEIVED RECEIV | ECORD
ECURRENCE
BABILITY, | INTERVAL
IN PERCEI | , IN
NT | PERIOD
(CON-
SECU-
TIVE
DAYS) | BASE DISCH | D ON PER ARGE, IN INTERV EXCEEDAN 5 20% 4310 4130 | CFS, FO
AL, IN Y
CE PROBA
10
10% | ECORD 19 R INDICAT EARS, AND BILITY, 1 25 4% 4870 4690 | ED RECUF
ANNUAL
N PERCEN
50
2% | RRENCE
NT | | DISCHARGE
YEARS,
1.25
80% | BASE , IN CFS, AND ANNUA 2 50% | FOR INDIC
L EXCEEDAL | OD OF RECEIVED REPORTED REPORTED RECEIVED RECEIV | ECORD
ECURRENCE
BABILITY, | INTERVAL
IN PERCEI | , IN
NT | PERIOD
(CON-
SECU-
TIVE
DAYS) | BASE DISCH 2 50% 3500 3350 2920 | D ON PER ARGE, IN INTERV EXCEEDAN 5 20% 4310 4130 3800 | CFS, FO
AL, IN Y
CE PROBA
10
10%
4620
4440
4200 | ECORD 19 R INDICAT EARS, AND BILITY, ! 25 4% 4870 4690 4570 | ED RECUF
ANNUAL
N PERCEN
50
2% | RRENCE
NT | | DISCHARGE
YEARS,
1.25
80% | BASE , IN CFS, AND ANNUA 2 50% | FOR INDIC
L EXCEEDAL | OD OF RECEIVED REPORTED REPORTED RECEIVED RECEIV | ECORD
ECURRENCE
BABILITY, | INTERVAL
IN PERCEI | , IN
NT | PERIOD (CON- SECU- TIVE DAYS) 1 3 7 | DISCH 2 50% 3500 3350 2920 2250 | D ON PER ARGE, IN INTERV. EXCEEDAN 5 20% 4310 4130 3800 2970 | CFS, FO
AL, IN Y
CE PROBA
10
10%
4620
4440
4200
3340 | ECORD 19 R INDICAT EARS, AND BILITY, 1 25 4% 4870 4690 4570 3710 | ED RECUF
ANNUAL
N PERCEN
50
2% | RRENCE
NT
100 | | DISCHARGE
YEARS,
1.25
80% | BASE , IN CFS, AND ANNUA 2 50% | FOR INDIC
L EXCEEDAL | OD OF RECEIVED REPORTED REPORTED RECEIVED RECEIV | ECORD
ECURRENCE
BABILITY, | INTERVAL
IN PERCEI | , IN
NT | PERIOD (CON- SECU- TIVE DAYS) | BASE DISCH 2 50% 3500 32920 2250 1670 | D ON PER ARGE, IN INTERV. EXCEEDANG 5 20% 4310 4130 3800 2970 2210 | 10D OF R CFS, FO AL, IN Y CE PROBA 10 10% 4620 4440 4200 3340 2510 | ECORD 19 R INDICAT EARS, AND BILITY, 1 25 4% 4870 4690 4570 3710 2830 | ED RECUF
ANNUAL
N PERCEN | RRENCE
NT
100 | | DISCHARGE
YEARS,
1.25
80% | BASE , IN CFS, AND ANNUA 2 50% | FOR INDIC
L EXCEEDAL | OD OF RECEIVED REPORTED REPORTED RECEIVED RECEIV | ECORD
ECURRENCE
BABILITY, | INTERVAL
IN PERCEI | , IN
NT | PERIOD (CON- SECU- TIVE DAYS) | BASE DISCH 2 50% 3500 3350 2920 2250 1670 1340 | D ON PER | 10D OF R CFS, FO AL, IN Y CE PROBA 10 10 4620 4440 4200 3340 2510 2100 | ECORD 19 R INDICAT EARS, AND BILITY, ! 25 4% 4870 4690 4570 3710 2830 2370 | ED RECUF
ANNUAL
N PERCEN
50
2% | RRENCE
NT
100 | | DISCHARGE
YEARS,
1.25
80% | BASE , IN CFS, AND ANNUA 2 50% | FOR INDIC
L EXCEEDAL | OD OF RECOMMENDED RECOMMEND OF RECOMMENDED RECOMMEND OF RECOMMENDED RECOMMEND OF RECOMMENDED OF RECOMMEND RECOMM | ECURRENCE
BABILITY,
25
4% | INTERVAL
IN PERCEN
50
2% | , IN
NT
100
1% | PERIOD (CON- SECU- TIVE DAYS) | BASE DISCH 2 50% 3500 3350 2920 2250 1670 1340 1180 | ARGE, IN INTERV. EXCEEDAN 4310 4130 3800 2970 2210 1840 1590 | CFS, FO AL, IN Y CE PROBA 10 10% 4620 4440 4200 3340 2510 2100 1800 | ECORD 19 R INDICAT EARS, AND BILITY, 1 25 4% 4870 4690 4570 3710 2830 | ED RECUF
ANNUAL
N PERCEN
50
2% | RRENCE
NT
100 | | 1.25
80% | BASE , IN CFS, AND ANNUA 2 50% | FOR INDIG | CATED RENCE PROE | ECURRENCE BABILITY, 25 4% | INTERVAL,
IN PERCEN
50
2% | IN NT 100 1% | PERIOD (CON- SECU- TIVE DAYS) 1 3 7 15 30 60 90 FOR PERIOD | BASE DISCH 2 50% 3500 2920 2250 1670 1340 0F RECO | D ON PER ARGE, IN INTERV. EXCEEDAN 5 20% 4310 43800 2970 2210 1840 1590 RD 1967-1 | 10D OF R CFS, FO AL, IN Y CE PROBA 10 10% 4620 4440 4200 3340 2510 2100 1800 | ### RECORD 19 R INDICAT EARS, AND BILITY, 1 25 4% 4870 4570 3710 2830 2370 2000 | ED RECUF
ANNUAL
N PERCEN
50
2% | RRENCE
NT
100 | | 1.25
80% | BASE , IN CFS, AND ANNUA 2 50% D SKEW = | FOR INDICATE TO THE PROPERTY OF O | CATED RENCE PROE | ECURRENCE BABILITY, 25 4% ON TABLE CFS, WHI | INTERVAL
IN PERCEN
50
2%
OF DAILY N | AEAN FLOW | PERIOD (CON- SECU- TIVE DAYS) 1 3 7 15 30 60 90 FOR PERIOD EXCEEDED FOR | 3500
3350
2920
2250
1670
1340
1180
OF RECO | D ON PER | CFS, FO AL, IN Y CE PROBA 10 10% 4620 4440 4200 3340 2510 2100 1800 82 | ### CORD 19 R INDICAT EARS, AND BILITY, 1 25 4% 4870 4690 4570 3710 2830 2370 2000 IME | ED RECUF
ANNUAL
N PERCEN
50
2% | 100
1% | | DISCHARGE
YEARS,
1.25
80% | BASE , IN CFS, AND ANNUA 2 50% | FOR INDIG | CATED RENCE PROE | ECURRENCE BABILITY, 25 4% | INTERVAL
IN PERCEN
50
2%
OF DAILY N | AEAN FLOW | PERIOD (CON- SECU- TIVE DAYS) 1 3 7 15 30 60 90 FOR PERIOD | BASE DISCH 2 50% 3500 2920 2250 1670 1340 0F RECO | D ON PER ARGE, IN INTERV. EXCEEDAN 5 20% 4310 43800 2970 2210 1840 1590 RD 1967-1 | 10D OF R CFS, FO AL, IN Y CE PROBA 10 10% 4620 4440 4200 3340 2510 2100 1800 | ### RECORD 19 R INDICAT EARS, AND BILITY, 1 25 4% 4870 4570 3710 2830 2370 2000 | ED RECUF
ANNUAL
N PERCEN
50
2% | RRENCE
NT | ## 14151500 LITTLE FALL CREEK NEAR FALL CREEK, OR LOCATION.--Lat 43°58'10", long 122°45'20", in S-1/2 sec.25, T.18 S., R.1 W., Lane County, Hydrologic Unit 17090001, 4 mi east of Fall Creek Post Office and 4.5 mi upstream from mouth. DRAINAGE AREA .-- 52.5 mi2. PERIOD OF RECORD. -- October 1935 to September 1948. GAGE. -- Staff gage. Altitude of gage is 715 ft, by barometer. REMARKS.--No diversion or regulation above station. 445 614 342 278 230 189 134 94 65 42 34 28 23 19 16 AVERAGE DISCHARGE.--13 years (water years 1936-48), 179 ft³/s. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 6,110 ft³/s Dec. 28, 1945, gage height, 8.20 ft, from rating curve extended above 2,400 ft³/s on basis of velocity-area study; minimum observed, 10 ft³/s Dec. 1, 1936, Aug. 26, 27, 30, 31, Sept. 1, 1940. ## STATISTICAL SUMMARIES | М | ONTHLY AN | ID ANNUAL | MEAN DIS | SCHARGES | 1936-48 | | MA | | | | OF ANNUAL
RECORD 19 | | /II | |---------------------------------|--|--|--|--|--|-------------------------|---|---|---|--
--|--------------------------------------|--------------| | | MINIMUM | MAX I MUM | MEAN | STAN-
DARD
DEVIA-
TION | COEFFI-
CIENT OF
VARI- | PERCENT
OF
ANNUAL | PERIOD
(CON-
SECU- | DISCH | INTERVAL | , IN YEA | OR INDICAT
ARS, AND A
ABILITY, I | NNUAL NO |)N- | | MONTH | (CFS) | (CFS) | (CFS) | (CFS) | ATION | RUNOFF | TIVE
DAYS) | 2
50% | 5
20 % | 10
10% | 20
5% | 50
2 % | 100
1% | | OCTOBER
NOVEMBER | 16
13 | 223
477 | 56
231 | 57
166 | 1.03 | 2.6 | 1 3 | 15
15 | 12
12 | 10
11 | 9.4
9.7 | | | | DECEMBER
JANUARY
FEBRUARY | 52
68
110 | 865
680
490 | 304
329
358 | 241
194
118 | .79
.59
.33 | 14.0
15.2
16.5 | 7
14
30 | 15
16
18 | 12
13
14 | 11
11
13 | 9.7
11
12 |
 | | | MARCH
APRIL
MAY | 77
76
49 | 627
611
226 | 319
249
130 | 163
147
58 | .51
.59
.44 | 14.7
11.5 | 60
90 | 21
23
28 | 16
18
21 | 14
16
18 | 13 -
15
16 |
 | | | JUNE
JULY | 37
21 | 195
68 | 94
44 | 48
16 | .51
.36 | 6.0
4.3
2.0 | 120
183
 | 49
 | 35
 | 29
 | 25 | | | | AUGUST
SEPTEMBER | 13
15 | 36
44 | 26
25 | 7.8
9.3 | .31
.37 | 1.2
1.2 | ANNUAL | 109 | 270 | 179 | 52 | .29 | 100 | | | | | | | | | MAGNI
DISCHARGE,
YEARS, / | TUDE AND
BASE
, IN CFS, | PROBABILI
D ON PERIO
FOR INDIG
L EXCEEDA | TY OF IN
OD OF RE
CATED RE | ISTANTANEC
CORD 1936
CURRENCE | DUS PEAK F
5-48
INTERVAL,
IN PERCEN | FLOW | PERIOD
(CON- | BASE
DISCH | D ON PER

ARGE, IN
INTERV | CFS, FO | OF ANNUAL
ECORD 19
R INDICATI
EARS, AND
BILITY, I | 36-48
ED RECUR
ANNUAL | RENCE | | MAGNI | TUDE AND
BASE | PROBABILI
D ON PERIO | TY OF INOD OF RE | ISTANTANE (CORD 1936 | DUS PEAK F
5-48
INTERVAL,
IN PERCEN | FLOW | PERIOD | BASE
DISCH | D ON PER

ARGE, IN
INTERV | CFS, FO | RECORD 19
R INDICATI
EARS, AND | 36-48
ED RECUR
ANNUAL | RENCE | | MAGNITUSCHARGE, | TUDE AND
BASE
, IN CFS,
AND ANNUA | PROBABILI
D ON PERIO
FOR INDIG
L EXCEEDAL
5
20% | TY OF IN
OD OF RE
CATED RE
NCE PROB | ISTANTANEC
CORD 1936
CURRENCE
BABILITY, | DUS PEAK F
5-48
INTERVAL,
IN PERCEN | , IN
NT | PERIOD
(CON-
SECU-
TIVE
DAYS) | DISCH | D ON PER ARGE, IN INTERV EXCEEDAN 5 20% | CFS, FO
AL, IN Y
CE PROBA | RECORD 19 RECORD 19 REARS, AND BILITY, 11 25 4% | 36-48 ED RECUF ANNUAL N PERCEN 50 2% | RRENCE
IT | | MAGNITOLISCHARGE, YEARS, / | TUDE AND
BASE
, IN CFS,
AND ANNUA
2
50% | PROBABILI'D ON PERIO | TY OF IN
OD OF RE
CATED RE
NCE PROB | ISTANTANEO
CORD 1936
CURRENCE
BABILITY, | DUS PEAK F
5-48
INTERVAL,
IN PERCEN | , IN
NT | PERIOD
(CON-
SECU-
TIVE | DISCH | D ON PER ARGE, IN INTERV EXCEEDAN | CFS, FO
AL, IN Y
CE PROBA | RECORD 19 REINDICATI EARS, AND BILITY, II | 36-48 ED RECUF ANNUAL N PERCEN | RRENCE
IT | | MAGNITOLISCHARGE, YEARS, / | TUDE AND BASE IN CFS, AND ANNUA 2 50% | PROBABILI'D ON PERIO | TY OF INDOD OF RE | ISTANTANEC
CORD 1936
CURRENCE
IABILITY,
25
4% | DUS PEAK F
5-48
INTERVAL
IN PERCEN | FLOW . IN NT 100 18 | PERIOD (CON-
SECU-
TIVE DAYS) | DISCH 2 50% 1980 1460 1030 766 571 459 408 | D ON PER ARGE, IN INTERV EXCEEDAN 2980 2240 1510 1060 770 602 534 | CFS, FO AL, IN Y CE PROBA-10 10 10 10 10 10 10 10 10 10 10 10 10 1 | RECORD 19 R INDICATI EARS, AND BILITY, II 25 4% 4330 3390 2140 1400 1010 770 | 36-48 ED RECUF ANNUAL N PERCEN 50 2% | RRENCE
IT | | MAGNITOLISCHARGE, YEARS, / | TUDE AND BASE IN CFS, AND ANNUA 2 50% | PROBABILI'D ON PERIO | TY OF INDO OF RECATED RENCE PROB | ISTANTANEC CORD 1936 CURRENCE SABILITY, 25 4% 7210 | DUS PEAK F
5-48
INTERVAL,
IN PERCEN
50 1
2% | FLOW IN IN IOO 1% | PERIOD (CON-
SECU-
TIVE DAYS) | DISCH 2 50% 1980 1460 1030 766 571 459 408 OF RECO | D ON PER ARGE, IN INTERV EXCEEDAN 5 20\$ 2980 1510 1060 770 602 534 RD 1936- | CFS, FO AL, IN Y CE PROBA 10 103 | RECORD 19 | 36-48 ED RECUF ANNUAL N PERCEN 50 2% | RRENCE
IT | #### 14152000 MIDDLE FORK WILLAMETTE RIVER AT JASPER, OR LOCATION.--Lat 43°59'55", long 122°54'20", in SW\u00e4SW\u00e4 sec.14, T.18 S., R.2 W., Lane County, Hydrologic Unit 17090001, on right bank 25 ft downstream from highway bridge at Jasper, 0.1 mi downstream from Hills Creek, and at mile 195.0. DRAINAGE AREA .-- 1,340 mi2. PERIOD OF RECORD.--September 1905 to February 1912, July 1913 to March 1917, October 1952 to September 1982. Monthly discharge only for some periods, published in WSP 1318. GAGE.--Water-stage recorder. Datum of gage is 513.45 ft National Geodetic Vertical Datum of 1929. September 1905 to February 1912 and July 1913 to March 1917, nonrecording gage at approximately same site at datum about 1.5 ft higher. Oct. 22, 1952, to Sept. 30, 1953, nonrecording gage at site 25 ft upstream at same datum. REMARKS.--Flow regulated since 1953 by Lookout Point Lake, since 1961 by Hills Creek Lake, and since 1966 by Fall Creek Lake. AVERAGE DISCHARGE.--39 years (water years 1906-11, 1914-16, 1953-82), 4,089 ft³/s, 2,962,000 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 94,000 ft³/s Nov. 23, 1909, gage height, 17.4 ft, datum then in use, from graph based on gage readings, from rating curve extended above 42,000 ft³/s; minimum, 366 ft³/s Dec. 5, 1954. #### STATISTICAL SUMMARIES (AFTER COMPLETION OF THREE UPSTREAM DAMS) MONTHLY AND ANNUAL MEAN DISCHARGES 1967-82 MAGNITUDE AND PROBABILITY OF ANNUAL LOW FLOW BASED ON PERIOD OF RECORD 1968-82 | | MINIMUM | MAXIMUM | MEAN | STAN-
DARD
DEVIA-
TION | COEFFI-
CIENT OF | PERCENT
OF | PERIOD
(CON-
SECU- | | INTERVAL | , IN YEA | R INDICAT
RS, AND A
BILITY, I | NNUAL N | ⊃ N | |------------|---------|---------|---------------|---------------------------------|---------------------|------------------|--------------------------|----------|----------|-----------|-------------------------------------|----------|------------| | MONTH | (CFS) | (CFS) | MEAN
(CFS) | (CFS) | VARI-
ATION | ANNUAL
RUNOFF | TIVE
DAYS) | 2
50% | 5
20% | 10
10% | 20
5% | 50
2% | 100
1% | | OCTOBER | 2946 | 4685 | 4052 | 481 | .12 | 8.2 | 1 | 1310 | 946 | 753 | 605 | | | | NOVEMBER | 2937 | 10510 | 5969 | 2219 | .37 | 12.1 | 3 | 1330 | 957 | 762 | 612 | | | | DECEMBER | 1517 | 14630 | 8272 | 3817 | .46 | 16.7 | 7 | 1370 | 969 | 770 | 619 | | | | JANUARY | 1327 | 11480 | 7223 | 3086 | .43 | 14.6 | 14 | 1420 | 1000 | 805 | 654 | | | | FEBRUARY | 787 | 9460 | 4114 | 2757 | .67 | 8.3 | 30 | 1520 | 1090 | 889 | 735 | | | | MARCH | 1111 | 10550 | 3481 | 2505 | .72 | 7.0 | 60 | 1760 | 1290 | 1080 | 921 | | | | APRIL | 729 | 5603 | 2902 | 1549 | .53 | 5.9 | 90 | 1940 | 1410 | 1170 | 1000 | | | | YAY | 844 | 4875 | 2774 | 1235 | .45 | 5.6 | 120 | 2100 | 1520 | 1270 | 1100 | | | | JUNE | 1187 | 5016 | 2669 | 1194 | .45 | 5.4 | 183 | 2490 | 1950 | 1710 | 1530 | | | | JULY | 1248 | 2562 | 2005 | 355 | .18 | 4.1 | | | | | | | | | AUGUST | 1818 | 3340 | 2427 | 371 | .15 | 4.9 | | | | | | | | | SEPTEMBER | 1830 | 4703 | 3521 | 868 | .25 | 7.1 | | | | | | | | | ANNUAL | 1877 | 6215 | 4121 | 1266 | .31 | 100 | | | | | | | | MAGNITUDE AND PROBABILITY OF INSTANTANEOUS PEAK FLOW BASED ON PERIOD OF RECORD MAGNITUDE AND PROBABILITY OF ANNUAL HIGH FLOW BASED ON PERIOD OF RECORD 1967-82 | DISCHARGE,
YEARS, | , IN CFS, | | | | | | PERIOD
(CON- | DISC | INTER | VAL, ÍN ' | OR INDICAT
YEARS, AND
ABILITY. I | ANNUAL | | |----------------------|--------------|----------|-----------|--------------|----------|-----------|------------------------|----------|------------------|-----------|--
----------|-------------------| | 1.25
80% | 2
50%
 | 5
20% | 10
10% | 25
4%
 | 50
2% | 100
1% | SECU-
TIVE
DAYS) | 2
50% | 5
20 % | 10
10% | 25
4% | 50
2% | 100
1 5 | 1 | 16200 | 19000 | 19800 | 20200 | | | | WEIGHTED | SKEW = | | | | | | 3 | 15500 | 18600 | 19500 | 20100 | | | | | | | | | | | 7 | 14400 | 17900 | 19200 | 20200 | | | | | | | | | | | 15 | 12300 | 15900 | 17600 | 19100 | | | | | | | | | | | 30 | 10100 | 13400 | 15100 | 16900 | | | | | | | | | | | 60 | 8320 | 11100 | 12800 | 14500 | | | | | | | | | | | 90 | 7530 | 10000 | 11400 | 12800 | | | DURATION TABLE OF DAILY MEAN FLOW FOR PERIOD OF RECORD 1967-82 | | | DIS | CHARGE, | IN CFS, | WHICH WAS | EQUALED | OR EXC | EEDED FOR | INDICATE | D PERCENT | OF TIM | E | | | |-------|------|------|---------|---------|-----------|---------|--------|-----------|----------|-----------|--------|------|------|------| | 5% | 10% | 15% | 20% | 25% | 30% | 40% | 50% | 60% | 70% | 75% | 80% | 85% | 90% | 95% | | 11900 | 8460 | 6360 | 5420 | 4880 | 4490 | 3790 | 3070 | 2490 | 2110 | 1960 1 | 1810 | 1670 | 1530 | 1350 | ## WILLAMETTE RIVER BASIN 14152500 COAST FORK WILLAMETTE RIVER AT LONDON. OR WILLAMETTE RIVER BASIN 41 LOCATION.--Lat 43°38'30", long 123°05'05", in SW\ sec.20, T.22 S., R.3 W., Lane County, Hydrologic Unit 17090002, on left bank 0.6 mi north of London, 11.0 mi south of Cottage Grove, and at mile 35.9. DRAINAGE AREA. -- 72.1 mi2. PERIOD OF RECORD.--September 1935 to September 1982. GAGE.--Water-stage recorder. Datum of gage is 852.58 ft National Geodetic Vertical Datum of 1929 (levels by Corps of Engineers). Sept. 18 to Oct. 17, 1935, nonrecording gage at same site and datum. REMARKS. -- No regulation. Diversions for irrigation above station. AVERAGE DISCHARGE.--47 years, 201 ft³/s, 37.86 in/yr, 145,600 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 12,500 ft³/s Dec. 22, 1964, gage height, 13.37 ft, from rating curve extended above 3,200 ft³/s, on basis of slope-area measurement of peak flow; minimum, 6.8 ft³/s Aug. 18, 1977. ## STATISTICAL SUMMARIES MONTHLY AND ANNUAL MEAN DISCHARGES 1936-82 MAGNITUDE AND PROBABILITY OF ANNUAL LOW FLOW BASED ON PERIOD OF RECORD 1937-82 | | MINIMUM | MAXIMUM | MEAN | STAN-
DARD
DEVIA-
TION | COEFFI-
CIENT OF
VARI- | PERCENT
OF
ANNUAL | PERIOD
(CON-
SECU- | | INTERVAL | CFS, FOR
, IN YEARS
CE PROBABI | , AND AN | INUAL NO | N- | |-----------|---------|---------|--------------|---------------------------------|------------------------------|-------------------------|--------------------------|----------|------------------|--------------------------------------|------------------|------------------|-----------| | MONTH | (CFS) | (CFS) | (CFS) | (CFS) | ATION | RUNOFF | TIVE
DAYS) | 2
50% | 5
20 % | 10
10% | 20
5 % | 50
2 % | 100
1% | | OCTOBER | 12 | 472 | 62 | 76 | 1.23 | 2.6 | 1 | 13 | 10 | 9.2 | 8.3 | 7.4 | 6.9 | | NOVEMBER | 12 | 847 | 235 | 174 | .74 | 9.7 | 3 | 13 | 11 | 9.4 | 8.5 | 7.7 | 7.1 | | DECEMBER | 26 | 1333 | 408 | 293 | .72 | 16.8 | 7 | 13 | 11 | 9.7 | 8.8 | 7.9 | 7.4 | | JANUARY | 34 | 852 | 432 | 255 | .59 | 17.8 | 14 | 14 | 12 | 10 | 9.3 | 8.3 | 7.7 | | FEBRUARY | 46 | 827 | 391 | 163 | .42 | 16.1 | 30 | 15 | 13 | 11 | 10 | 9.4 | 8.8 | | MARCH | 84 | 700 | 3 5 3 | 160 | . 45 | 14.6 | 60 | 18 | 15 | 13 | 12 | 11 | 11 | | APRIL | 86 | 611 | 246 | 115 | .47 | 10.1 | 90 | 20 | 16 | 15 | 14 | 12 | 12 | | MAY | 44 | 416 | 146 | 77 | .53 | 6.0 | 120 | 25 | 20 | 18 | 16 | 14 | 13 | | JUNE | 26 | 240 | 77 | 42 | .55 | 3.2 | 183 | 46 | 34 | 29 | 25 | 22 | 19 | | JULY | 17 | 65 | 32 | 11 | .34 | 1.3 | | | | | | | | | AUGUST | 12 | 39 | 20 | 6.3 | .31 | .8 | | | | | | | | | SEPTEMBER | 9.2 | 58 | 22 | 8.9 | .40 | .9 | | | | | | | | | ANNUAL | 65 | 344 | 201 | 57 | .29 | 100 | | | | | | | | MAGNITUDE AND PROBABILITY OF INSTANTANEOUS PEAK FLOW BASED ON PERIOD OF RECORD 1936-82 MAGNITUDE AND PROBABILITY OF ANNUAL HIGH FLOW BASED ON PERIOD OF RECORD 1936-82 | DISCHARGE,
YEARS, A | | | | | NCE INTER | | PERIOD
(CON- | | INTERV | /AL, ÍN Y | R INDICA
EARS, AN | ID ANNUAL | | |------------------------|----------------------|------------------|-----------|------------------|------------------|-----------|------------------------|------------------|------------------|--------------|----------------------|------------------|--------------| | 1.25
80% | 2
50 %
 | 5
20 % | 10
10% | 25
4 % | 50
2 % | 100
1% | SECU-
TIVE
DAYS) | 2
50 % | 5
20 % | 10
10% | 25
4% | 50
2 % | 100 | | 2270 | 36 3 0 | 5840 | 7480 | 9760 | 11600 | 13500 | | | | 4040 | | | 7000 | | WEIGHTED | SKEW = | .017 | | | | | 1
3 | 2580
1950 | 4000
2860 | 4960
3420 | 6160
4050 | 7040
4480 | 7900
4880 | | HE FORTIEL | JICEN - | •017 | | | | | 7 | 1310 | 1890 | 2230 | 2640 | 2920 | 3180 | | | | | | | | | 15 | 911 | 1260 | 1470 | 1710 | 1880 | 2030 | | | | | | | | | 30 | 697 | 926 | 1050 | 1190 | 1280 | 1360 | | | | | | | | | 60 | 550 | 725 | 820 | 921 | 984 | 1040 | | | | | | | | | 90 | 479 | 625 | 705 | 793 | 850 | 900 | DURATION TABLE OF DAILY MEAN FLOW FOR PERIOD OF RECORD 1936-82 |
 | | DISCH | ARGE, IN | CFS, WH | HICH WAS | EQUALED | OR EXCEED | ED FOR | INDICATED | PERCENT | OF TIME | | | | |----------------|-----|-------|----------|---------|-------------|---------|-----------|--------|------------|-------------|---------|-----|-----|-----| |
5 % | 10% | 15% | 20% | 25% | 30 % | 40% | 50% | 60% | 70% | 75 % | 80% | 85% | 90% | 95% | |
742 | 497 | 373 | 294 | 240 | 200 | 139 | 93 | 59 | 3 6 | 29 | 24 | 20 | 17 | 15 | MONTHLY AND ANNUAL MEAN DISCHARGES 1943-82 #### 42 #### 14153500 COAST FORK WILLAMETTE RIVER BELOW COTTAGE GROVE DAM. OR LOCATION.--Lat 43°43'15", long 123°02'55", in NEt sec.28, T.21 S., R.3 W., Lane County, Hydrologic Unit 17090002, on right bank at bridge 0.3 mi downstream from Cottage Grove Dam, 5.5 mi south of Cottage Grove, and at mile 29.4. DRAINAGE AREA .-- 104 mi2. PERIOD OF RECORD.--January 1939 to September 1982. Prior to October 1944, published as "near Cottage Grove." GAGE.--Water-stage recorder. Datum of gage is 711.00 ft National Geodetic Vertical Datum of 1929 (Corps of Engineers bench mark). Jan. 1 to Oct. 12, 1939, nonrecording gage and Oct. 13, 1939, to Sept. 30, 1944, water-stage recorder at several sites and datums 0.8 mi downstream. REMARKS.--Flow regulated since 1942 by Cottage Grove Lake. Small diversions for irrigation above station. AVERAGE DISCHARGE.--43 years, 275 ft3/s, 35.91 in/yr, 199,200 acre-ft/yr, adjusted for storage. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 5,910 ft3/s Dec. 24, 1964, gage height, 11.83 ft; no flow July 5-7, 1945, and for part of Aug. 24, 1947. #### STATISTICAL SUMMARIES BASED ON PERIOD OF RECORD 1944-82 DISCHARGE, IN CFS, FOR INDICATED RECURRENCE INTERVAL, IN YEARS, AND ANNUAL NON-STAN-DARD COEFF1-PERCENT PERIOD EXCEEDANCE PROBABILITY, IN PERCENT DEVIA-CIENT OF OF (CON-MINIMUM MAXIMUM MEAN TION VARI-ANNUAL SECU-MONTH (CFS) ATION RUNOFF 20 50 100 (CFS) (CFS) (CFS) TIVE 10 50% 20% 10% 5% 2% 1% DAYS) OCTOBER 141 207 .68 NOVEMBER 31 1000 341 241 .71 10.1 41 25 17 12 7.6 5.3 DECEMBER 34 1627 590 375 .64 17.5 7 43 28 21 15 9.9 7.2 JANHARY 48 1372 634 385 .61 18.8 14 45 31 24 19 14 11 **FEBRUARY** 30 1140 421 238 .57 12.5 30 48 36 30 25 20 17 23 30 37 32 27 MARCH 1060 347 246 .71 10.3 60 56 43 24 APRIL 67 38 684 208 145 .70 90 51 44 32 29 6.2 MAY 48 503 136 105 .77 4.0 120 78 59 51 38 35 JUNE 49 93 283 46 .50 2.8 183 117 80 73 68 JULY 24 89 56 13 .24 1.7 AUGUST 26 399 117 95 .81 3.5 SEPTEMBER 46 465 215 96 . 45 6.4 ANNUAL 77 468 280 82 . 29 100 MAGNITUDE AND PROBABILITY OF INSTANTANEOUS PEAK FLOW MAGNITUDE AND PROBABILITY OF ANNUAL HIGH FLOW BASED ON PERIOD OF RECORD 1943-82 | BASED (| ON PERIOD | OF | RECORD | | |---------|-----------|----|--------|--| | | | | | | MAGNITUDE AND PROBABILITY OF ANNUAL LOW FLOW | DISCHARGE,
YEARS, A | | | DICATED F | | | | PERIOD
(CON- | | INTERV | CFS, FO | EARS, AN | D ANNUAL | | |------------------------|--------------|------------------|-----------|----------|------------------|-----------|------------------------|--------------|------------------|--------------|--------------|------------------|--------------| | 1.25
80% | 2
50%
 | 5
20 % | 10
10% | 25
4% | 50
2 % | 100
1% | SECU-
TIVE
DAYS) | 2
50% | 5
20 % | 10
10% | 25
4% | 50
2 % | 100
1% | | | | | | | | | | 0 | | | | | | | WEIGHTED | SKEW = | | | | | | 3 | 2690
2470 | 3120
2930 | 3200
3030 | 3240
3080 | 3250
3090 | 3250
3090 | | | | | | | | | /
15 | 1950
1320 | 2560
1820 | 2810
2080 | 2990
2350 | 3080
2520 | 3130
2650 | | | | | | | | | 30
60 | 987
754 | 1320
1010 | 1490
1120 | 1670
1230 | 1770
1280 | 1850
1330 | | | | | | | | | 90 | 650 | 860 | 950 | 1020 | 1060 | 1090 | DURATION TABLE OF DAILY MEAN FLOW FOR PERIOD OF RECORD 1943-82 | | | | DISCH | ARGE, IN | CFS, | WHICH WAS | EQUALED | OR EXCE | EDED FOR | INDICATED | PERCENT | OF TIME | | | | |---|------|-----|-------|----------|------|-----------|---------|---------|----------|-----------|---------|---------|-----|-----|-----| | _ | 5% | 10% | 15% | 20% | 25% | 30% | 40% | 50% | 60% | 70% | 75% | 80% | 85% | 90% | 95% | | | 1140 | 679 | 486 | 385 | 307 | 256 | 174 | 109 | 84 | 70 | 63 | 57 | 53 | 49 | 40 | MAGNITUDE AND PROBABILITY OF ANNUAL LOW FLOW ## 14154500 ROW RIVER ABOVE PITCHER CREEK, NEAR DORENA, OR LOCATION.--Lat 43°44'10", long 122°52'20", in NEt sec.24, T.21 S., R.2 W., Lane County, Hydrologic Unit 17090002, on right bank 0.5 mi upstream from Pitcher Creek, 1.2 mi northwest of Dorena, and at mile 13.2. DRAINAGE AREA
.-- 211 mi2. PERIOD OF RECORD.--September 1935 to September 1982. Prior to Dotober 1949, published as "at Star." GAGE.--Water-stage recorder. Datum of gage is 856.16 ft National Geodetic Vertical Datum of 1929. Sept. 16, 1935, to Oct. 17, 1938, nonrecording gage at site 450 ft upstream at datum 1.00 ft higher. REMARKS.--Slight regulation caused by upsteam logponds. No diversion above station. AVERAGE DISCHARGE.--47 years, 599 ft³/s, 38.55 in/yr, 434.000 acre-ft/yr. MONTHLY AND ANNUAL MEAN DISCHARGES 1936-82 EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 33,100 ft³/s Dec. 22, 1964, gage height, 18.19 ft, from rating curve extended above 12,000 ft³/s, on basis of slope-area measurement of peak flow; minimum, 10 ft³/s Sept. 24, 25, 1951, Oct. 7, 8, 1958. #### STATISTICAL SUMMARIES | MONTH | MINIMUM | | | DARD
DEVIA- | COEFFI-
CIENT OF | OF | PERIOD
(CON- | | INTERVA | L, IN YE | | ANNUAL
IN PERC | | |-------------|------------------|---|---------------|-------------------|-----------------------|------------------|------------------------------------|------------------|------------------|----------------|-----------------------------|--|----------------| | | (CFS) | MAXIMUM
(CFS) | MEAN
(CFS) | TION
(CFS) | VARI-
ATION | ANNUAL
RUNOFF | SECU -
TIVE
DAYS) | 2
50 % | 5
20 % | 10
10% | 20
5 % | 50
2 % | 100
1% | | OCTOBER | 20 | 1152 | 164 | 198 | 1.21 | 2.3 | 1 | 18 | 14 | 13 | 12 | 10 | 9. | | NOVEMBER | 19 | 2569 | 733 | 543 | .74 | 10.2 | 3 | 19 | 15 | 13 | 12 | 11 | 10 | | DECEMBER | 58 | 4114 | 1187 | 868 | .73 | 16.4 | 7 | 20 | 16 | 14 | 13 | 12 | 11 | | JANUARY | 86 | 2606 | 1207 | 735 | .61 | 16.7 | 14 | 21 | 17 | 15 | 14 | 12 | 12 | | FEBRUARY | 81 | 2159 | 1100 | 469 | .43 | 15.2 | 30 | 24 | 19 | 17 | 15 | 14 | 13 | | MARCH | 189 | 2168 | 1025 | 478 | . 47 | 14.2 | 60 | 29 | 22 | 20 | 18 | 16 | 15 | | APRIL | 290 | 2161 | 829 | 359 | .43 | 11.5 | 90 | 36 | 27 | 24 | 21 | 19 | 18 | | MAY | 133 | 1333 | 555 | 281 | -51 | 7.7 | 120 | 51 | 36 | 31 | 27 | 23 | 21 | | JUNE | 64 | 692 | 261 | 159 | .61 | 3.6 | 183 | 134 | 90 | 72 | 59 | 47 | 40 | | JULY | 26 | 157 | 74 | 33 | . 45 | 1.0 | | | | | | | | | AUGUST | 15 | 106 | 38 | 20 | .51 | •5 | | | | | | | | | SEPTEMBER | 16 | 259 | 47 | 40 | .85 | .7 | | | | | | | | | ANNUAL | 233 | 1008 | 599 | 168 | .28 | 100 | | | | | | | | | DISCHARGE, | BASE
IN CFS, | PROBABILIT
D ON PERIO
FOR INDIO
L EXCEEDAN | OD OF RE | CORD 193 CURRENCE | 6-82

INTERVAL, | . IN | PERIOD
(CON- | BASE
DISCH | HARGE, II | RIOD OF F | RECORD OR INDICA YEARS, AN | AL HIGH I
1936-82
ATED RECI
ND ANNUAL
IN PERCI | JRRENCE | | 1.25
80% | 2
50 % | 5
20 % | 10
10% | 25
4% | | 100
1% | SECU-
TIVE | 2 |
5 | 10 |
25 |
50 | 100 | | | | | | | | | DAYS) | 50% | 20% | 10% | 4% | 2% | 1% | | 7590 | 11500 | 17000 20 | 0600 2 | 5200 2 | 8600 319 | 000 | | 0440 | 40000 | 4.4000 | 10000 | 00700 | 22500 | | WEIGHTED | CKEM - | - 207 | | | | | 1
3 | 8140
5840 | 12200
8520 | 14800
10200 | 18000
12300 | 20300
13700 | 22500
15200 | | HE LONIED | JKLW - | 207 | | | | | כ
7 | 3870 | 5500 | 6530 | 7760 | 8630 | 9470 | | | | | | | | | , | 2010 | 2200 | 0550 | 7/00 | ດຕານ | | DURATION TABLE OF DAILY MEAN FLOW FOR PERIOD OF RECORD 1936-82 | | | DISCH | ARGE, IN | CFS, | WHICH WAS | EQUALED | OR EXCE | EDED FOR | INDICATED | PERCENT | OF TIME | | | | |------|------|-------|----------|------|-----------|---------|---------|----------|-----------|---------|---------|-----|-----|-----| | 5% | 10% | 15% | 20% | 25% | 30% | 40% | 50% | 60% | 70% | 75% | 80% | 85% | 90% | 95% | | 2200 | 1470 | 1120 | 901 | 749 | 625 | 426 | 275 | 156 | 78 | 58 | 44 | 35 | 28 | 22 | #### 14155500 ROW RIVER NEAR COTTAGE GROVE, OR LOCATION.--Lat 43°47'35", long 122°59'25", ln NE± sec.36, T.20 S., R.3 W., Lane County, Hydrologic Unit 17090002, on right bank 1.7 mi upstream from Mosby Creek, 2.1 mi downstream from Dorena Dam, 3.5 mi east of Cottage Grove, and at mile 5.5. DRAINAGE AREA. -- 270 mi2. PERIOD OF RECORD. -- January 1939 to September 1982. Prior to October 1947, published as "near Dorena." GAGE.--Water-stage recorder. Datum of gage is 685.24 ft National Geodetic Vertical Datum of 1929 (levels by Corps of Engineers). Jan. 5 to Oct. 12, 1939, nonrecording gage at site 180 ft upstream at datum 1.00 ft higher. REMARKS.--Flow regulated since October 1949 by Dorena Lake. No diversion above station. AVERAGE DISCHARGE.--43 years, 753 ft³/s, 37.87 in/yr, 545,500 acre-ft/yr, adjusted for storage. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 21,400 ft 3 /s Dec. 28, 1945, gage height, 18.20 ft; minimum, 0.20 ft 3 /s Sept. 25 to Oct. 7, 1958. STATISTICAL SUMMARIES (BEFORE THE CONSTRUCTION OF DORENA DAM) | M | ONTHLY AN | ID ANNUAL I | MEAN DIS | CHARGES | 1940-49 | | MA | | | BABILITY OR RE | | | OW | |-------------------------|--------------------------------|-------------------------------------|------------------|--|--|-----------------------------|---|---|--|---|--|--|-----------| | | MINIMUM | MAXIMUM | MEAN | STAN-
DARD
DEVIA-
TION | COEFFI~
CIENT OF
VARI~ | PERCENT
OF
ANNUAL | PERIOD
(CON-
SECU- | DISCH | INTERVAL | I CFS, FOR
., IN YEAR | RS, AND A | NNUAL NO | ON- | | MONTH | (CFS) | (CFS) | (CFS) | (CFS) | ATION | RUNOFF | TIVE
DAYS) | 2
50 % | 5
20% | 10
10% | 20
5% | 50
2% | 100
1% | | OCTOBER | 36 | 842 | 185 | 240 | 1.30 | 2.2 | 1 | | | | | | | | OVEMBER | 40 | 1953 | 1053 | 687 | .65 | 12.7 | 3 | | | | | | | | ECEMBER | 171 | 3481 | 1383 | 1034 | •75 | 16.7 | 7 | | | | | | | | ANUARY | 438 | 2261 | 1128 | 696 | .62 | 13.6 | 14 | | | | | | | | EBRUARY | 370 | 1942 | 1372 | 509 | • 37 | 16.5 | 30 | | | | | | | | MARCH | 222 | 1621 | 1050 | 431 | •41 | 12.7 | 60 | | | | | | | | APRIL | 353 | 1717 | 925 | 456 | .49 | 11.1 | 90 | | | | | | | | YAY | 169 | 1101 | 632 | 354 | • 56 | 7.6 | 120 | | | | | | | | JUNE | 80 | 833 | 364 | 236 | -65 | 4.4 | 183 | | | | | | | | JULY | 37 | 174 | 99 | 48 | -48 | 1.2 | | | | | | | | | AUGUST | 20 | 85 | 48 | 20 | .42 | .6 | NOTE: | LESS THA | N 10 YEA | RS OF DAT | A AVAILA | BLE. | | | SEPTEMBER | 34 | 148 | 61 | 35 | .57 | •7 | | | | | | | | | ANNUAL | 424 | 1073 | 688 | 224 | •33 | 100 | | | | | | | | | MAGNI | | PROBABILI
D ON PERIO | | | OUS PEAK 1 | FLOW | MA | | | BABILITY C | | | _OW | | OISCHARGE | BASE
, IN CFS, | D ON PERIO | OD OF RE | CORD 194 | |
, IN | PERIOD | BASE
DISCH | IARGE, IN | RIOD OF RE | CORD 19 INDICAT | 40-49 ED RECUF | RRENCE | | OISCHARGE | BASE
, IN CFS, | D ON PERIO | OD OF RE | CORD 194 | 0-49
INTERVAL
IN PERCE |
, IN | | BASE
DISCH | IARGE, IN | RIOD OF RE | CORD 19 INDICAT | 40-49 ED RECUF | RRENCE | | YEARS, | BASE
, IN CFS,
AND ANNUA | FOR INDIC | OD OF RE | CORD 194 CURRENCE | 0-49
INTERVAL
IN PERCE | , IN
NT | PERIOD
(CON- | BASE
DISCH | IARGE, IN | RIOD OF RE | CORD 19 INDICAT | 40-49 ED RECUF | RRENCE | | YEARS, A | BASE , IN CFS, AND ANNUA 2 50% | FOR INDIC
L EXCEEDAL | OD OF RE | CORD 194 CURRENCE ABILITY, | 0-49 INTERVAL IN PERCE | , IN
NT
 | PERIOD
(CON-
SECU-
TIVE | BASE
DISCH | IARGE, IN
INTERV
EXCEEDAN | I CFS, FOR
AL, IN YE
ICE PROBAB | CORD 19 R INDICATE ARS, AND ILLITY, 1 | ED
RECUF
ANNUAL
N PERCEN | RRENCE | | YEARS, /
1.25
80% | BASE , IN CFS, AND ANNUA 2 50% | FOR INDIC
L EXCEEDAL | OD OF RE | CORD 194 CURRENCE ABILITY, | 0-49 INTERVAL IN PERCE | , IN
NT
 | PERIOD
(CON-
SECU-
TIVE | BASE
DISCH | IARGE, IN
INTERV
EXCEEDAN | I CFS, FOR
AL, IN YE
ICE PROBAB | CORD 19 R INDICATE ARS, AND ILLITY, 1 | ED RECUF
ANNUAL
N PERCEN | RRENCE | | 1.25
80% | BASE , IN CFS, AND ANNUA 2 50% | FOR INDIC
L EXCEEDAL
5
20% | OD OF RE | CORD 194 CURRENCE ABILITY, | 0-49 INTERVAL IN PERCE | , IN
NT
 | PERIOD (CON-
SECU-
TIVE DAYS) | DISCH | HARGE, IN
INTERV
EXCEEDAN | I CFS, FOR
VAL, IN YE
ICE PROBAB | CORD 19 R INDICAT RARS, AND RILITY, I | ED RECUF
ANNUAL
N PERCEN
50
2% | RRENCE | | 1.25
80% | BASE , IN CFS, AND ANNUA 2 50% | FOR INDIC
L EXCEEDAL
5
20% | OD OF RE | CORD 194 CURRENCE ABILITY, | 0-49 INTERVAL IN PERCE | , IN
NT
 | PERIOD (CON-
SECU-
TIVE
DAYS) | BASE DISCH 2 50% 8580 6150 4040 | IARGE, IN
INTERV
EXCEEDAN
5
20%
13300
9440
6140 | 1 CFS, FOR AL, IN YE CE PROBAB | CORD 19 R INDICAT FARS, AND HILITY, I 25 4% | ED RECUP
O ANNUAL
N PERCEN
50
2% | 100
1% | | 1.25
80% | BASE , IN CFS, AND ANNUA 2 50% | FOR INDIC
L EXCEEDAL
5
20% | OD OF RE | CORD 194 CURRENCE ABILITY, | 0-49 INTERVAL IN PERCE | , IN
NT
 | PERIOD
(CON-
SECU-
TIVE
DAYS)
 | BASE
DISCH
2
50%
8580
6150
4040
2810 | 13300
9440
6140
4070 | I CFS, FOR AL, IN YE CE PROBAB. 10 10 10 10 1700 7580 4930 | RINDICAT
RINDICAT
RARS, AND
ILLITY, I
25
4% | ED RECUP
ANNUAL
N PERCEN
50
2% | 100
1% | | 1.25
80% | BASE , IN CFS, AND ANNUA 2 50% | FOR INDIC
L EXCEEDAL
5
20% | OD OF RE | CORD 194 CURRENCE ABILITY, | 0-49 INTERVAL IN PERCE | , IN
NT
 | PERIOD (CON-
SECU-
TIVE DAYS) 1 3 7 7 15 30 | BASE DISCH 2 50% 8580 6150 4040 2810 2150 | HARGE, IN INTERVEXCEEDAN 5 20% 13300 9440 6140 4070 2940 | 10 CFS, FOR
YAL, IN YE
ICE PROBAB
10 10%
16500
11700
7580
4930
3420 | CORD 19 R INDICAT RARS, AND RILLITY, I 25 4% | ED RECUF
ANNUAL
N PERCEN
50
2% | RRENCE | | 1.25
80% | BASE , IN CFS, AND ANNUA 2 50% | FOR INDIC
L EXCEEDAL
5
20% | OD OF RE | CORD 194 CURRENCE ABILITY, | 0-49 INTERVAL IN PERCE | , IN
NT
 | PERIOD (CON-
SECU-
TIVE DAYS)
 | BASE
DISCH
2
50%
8580
6150
4040
2810 | 13300
9440
6140
4070 | I CFS, FOR AL, IN YE CE PROBAB. 10 10 10 10 1700 7580 4930 | CORD 19 R INDICAT CARS, AND RILITY, I 25 4% | 40-49 ED RECUF ANNUAL N PERCEN 50 2% | 100
1% | | 1.25
80% | BASE , IN CFS, AND ANNUA 2 50% | FOR INDIC
L EXCEEDAL
5
20% | OD OF RE | CORD 194 CURRENCE ABILITY, | 0-49 INTERVAL IN PERCE | , IN
NT
 | PERIOD (CON-
SECU-
TIVE DAYS) 1 3 7 7 15 30 | BASE DISCH 2 50% 8580 6150 4040 2810 2150 | HARGE, IN INTERVEXCEEDAN 5 20% 13300 9440 6140 4070 2940 | 10 CFS, FOR
YAL, IN YE
ICE PROBAB
10 10%
16500
11700
7580
4930
3420 | CORD 19 1 | 50 2% | 100
1% | | 1.25
80% | BASE , IN CFS, AND ANNUA 2 50% | FOR INDIC
L EXCEEDAL
5
20% | CATED RENCE PROE | CURRENCE ABILITY, | 0-49 INTERVAL IN PERCE 50 2% | , IN
NT

1%
 | PERIOD (CON-
SECU-
TIVE DAYS)
 | BASE DISCH 2 50% 8580 6150 4040 2810 2150 1670 1500 | ARGE, IN INTERVEXCEEDAN 13300 9440 4070 2940 2280 2020 | 10 CFS, FOR AL, IN YE CE PROBAB 10 10% 16500 11700 7580 4930 3420 2680 2360 | CORD 19 1 | 50 2% | 100
17 | | 1.25
80% | BASE , IN CFS, AND ANNUA 2 50% | FOR INDIG | CATED RENCE PROE | CORD 194 CURRENCE ABILITY, 25 4% N TABLE | 0-49 INTERVAL IN PERCE 50 2% | , IN
NT

MEAN FLOW | PERIOD (CON- SECU- TIVE DAYS) 1 3 7 7 15 30 60 90 | BASE DISCH 2 50% 8580 6150 4040 2810 2150 1670 0F RECC | 13300
6140
4070
2280
2080
13300
6140
4070
2280
2020 | 10 CFS, FOR AL, IN YE CE PROBAB 10 10% 16500 11700 7580 4930 3420 2680 2360 | R INDICAT | 50 2% | 100
1% | | 1.25
80% | BASE , IN CFS, AND ANNUA 2 50% | FOR INDIG | CATED RENCE PROE | CORD 194 CURRENCE ABILITY, 25 4% N TABLE | 0-49 INTERVAL IN PERCE 50 2% OF DAILY CH WAS EQ | MEAN FLOW | PERIOD
(CON-
SECU-
TIVE
DAYS)
 | BASE DISCH 2 50% 8580 6150 4040 2810 2150 1670 0F RECC | 13300
6140
4070
2280
2080
13300
6140
4070
2280
2020 | 10 CFS, FOR AL, IN YE CE PROBAB 10 10% 16500 11700 7580 4930 3420 2680 2360 | R INDICAT | 50 2% | 100
1% | ## 14155500 ROW RIVER NEAR COTTAGE GROVE, OR--Continued ## STATISTICAL SUMMARIES (AFTER THE COMPLETION OF DORENA DAM) MONTHLY AND ANNUAL MEAN DISCHARGES 1950-82 MAGNITUDE AND PROBABILITY OF ANNUAL LOW FLOW BASED ON PERIOD OF RECORD 1951-82 | | | MANIMIM | MEAN | STAN-
DARD
DEVIA- | COEFFI-
CIENT OF | PERCENT | PERIOD
(CON- | | INTERVAL | , IN YEA | RS, AND | ATED RECU
ANNUAL N
IN PERCE | ON- | |------------------------|--------------------------------|------------------------|------------------|---|---|-------------------------|---|---|---|--|--|---|-----------| | НТИОМ | (CFS) | MAXIMUM
(CFS) | MEAN
(CFS) | TION
(CFS) | VARI-
ATION | ANNUAL
RUNOFF | SECU-
TIVE
Days) | 2
50% | 5
20% | 10
10% | 20
5% | 50
2% | 100
1% | | OCTOBER | 29 | 1287 | 443 | 289 | .65 | 4.8 | 1 | | | | | | | | NOVEMBER | 58 | 2957 | 907 | 714 | .79 | 9.8 | 3 | | | | | | | | DECEMBER | 108 | 4277 | 1624 | 1029 | .63 | 17.5 | 7 | | | | | | | | JANUARY | 100 | 3336 | 1631 | 919 | .56 | 17.6 | 14 | | | | | | | | EBRUARY | 69 | 2568 | 1186 | 644 | .54 | 12.8 | 30 | 131 | 84 | 57 | 37 | 21 | | | 4ARCH | 55 | 2739 | 992 | 667 | .67 | 10.7 | 60 | 162 | 111 | 88 | 71 | 54 | | | \PRIL | 200 | 1588 | 740 | 397 | .54 | 8.0 | 90 | 217 | 151 | 121 | 99 | 78 | | | MAY | 186 | 1515 | 521 | 340 | .65 | 5.6 | 120 | 266 | 190 | 150 | 120 | 90 | | | JUNE | 120 | 777 | 309 | 160 | .52 | 3.3 | 183 | 326 | 256 | 220 | 192 | 162 | | | JULY | 96 | 569 | 205 | 111 | .54 | 2.2 | | | | | | | | | AUGUST | 50 | 899 | 382 | 235 | .62 | 4.1 | | | | | | | | | SEPTEMBER | 90 | 705 | 322 | 152 | • 47 | 3.5 | | | | | | | | | ANNUAL | 288 | 1229 | 771 | 212 | • 27 | 100 | | | | | | | | | OISCHARGE, | BASE
, IN CFS, | D ON PERIO | OD OF RE | CORD | OUS PEAK F | , IN | | BASE | D ON PER | OD OF R | RECORD 1 | TED RECU | | | OISCHARGE, | BASE
, IN CFS, | D ON PERIO | OD OF RE | CORD | INTERVAL, | , IN | PERIOD
(CON-
SECU- | BASE
DISCH | D ON PER

ARGE, IN
INTERV | CFS, FO | RECORD 1 | 1950-82 | RRENCE | |)ISCHARGE,
YEARS, A | BASE
, IN CFS,
AND ANNUA | FOR INDIC | OD OF RE | CORD
CURRENCE | INTERVAL, | , IN
NT | PERIOD
(CON- | BASE
DISCH | D ON PER

ARGE, IN
INTERV | CFS, FO | RECORD 1 | 1950-82
TED RECUI | RRENCE | | OISCHARGE,
YEARS, / | BASE
, IN CFS,
AND ANNUA | FOR INDIC
L EXCEEDA | OD OF RE | CORD
CURRENCE
ABILITY, | INTERVAL,
IN PERCEI | , IN
NT | PERIOD
(CON-
SECU-
TIVE | BASE DISCH | D ON PER ARGE, IN INTERV EXCEEDAN 5 20% | CFS, FO
AL, IN Y
CE PROBA | RECORD 1 R INDICA EARS, AN BILITY, | TED RECUI
TED RECUI
TO ANNUAL
IN PERCEI
50
2% | RRENCE | | OISCHARGE,
YEARS, / | BASE , IN CFS, AND ANNUA 2 50% | FOR INDIC
L EXCEEDA | OD OF RE | CORD
CURRENCE
ABILITY, | INTERVAL,
IN PERCEI | , IN
NT |
PERIOD
(CON-
SECU-
TIVE
DAYS) | BASE DISCH | D ON PER ARGE, IN INTERV EXCEEDAN 20% 6280 | CFS, FO
AL, IN Y
CE PROBA | RECORD 1 R INDICA EARS, AN BILITY, 25 4% | 1950-82
ATED RECUI
ID ANNUAL
IN PERCEI | RRENCE | | 1.25
80% | BASE , IN CFS, AND ANNUA 2 50% | FOR INDIC
L EXCEEDA | OD OF RE | CORD
CURRENCE
ABILITY, | INTERVAL,
IN PERCEI | , IN
NT | PERIOD (CON- SECU- TIVE DAYS) | BASE DISCH 2 50% 4780 4560 | D ON PER ARGE, IN INTERV EXCEEDAN 5 20% 6280 5980 | CFS, FO
CFS, FO
AL, IN Y
CE PROBA
10
10% | RECORD 1 REINDICA EARS, AN BILITY, 25 4% 9690 8600 | 1950-82
ITED RECUI
ID ANNUAL
IN PERCEI
50
2%
11600
9880 | RRENCE | | 1.25
80% | BASE , IN CFS, AND ANNUA 2 50% | FOR INDIC
L EXCEEDA | OD OF RE | CORD
CURRENCE
ABILITY, | INTERVAL,
IN PERCEI | , IN
NT | PERIOD
(CON-
SECU-
TIVE
DAYS) | BASE DISCH | D ON PER ARGE, IN INTERV EXCEEDAN 20% 6280 | CFS, FO
AL, IN Y
CE PROBA | RECORD 1 OR INDICA EARS, AN BILITY, 25 4% 9690 | MPSO-82 INTED RECUI ID ANNUAL IN PERCEI 50 2% | RRENCE | | 1.25
80% | BASE , IN CFS, AND ANNUA 2 50% | FOR INDIC
L EXCEEDA | OD OF RE | CORD
CURRENCE
ABILITY, | INTERVAL,
IN PERCEI | , IN
NT | PERIOD (CON-
SECU-
TIVE
DAYS) | BASE DISCH 2 50% 4780 4560 4360 | D ON PER ARGE, IN INTERV EXCEEDAN 5 20% 6280 5980 5590 | CFS, FO
AL, IN Y
CE PROBA
10
10%
7600
7060
6210 | RECORD 1 PR INDICATEARS, AN BILITY, 25 4% 9690 8600 6830 | 1950-82
ITED RECUI
ID ANNUAL
IN PERCEI
50
2%
11600
9880
7200 | RRENCE | | 1.25
80% | BASE , IN CFS, AND ANNUA 2 50% | FOR INDIC
L EXCEEDA | OD OF RE | CORD
CURRENCE
ABILITY, | INTERVAL,
IN PERCEI | , IN
NT | PERIOD (CON- SECU- TIVE DAYS) 1 3 7 15 | BASE DISCH 2 50\$ 4780 4560 4360 3310 2570 | D ON PER ARGE, IN INTERV EXCEEDAN 5 20% 6280 5980 5980 5990 4410 3360 | CFS, FO
AL, IN Y
CE PROBA
10
10%
7660
7060
6210
5050
3810 | RECORD 1 | 1950-82
ITED RECUI
ID ANNUAL
IN PERCEI
50
2\$
11600
9880
7200
6260 | 100
13 | | 1.25
80% | BASE , IN CFS, AND ANNUA 2 50% | FOR INDIC
L EXCEEDA | OD OF RE | CORD
CURRENCE
ABILITY, | INTERVAL,
IN PERCEI | , IN
NT | PERIOD (CON-
SECU-
TIVE DAYS) | DISCH 2 50% 4780 4560 4360 3310 | D ON PER ARGE, IN INTERV EXCEEDAN 5 20% 6280 5980 5980 4410 | CFS, FO
AL, IN Y
CE PROBA
10
10%
7600
7060
6210
5050 | RECORD 1 | 1950-82 ITED RECUI ID ANNUAL IN PERCEI 50 2% 11600 9880 7200 6260 4640 | 100
1% | | 1.25
80% | BASE , IN CFS, AND ANNUA 2 50% | FOR INDIC
L EXCEEDA | CATED RE | CORD
CURRENCE
IABILITY,
25
4% | INTERVAL
IN PERCEI
50
2% | , IN
NT
100
1% | PERIOD (CON- SECU- TIVE DAYS) 1 3 7 15 30 60 | DISCH 2 50% 4780 4560 4360 4361 2570 1950 1690 | ARGE, IN INTERV EXCEEDAN 5 20% 5980 5590 4410 3360 2600 2260 | 10D OF R CFS, F0 AL, IN Y CE PROBA 10 10% 7600 7600 6210 5050 3810 2970 2570 | RECORD 1 R INDICA EARS, AN BILITY, 25 4% 9690 8600 6830 5780 4310 3380 | 1950-82
ITED RECUI
IN PERCEI
50
2%
11600
9880
7200
6260
4640
3650 | 100
1% | | 1.25
80% | BASE , IN CFS, AND ANNUA 2 50% | FOR INDIG | CATED RENCE PROB | CORD CURRENCE ABILITY, 25 4% N TABLE | INTERVAL,
IN PERCENTED SONT TO | IN NT 100 1% | PERIOD
(CON-
SECU-
TIVE
DAYS)
 | DISCH 2 50% 4780 4560 4360 3310 2570 1950 1690 OF RECO | D ON PER ARGE, IN INTERV EXCEEDAN 5 20% 6280 5980 5980 4410 3360 2600 2260 RD 1950- | TOD OF R CFS, FO AL, IN Y CE PROBA 10 10\$ 7600 7060 6210 5050 3810 2970 2570 | RECORD 1 RINDICA EARS, AN BILITY, 25 4% 9690 8600 6830 5780 4310 3380 2910 | 1950-82
ITED RECUI
IN PERCEI
50
2%
11600
9880
7200
6260
4640
3650 | 100
1% | | 1.25
80% | BASE , IN CFS, AND ANNUA 2 50% | FOR INDIG | CATED RENCE PROB | CORD CURRENCE ABILITY, 25 4% N TABLE | INTERVAL
IN PERCEN
50
2%

OF DAILY N | IN NT 100 1% | PERIOD (CON- SECU- TIVE DAYS) | DISCH 2 50% 4780 4560 4360 3310 2570 1950 1690 OF RECO | D ON PER ARGE, IN INTERV EXCEEDAN 5 20% 6280 5980 5980 4410 3360 2600 2260 RD 1950- | TOD OF R CFS, FO AL, IN Y CE PROBA 10 10\$ 7600 7060 6210 5050 3810 2970 2570 | RECORD 1 RINDICA EARS, AN BILITY, 25 4% 9690 8600 6830 5780 4310 3380 2910 | 1950-82
ITED RECUI
IN PERCEI
50
2%
11600
9880
7200
6260
4640
3650 | 100
13 | ## 14156000 MOSBY CREEK NEAR COTTAGE GROVE, OR LOCATION.--Lat 43°44'40", long 122°59'00", in NW± sec.18, T.21 S., R.2 W., Lane County, Hydrologic Unit 17090002, on right bank 0.2 mi upstream from Kizer Creek and 5 mi southeast of Cottage Grove. DRAINAGE AREA.--85 mi², approximately. 778 507 364 270 210 169 107 63 37 16 12 9.1 7.5 6.3 PERIOD OF RECORD. -- February 1936 to September 1946. GAGE. -- Staff gage. Altitude of gage is 750 ft, from topographic map. REMARKS.--No diversion or regulation above station. AVERAGE DISCHARGE.--10 years (water years 1937-46), 191 ft3/s. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 8,520 ft³/s Dec. 28, 1945, gage height, 10.4 ft from floodmark, from rating curve extended above 2,400 ft³/s; minimum, 3 ft³/s Aug. 15, to Sept. 2, 1940. ## STATISTICAL SUMMARIES | | UNTILLY AN | ID ANNUAL | MEAN DIS | CHARGES | 1937-46 | | MA | | | BILITY OF
OD OF REC | | |)W | |---------------------------------------|------------------------------------|----------------------------------|------------------|------------------------------------|------------------------------|-----------------------------|--|--|---|---|------------------------------------|--------------------------------------|------------| | | MINIMUM | MAX IMUM | MEAN | STAN-
DARD
DEVIA-
TION | COEFFI-
CIENT OF
VARI- | PERCENT
OF
ANNUAL | PERIOD
(CON-
SECU- | ſ | NTERVAL, | CFS, FOR
IN YEARS
E PROBAB | S, AND A | NNUAL NE | N- | | MONTH | (CFS) | (CFS) | (CFS) | (CFS) | ATION | RUNOFF | TIVE
DAYS) | 2
50% | 5
20 % | 10
10% | 20
5 % | 50
2% | 100
1% | | OCTOBER | 5.5 | 77 | 28 | 24 | .88 | 1.2 | 1 | 5.8 | 4.2 | 3.5 | 3.0 | | | | NOVEMBER | 6.3 | 626 | 252 | 228 | •90 | 10.9 | 3 | 5.9 | 4.3 | 3.6 | 3.1 | | | | DECEMBER | 46 | 1143 | 383 | 368 | •96 | 16.6 | 7 | 6.2 | 4.5 | 3.7 | 3.1 | | | | JANUARY | 70 | 779 | 323 | 238 | .74 | 14.0 | 14 | 6.8 | 4.8 | 3.9 | 3.2 | | | | FEBRUARY | 110 | 685 | 432 | 174 | -40 | 18.7 | 30 | 7.6 | 5.4 | 4.5 | 3.8 | | | | MARCH | 61 | 689 | 366
257 | 211 | .58 | 15.9 | 60 | 8.9 | 6.5 | 5.6 | 5.1 | | | | APRIL | 66
20 | 644 | 253 | 188 | .74 | 11.0 | 90 | 10 | 7.5 | 6.5 | 5.8 | | | | MAY | 29 | 264 | 130 | 81 | .62 | 5.6 | 120 | 14 | 9.4 | 7.7 | 6.6 | | | | JUNE | 17 | 258 | 95 | 83 | .87 | 4.1 | 183 | 42 | 24 | 17 | 13 | | | | JULY | 7.6 | 39 | 23 | 11 | •50 | 1.0 | | | | | | | | | AUGUST | 4.0 | 18 | 10 | 4.2 | | .4 | | | | | | | | | SEPTEMBER | 7.2 | 33 | 12 | 7.7 | .64 | .5 | | | | | | | | | ANNUAL | 113 | 314 | 191 | 70 | .37 | 100 | | | | | | | | | | BASE | D ON PERI | | | OUS PEAK :
7-46 | FLVIII | MAC | | | OD OF REC | | HIGH FL
37-46 | .OW | | DISCHARGE, | , IN CFS, | D ON PERI | OD OF RE | CORD 193 | 7-46
INTERVAL | , IN | PERIOD
(CON- | BASED
DISCHA | ON PERI

RGE, IN
INTERVA | | INDICATE | 37-46

ED RECUR
ANNUAL | RENCE | | DISCHARGE, | , IN CFS,
AND ANNUA | D ON PERI | OD OF RE | CORD 193 | 7-46
INTERVAL
IN PERCE | , IN | PERIOD | BASED
DISCHA | ON PERI

RGE, IN
INTERVA | OD OF REC | INDICATE | 37-46

ED RECUR
ANNUAL | RENCE | | DISCHARGE,
YEARS, | , IN CFS,
AND ANNUA | FOR INDI | OD OF RE | CORD 193 | 7-46
INTERVAL
IN PERCE | , (N
NT | PERIOD
(CON- | BASED
DISCHA | ON PERI

RGE, IN
INTERVA | OD OF REC | INDICATE | 37-46 ED RECUR ANNUAL N PERCEN | RENCE | | DISCHARGE,
YEARS, / | , IN CFS,
AND ANNUA | FOR INDI | OD OF RE | CORD 193 CURRENCE BABILITY, | 7-46
INTERVAL
IN PERCE | , IN
NT | PERIOD
(CON-
SECU- | BASED
DISCHA | ON PERI | OD OF REC | INDICATE ARS, AND | 37-46 ED RECUR ANNUAL N PERCEN | RENCE | | DISCHARGE,
YEARS, / | , IN CFS,
AND ANNUA | FOR INDI | OD OF RE | CORD 193 CURRENCE BABILITY, | 7-46
INTERVAL
IN PERCE | , IN
NT | PERIOD (CON- SECU- TIVE DAYS) | DISCHA E 2 50% | ON PERI RGE, IN INTERVA XCEEDANC 5 20% | OD OF REC | INDICATE ARS, AND ILITY, IN | 37-46 ED RECUR ANNUAL N PERCEN | RENCE | | DISCHARGE, YEARS, // 1.25 80% | , IN CFS,
AND ANNUA
2
50% | FOR INDI | OD OF RE | CORD 193 CURRENCE BABILITY, | 7-46
INTERVAL
IN PERCE | , IN
NT | PERIOD
(CON-
SECU-
TIVE
DAYS) | BASED DISCHA E 2 50% | ON PERI
RGE, IN
INTERVA
XCEEDANC
5
20%
4340 | OD OF REC
CFS, FOR
L, IN YEA
E PROBAB
10
10% | INDICATE ARS, AND ILITY, IN | 37-46 ED RECUR ANNUAL N PERCEN 50 2% | RENCE | | DISCHARGE,
YEARS, /
1.25
80% | , IN CFS,
AND ANNUA
2
50% | FOR INDI | OD OF RE | CORD 193 CURRENCE BABILITY, | 7-46
INTERVAL
IN PERCE | , IN
NT | PERIOD (CON- SECU- TIVE DAYS) | DISCHA E 50% 2720 1950 | ON PERI RGE, IN INTERVA XCEEDANC 5 20% 4340 3030 | OD OF REC
CFS, FOR
L, IN YE/E
E PROBAB
10
10% | INDICATE ARS, AND ILITY, IN | 37-46 ED RECUR ANNUAL N PERCEN | RENCE | | 1.25
80% | , IN CFS,
AND ANNUA
2
50% | FOR INDI | OD OF RE | CORD 193 CURRENCE BABILITY, | 7-46
INTERVAL
IN PERCE | , IN
NT | PERIOD
(CON-
SECU-
TIVE
DAYS) | BASED DISCHA E-2 50% 2720 1950 1290 | ON PERI RGE, IN INTERVA XCEEDANC 5 20% 4340 3030 1940 | OD OF REC
CFS, FOR
L, IN YE/
E PROBAB
10
10%
5610
3840
2420 | INDICATE
ARS, AND ILITY, IN 25 4% | 37-46 ED RECUR ANNUAL N PERCEN 50 2% | RENCE | | 1.25
80% | , IN CFS,
AND ANNUA
2
50% | FOR INDI | OD OF RE | CORD 193 CURRENCE BABILITY, | 7-46
INTERVAL
IN PERCE | , IN
NT | PERIOD
(CON-
SECU-
TIVE
DAYS) | BASED DISCHA E 2 50% 2720 1950 1290 898 | ON PERI RGE, IN INTERVA XCEEDANC 5 20% 4340 3030 1940 1330 | OD OF REC
CFS, FOR
L, IN YE/
E PROBAB
10
10%
5610
3840
2420
1660 | INDICATE ARS, AND ILITY, IN | 37-46 ED RECUR ANNUAL N PERCEN 50 2% | RENCE | | DISCHARGE, YEARS, // 1.25 80% | , IN CFS,
AND ANNUA
2
50% | FOR INDI | OD OF RE | CORD 193 CURRENCE BABILITY, | 7-46
INTERVAL
IN PERCE | , IN
NT | PERIOD (CON- SECU- TIVE DAYS) 1 3 7 15 30 | DISCHA E 2 50% 2720 1950 1290 898 677 | ON PERI RGE, IN INTERVA XCEEDANC 5 20% 4340 3030 1940 1330 948 | OD OF REC
CFS, FOR
L, IN YE/E
E PROBAB-
10
10\$
5610
3840
2420
1660
1130 | INDICATE ARS, AND ILITY, IN 25 4 4 | 37-46 ED RECUR ANNUAL N PERCEN 50 2% | RENCE | | DISCHARGE, YEARS, // 1.25 80% | , IN CFS,
AND ANNUA
2
50% | FOR INDI | OD OF RE | CORD 193 CURRENCE BABILITY, | 7-46
INTERVAL
IN PERCE | , IN
NT | PERIOD (CON- SECU- TIVE DAYS) 1 3 7 15 30 60 | BASED DISCHA E 2 50% 2720 1950 1290 898 677 565 | ON PERI RGE, IN INTERVA XCEEDANC 5 20% 4340 3030 1940 1330 948 791 | OD OF REC
CFS, FOR
L, IN YE/E
E PROBABI
10
10%
5610
3840
2420
1660
1130
930 | INDICATE ARS, AND ILITY, IN 25 4% | 37-46 ED RECUR ANNUAL N PERCEN 50 2% | RENCE
T | | 1.25
80% | , IN CFS,
AND ANNUA
2
50% | FOR INDI | OD OF RE | CORD 193 CURRENCE BABILITY, | 7-46
INTERVAL
IN PERCE | , IN
NT | PERIOD (CON- SECU- TIVE DAYS) 1 3 7 15 30 | DISCHA E 2 50% 2720 1950 1290 898 677 | ON PERI RGE, IN INTERVA XCEEDANC 5 20% 4340 3030 1940 1330 948 | OD OF REC
CFS, FOR
L, IN YE/E
E PROBAB-
10
10\$
5610
3840
2420
1660
1130 | INDICATE ARS, AND ILITY, IN 25 4 4 | 37-46 ED RECUR ANNUAL N PERCEN 50 2% | RENCE | | 1.25
80% | , IN CFS,
AND ANNUA
2
50% | FOR INDI | CATED RENCE PROB | CURRENCE ABILITY, | 7-46 INTERVAL IN PERCE 50 2% | , IN
NT
100
1% | PERIOD (CON- SECU- TIVE DAYS) 1 3 7 15 30 60 | DISCHA E 2 50% 2720 1950 1290 898 677 565 479 | ON PERI RGE, IN INTERVA XCEEDANC 5 20% | OD OF REC
CFS, FOR
L, IN YE/E
E PROBAB
10
10%
5610
3840
2420
11660
1130
930
804 | INDICATE ARS, AND ILITY, IN 25 4 4 | 37-46 ED RECUR ANNUAL N PERCEN 50 2% | RENCE | | 1.25
80% | , IN CFS,
AND ANNUA
2
50% | FOR INDI
LEXCEEDA
5
20% | OD OF RECOME | CORD 193 COURRENCE HABILITY, 25 4% | 7-46 INTERVAL IN PERCE 50 2% | , IN
NT
100
1%
 | PERIOD (CON-
SECU-
TIVE DAYS) | DISCHA E 2 50% 2720 1950 1290 898 677 565 479 OF RECOR | ON PERI RGE, IN INTERVA XCEEDANC 5 20% 4340 3030 1940 1330 948 791 675 D 1937-4 | OD OF REC CFS, FOR L, IN YE/E PROBABI 10 10% 5610 3840 2420 1660 1130 930 804 | INDICATE ARS, AND ILITY, IN 25 4% | 37-46 ED RECUR ANNUAL N PERCEN 50 2% | RENCE | 14156500 MOSBY CREEK AT MOUTH, NEAR COTTAGE GROVE, OR LOCATION.--Lat 43°46'35", long 122°59'55", in SE½NW½ sec.1, T.21 S., R.3 W., Lane County, Hydrologic Unit 17090002, on left bank 3.5 mi southeast of Cottage Grove and at mile 1.0. DRAINAGE AREA. -- 95.3 mi2. PERIOD OF RECORD. -- September 1946 to September 1981. Monthly discharge only September 1946, published in WSP 1318. GAGE.--Water-stage recorder. Datum of gage is 676.62 ft National Geodetic Vertical Datum of 1929 (Corps of Engineers bench mark). REMARKS.--No regulation. Small diversions for irrigation above station. AVERAGE DISCHARGE. -- 35 years. 241 ft³/s. 34.34 in/yr. 174,600 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 14,100 ft³/s Dec. 22, 1964, gage height, 13.37 ft, from rating curve extended above 4,600 ft³/s on basis of slope-area measurement of peak flow; minimum, 2.8 ft³/s Aug. 15, 1973, Sept. 24, 1974. ## STATISTICAL SUMMARIES MONTHLY AND ANNUAL MEAN DISCHARGES 1947-81 MAGNITUDE AND PROBABILITY OF ANNUAL LOW FLOW BASED ON PERIOD OF RECORD 1948-81 | | MINIMUM | MAXIMUM | MEAN | STAN-
DARD
DEVIA-
TION | COEFFI-
CIENT OF
VARI- | PERCENT
OF
ANNUAL | PERIOD
(CON-
SECU- | 11 | NTERVAL, | CFS, FOR
IN YEARS
E PROBABI | , AND AN | INUAL NO | N- | |-----------|---------|---------|-------|---------------------------------|------------------------------|-------------------------|--------------------------|------------------|------------------|-----------------------------------|------------------|------------------|-----------| | MONTH | (CFS) | (CFS) | (CFS) | (CFS) | ATION | RUNOFF | TIVE
DAYS) | 2
50 % | 5
20 % | 10
10 % | 20
5 % | 50
2 % | 100
1% | | OCTOBER | 9.4 | 550 | 77 | 103 | 1.33 | 2.7 | 1 | 6.1 | 4.4 | 3.7 | 3.3 | 2.8 | | | NOVEMBER | 15 | 1069 | 303 | 226 | .75 | 10.5 | 3 | 6.3 | 4.6 | 3.9 | 3.4 | 3.0 | | | DECEMBER | 28 | 1650 | 518 | 343 | .66 | 17.9 | 7 | 6.7 | 4.9 | 4.2 | 3.7 | 3.2 | | | JANUARY | 38 | 1014 | 554 | 320 | - 58 | 19.1 | 14 | 7.3 | 5.4 | 4.6 | 4.0 | 3.4 | | | FEBRUARY | 50 | 1012 | 459 | 216 | .47 | 15.8 | 30 | 8.4 | 6.1 | 5.2 | 4.5 | 3.9 | | | MARCH | 112 | 779 | 425 | 189 | .44 | 14.7 | 60 | 10 | 7.7 | 6.6 | 5.8 | 5.0 | | | APRIL | 99 | 596 | 271 | 122 | .45 | 9.4 | 90 | 13 | 9.3 | 8.0 | 7.2 | 6.4 | | | MAY | 41 | 486 | 167 | 102 | .61 | 5.8 | 120 | 18 | 14 | 12 | 11 | 9.3 | | | JUNE | 20 | 183 | 70 | 39 | • 55 | 2.4 | 183 | 43 | 31 | 26 | 23 | 20 | | | JULY | 8.7 | 53 | 22 | 9.1 | .41 | •8 | | | | | | | | | AUGUST | 5.1 | 34 | 13 | 6.5 | .51 | .4 | | | | | | | | | SEPTEMBER | 4.6 | 81 | 17 | 14 | .82 | .6 | | | | | | | | | ANNUAL | 83 | 390 | 241 | 66 | .27 | 100 | | | | | | | | MAGNITUDE AND PROBABILITY OF INSTANTANEOUS PEAK FLOW BASED ON PERIOD OF RECORD 1947-81 MAGNITUDE AND PROBABILITY OF ANNUAL HIGH FLOW BASED ON PERIOD OF RECORD 1947-81 47 | DISCHARGE,
YEARS, A | | | | | NCE INTER | | PERIOD
(CON- | | INTERV | 'AL, ÎN Y | EARS, AN | TED RECUI
D ANNUAL
IN PERCEI | | |------------------------|------------------|------------------|-------------------|------------------|------------------|---------------|------------------------|------------------|------------------|--------------|--------------|------------------------------------|-----| | 1.25
80% | 2
50 % | 5
20 % | 10
10 % | 25
4 % | 50
2 % | 100
1%
 | SECU-
TIVE
DAYS) | 2
50 % | 5
20 % | 10
10% | 25
4% | 50
2 % | 100 | | 3180 | 4830 | 7180 | 8770 | 10800 | 12300 | | | 7.40 | | | 7450 | | | | WEIGHTED | SKEW = | 166 | | | | | 3 | 3610
2710 | 5300
3790 | 6310
4400 | 7450
5070 | 8210
5490 | | | | | | | | | | 7 | 1790 | 2480 | 2870 | 3320 | 3620 | | | | | | | | | | 15 | 1190 | 1580 | 1800 | 2050 | 2220 | | | | | | | | | | 30 | 901 | 1150 | 1280 | 1410 | 1500 | | | | | | | | | | 60 | 684 | 887 | 997 | 1120 | 1190 | | | | | | | | | | 90 | 591 | 753 | 843 | 942 | 1010 | | DURATION TABLE OF DAILY MEAN FLOW FOR PERIOD OF RECORD 1947-81 | - | | | DISC | HARGE, | IN CFS, | WHICH WAS | EQUALED | OR EXCE | EDED FOR | INDICATED | PERCENT | OF TIME | | | | |---|------------|-----|------|--------|---------|-----------|---------|---------|----------|-----------|---------|---------|-----|-------------|-----| | _ | 5 % | 10% | 15% | 20% | 25% | 30% | 40% | 50% | 60% | 70% | 75% | 80% | 85% | 90% | 95% | | _ | 969 | 612 | 443 | 342 | 276 | 225 | 148 | 92 | 53 | 29 | 21 | 17 | 13 | 9 .9 | 7.4 | #### 14157000 COAST FORK WILLAMETTE RIVER AT SAGINAW, OR LOCATION.--Lat 43°50'05", long 123°02'30", in NW\ sec.15, T.20 S., R.3 W., Lane County, Hydrologic Unit 17090002, on right bank at Saginaw, 1.0 mi downstream from Row River. DRAINAGE AREA . -- 529 mi2. PERIOD OF RECORD.--October 1923 to September 1951. Monthly discharge only for some periods, published in WSP 1318. GAGE.--Water-stage recorder. Datum of gage is 595.76 ft National Geodetic Vertical Datum of 1929. Prior to May 10, 1930, chain gage at site 50 ft upstream at different datum and May 10, 1930, to Oct. 12, 1938, at present datum. REMARKS.--Small diversions and regulation by log ponds above station; regulation by Cottage Grove Reservoir since Oct. 31, 1942, and Dorena Reservoir since Oct. 11, 1949. AVERAGE DISCHARGE.--28 years (water years 1924-51), 1,236 ft^3/s , 894,800 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, $32,900 \text{ ft}^3/\text{s}$ Dec. $28, 1945, \text{ gage height}, 12.38 \text{ ft}, \text{ from rating curve extended above } 24,000 \text{ ft}^3/\text{s}; \text{ minimum observed, } 15 \text{ ft}^3/\text{s} \text{ Aug. 1, Sept. 4, 1928.}$ #### STATISTICAL SUMMARIES MONTHLY AND ANNUAL MEAN DISCHARGES 1924-42 MAGNITUDE AND PROBABILITY OF ANNUAL LOW FLOW BASED ON PERIOD OF RECORD 1925-42 | | MINIMUM | 148.77.841.94 | M54N | STAN-
DARD
DEVIA- | COEFFI-
CIENT OF | PERCENT
OF | PERIOD
(CON- | | INTERVAL | CFS, FOR
, IN YEAR
CE PROBAB | S, AND A | NNUAL N | ON- | |----------|---------|------------------|---------------|-------------------------|---------------------|------------------|------------------------|------------------|------------------|------------------------------------|------------------|------------------|-----------| | MONTH | (CFS) | MAXIMUM
(CFS) | MEAN
(CFS) | TION
(CFS) | VARI-
ATION | ANNUAL
RUNOFF | SECU-
TIVE
DAYS) | 2
50 % | 5
20 % | 10
10% | 20
5 % | 50
2 % | 100
1% | | CTOBER | 43 | 1081 | 251 | 258 | 1.03 | 1.9 | 1 | 32 | 22 | 19 | 17 | | | | 10VEMBER | 45 | 5677 | 1312 | 1449 | 1.10 | 10.0 | 3 | 33 | 24 | 20 | 18 | | | | ECEMBER | 396 | 3845 | 1754 | 916 | .52 | 13.4 | 7 | 35 | 26 | 22 | 20 . | | | | ANUARY | 516 | 5444 | 2101 | 1275 | .61 | 16.0 | 14 | 38 | 29 | 26 | 24 | | | | EBRUARY | 660 |
5385 | 2437 | 1341 | •55 | 18.6 | 30 | 43 | 34 | 31 | 29 | | | | IARCH | 459 | 4506 | 2004 | 1239 | .62 | 15.3 | 60 | 51 | 39 | 36 | 34 | | | | PRIL | 509 | 4389 | 1588 | 976 | .61 | 12.1 | 90 | 59 | 47 | 43 | 41 | | | | ΙΑΥ | 247 | 1904 | 887 | 484 | .55 | 6.8 | 120 | 74 | 58 | 53 | 51 | | | | UNE | 115 | 1533 | 515 | 388 | .75 | 3.9 | 183 | 173 | 122 | 105 | 95 | | | | ULY | 53 | 348 | 137 | 80 | .58 | 1.0 | | | | | | | | | UGUST | 33 | 114 | 65 | 26 | .40 | •5 | | | | | | | | | EPTEMBER | 38 | 242 | 76 | 49 | •64 | .6 | | | | | | | | | NNUAL | 621 | 1716 | 1086 | 355 | .33 | 100 | | | | | | | | MAGNITUDE AND PROBABILITY OF INSTANTANEOUS PEAK FLOW BASED ON PERIOD OF RECORD 1924-42 MAGNITUDE AND PROBABILITY OF ANNUAL HIGH FLOW BASED ON PERIOD OF RECORD 1924-42 | | | | | RECURRENC
ROBABILITY | | | PERIOD
(CON- | DISC | INTER | VAL, ÍN | OR INDICAT
YEARS, AND
ABILITY. I | ANNUAL | | |-------------|----------------------|------------------|-----------|-------------------------|------------------|-----------|------------------------|------------------|------------------|---------------|--|------------------|-----------| | 1.25
80% | 2
50 %
 | 5
20 % | 10
10% | 25
4% | 50
2 % | 100
1% | SECU-
TIVE
DAYS) | 2
50 % | 5
20 % | 10
10% | 25
4% | 50
2 % | 100
1% | | 13900 | 18300 | 24300 | 28300 | 33400 | | | | | | | | | | | | | | | | | | 1 | 13900 | 18200 | 21000 | 24600 | | | | WEIGHTE | D SKEW : | 106 | | | | | 3 | 10500 | 14000 | 16200 | 19100 | | | | | | | | | | | 7 | 7340 | 9460 | 10700 | 12000 | | | | | | | | | | | 15 | 5120 | 6640 | 7560 | 8620 | | | | | | | | | | | 30 | 3870 | 4930 | 5 5 50 | 6240 | | | | | | | | | | | 60 | 2290 | 3710 | 4110 | 4550 | | | | | | | | | | | 90 | 2570 | 3250 | 3640 | 4080 | | | DURATION TABLE OF DAILY MEAN FLOW FOR PERIOD OF RECORD 1924-42 | | | DISC | HARGE, | N CFS, | WHICH WAS | EQUALED | OR EXCE | EDED FOR | INDICATED | PERCENT | OF TIME | | | | |------|------|------|--------|--------|-----------|---------|---------|----------|-----------|---------|---------|-----|-----|-----| | 5% | 10% | 15% | 20% | 25% | 30% | 40% | 50% | 60% | 70% | 75% | 80% | 85% | 90% | 95% | | 4210 | 2780 | 2050 | 1650 | 1380 | 1140 | 765 | 471 | 267 | 134 | 103 | 79 | 63 | 51 | 40 | ## 14157500 COAST FORK WILLAMETTE RIVER NEAR GOSHEN, OR LOCATION.--Lat 43°58'50", long 122°57'55", in NW½ sec.29, T.18 S., R.2 W., Lane County, Hydrologic Unit 17090002, on right bank at downstream side of bridge on State Highway 58, 2.5 mi southeast of Goshen, and at mile 6.4. DRAINAGE AREA .-- 642 mi2. 5% 7010 10% 4660 15% 3130 20% 2290 25% 1770 30% 1390 40% 973 50% 734 60% 572 70% 446 75% 374 80% 314 85% 266 90% 223 95% 182 PERIOD OF RECORD.--August 1905 to February 1912, October 1950 to September 1982. Monthly discharge only for some periods, published in WSP 1318. GAGE.--Water-stage recorder. Datum of gage is 473.80 ft National Geodetic Vertical Datum of 1929. Aug. 23, 1905, to Feb. 7, 1912, nonrecording gage at site 600 ft upstream at different datum. REMARKS.--Flow regulated since 1942 by Cottage Grove Lake and since 1949 by Dorena Lake. Several small diversions for logponds and irrigation above station. AVERAGE DISCHARGE.--38 years (water years 1906-11, 1951-82), 1,649 ft³/s, 1,195,000 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.—Maximum discharge, 58,500 ft 3 /s Nov. 22, 1909, gage height, 19.5 ft, site and datum then in use, from rating curve extended above 15,000 ft 3 /s; minimum, 36 ft 3 /s Sept. 29, 30, Oct. 11, 12, 1908. #### STATISTICAL SUMMARIES (AFTER THE COMPLETION OF COTTAGE GROVE AND DORENA DAMS) | | MINIMUM | MAXIMUM | MEAN | STAN-
DARD
DEVIA-
TION | COEFFI-
CIENT OF
VARI- | PERCENT
OF
ANNUAL | PERIOD
(CON-
SECU- | DISC | INTERVA | L, IN YE | ARS, AND | ATED RECU
ANNUAL N
IN PERCE | ON- | |---------------------------------|--|---|---|---------------------------------|---|-------------------------|---|---|--|--|--|---|-----------| | ONTH | (CFS) | (CFS) | (CFS) | (CFS) | ATION | RUNOFF | TIVE
DAYS) | 2
50% | 5
20% | 10
10% | 20
5% | 50
2% | 100
1% | | OCTOBER | 204 | 3119 | 779 | 563 | .72 | 3.9 | 1 | 157 | 128 | 114 | 102 | 90 | | | OVEMBER | 121 | 6305 | 1948 | 1545 | .79 | 9.8 | 3 | 163 | 135 | 121 | 110 | 98 | | | ECEMBER | 196 | 9820 | 3702 | 2357 | .64 | 18.7 | 7 | 172 | 144 | 129 | 117 | | | | ANUARY | 200 | 7239 | 3797 | 2116 | .56 | 19.1 | 14 | 181 | 150 | 135 | 123 | 110 | | | EBRUARY | 203 | 6891 | 2787 | 1451 | .52 | 14.1 | 30 | 205 | 168 | 152 | 140 | 128 | | | IARCH | 510 | 5716 | 2373 | 1416 | .60 | 12.0 | 60 | 273 | 208 | 180 | 160 | 140 | | | PRIL | 503 | 4020 | 1576 | 879 | .56 | 7.9 | 90 | 352 | 265 | 226 | 197 | 169 | | | IAY
IUNE | 341 | 3285 | 988 | 694 | •70 | 5.0 | 120 | 416 | 328 | 284 | 250 | 212 | | | IULY | 218
159 | 1445
588 | 521
290 | 265 | •51 | 2.6 | 183 | 520 | 427 | 386 | 356 | 326 | | | | 147 | 1115 | 530 | 107
290 | •37
•55 | 1.5
2.7 | | | | | | | | | DRAIDS I | | | | 230 | •)) | | | | | | | | | | NUGUST
SEPTEMBER | 171 | 1057 | 545 | 212 | .39 | 2.7 | | | | | | | | | EPTEMBER | 171
512
 | 1057
2701 | 1650
TY OF IN | 478
 | .39
.29
 | 100 |
MA | | | | OF ANNU | AL HIGH FI |
_OW | | EPTEMBER NNUAL MAGNIT | 171 512 FUDE AND BASE | 1057 2701 PROBABILITO ON PERIO | 1650 TY OF INDO OF RE | 478 ISTANTANE CORD CURRENCE | .29 | 100
FLOW | MA PERIOD (CON- | BASI | HARGE, II | RIOD OF I | RECORD

OR INDIC
YEARS, A | 1951-82

ATED RECUIND ANNUAL | RRENCE | | MAGNIT
ISCHARGE,
YEARS, A | 171 512 FUDE AND BASE IN CFS, AND ANNUA | 1057 2701 PROBABILITO ON PERIO FOR INDICAL EXCEEDAL | 1650 TY OF INDD OF RE CATED RE NCE PROB | 478ISTANTANE CORD | .29 OUS PEAK F INTERVAL, IN PERCEN | 100
FLOW | PERIOD
(CON-
SECU- | BASI
DISCI | HARGE, II | N CFS, FO
VAL, IN | RECORD OR INDICA YEARS, A | 1951-82
ATED RECUI
ND ANNUAL
IN PERCEI | RRENCE | | EPTEMBER NNUAL MAGNIT | 171 512 FUDE AND BASE IN CFS, | 2701 PROBABILI D ON PERIC FOR INDIC | 1650 TY OF INDO OF RE | 478 | .29
OUS PEAK F
INTERVAL,
IN PERCEN | 100
FLOW | PERIOD
(CON- | BASI | HARGE, II | RIOD OF I | RECORD

OR INDIC
YEARS, A | 1951-82

ATED RECUIND ANNUAL | RRENCE | | MAGNIT
ISCHARGE,
YEARS, A | 171 512 FUDE AND BASE IN CFS, AND ANNUA | 1057 2701 PROBABILITO ON PERIO FOR INDICAL EXCEEDAL | 1650 TY OF INDD OF RE CATED RE NCE PROB | 478 | .29 OUS PEAK F INTERVAL, IN PERCEN | 100
FLOW | PERIOD
(CON-
SECU-
TIVE
DAYS) | BASI
DISCI
2
50% | HARGE, II INTER EXCEEDA | N CFS, FO
VAL, IN 'NCE PROB
10 | RECORD OR INDIC YEARS, AI ABILITY, 25 4% | 1951-82 ATED RECUI ND ANNUAL IN PERCEI 50 2% | RRENCE | | MAGNIT | 171 512 FUDE AND BASE IN CFS, ND ANNUA 2 50% | 1057 2701 PROBABILITO ON PERIO FOR INDICAL EXCEEDAL | 1650 TY OF INDD OF RE CATED RE NCE PROB | 478 | .29 OUS PEAK F INTERVAL, IN PERCEN | 100
FLOW | PERIOD (CON- SECU- TIVE DAYS) | BASI
DISCI | HARGE, II INTER EXCEEDA 5 20% | N CFS, FO
VAL, IN N
NCE PROB.
10
10% | OR INDICATE OF THE PROPERTY | 1951-82 ATED RECUI ND ANNUAL IN PERCEI 50 2% | RRENCE | | MAGNIT
ISCHARGE,
YEARS, A | 171 512 FUDE AND BASE IN CFS, ND ANNUA 2 50% | 1057 2701 PROBABILITO ON PERIO FOR INDICAL EXCEEDAL | 1650
TY OF INDD OF RE CATED RE NCE PROB | 478 | .29 OUS PEAK F INTERVAL, IN PERCEN | 100
FLOW | PERIOD
(CON-
SECU-
TIVE
DAYS) | DISCH | HARGE, II INTER EXCEEDAI 18200 14400 | N CFS, FG
VAL, IN
NCE PROB.
10
10% | PRECORD OR INDIC. YEARS, AI ABILITY, 25 4% 24400 18800 | 1951-82
ATED RECUI
ND ANNUAL
IN PERCEI
50
2%
26500
20300 | RRENCE | | MAGNIT | 171 512 FUDE AND BASE IN CFS, ND ANNUA 2 50% | 1057 2701 PROBABILITO ON PERIO FOR INDICAL EXCEEDAL | 1650 TY OF INDD OF RE CATED RE NCE PROB | 478 | .29 OUS PEAK F INTERVAL, IN PERCEN | 100
FLOW | PERIOD (CON-
SECU-
TIVE
DAYS) | BASI
DISCI
2
50%
 | HARGE, II
INTER
EXCEEDAI
5
20%
18200
14400
12600 | N CFS, FG
WAL, IN
NCE PROB.
10
10%
21100
16500
14100 | RECORD OR INDICA YEARS, AI ABILITY, 25 4% 24400 18800 15400 | 1951-82 ATED RECUI ND ANNUAL IN PERCEI 50 2% 26500 20300 16200 | RRENCE | | MAGNIT | 171 512 FUDE AND BASE IN CFS, ND ANNUA 2 50% | 1057 2701 PROBABILITO ON PERIO FOR INDICAL EXCEEDAL | 1650 TY OF INDD OF RE CATED RE NCE PROB | 478 | .29 OUS PEAK F INTERVAL, IN PERCEN | 100
FLOW | PERIOD (CON-
SECU-
TIVE DAYS) | DISCH
2 50%
13100
10700
9540
7580 | HARGE, II
INTER
EXCEEDAL
5
20%
18200
14400
12600
10000 | N CFS, F6
VAL, IN N
NCE PROB
10
10%
21100
16500
14100
11200 | RECORD OR INDIC. YEARS, AI ABILITY, 25 4% 24400 18800 15400 12400 | 1951-82 ATED RECUIND ANNUAL IN PERCEI 50 2\$ 26500 20300 16200 13100 | RRENCE | | MAGNIT | 171 512 FUDE AND BASE IN CFS, ND ANNUA 2 50% | 1057 2701 PROBABILITO ON PERIO FOR INDICAL EXCEEDAL | 1650 TY OF INDD OF RE CATED RE NCE PROB | 478 | .29 OUS PEAK F INTERVAL, IN PERCEN | 100
FLOW | PERIOD (CON-
SECU-
TIVE DAYS) 1 3 7 15 30 | DISCI
2
50%
13100
10700
9540
7580
5950 | HARGE, II
INTER
EXCEEDAI
5
20%
18200
14400
12600
17760 | N CFS, FV
VAL, IN
NCE PROB.
10
10%
21100
16500
14100
11200
8640 | RECORD OR INDIC YEARS, AI ABILITY, 25 4% 24400 18800 15400 12400 9490 | 1951-82 ATED RECUIND ANNUAL IN PERCEI 50 2\$ 26500 20300 16200 13100 9970 | RRENCE | | MAGNIT | 171 512 FUDE AND BASE IN CFS, ND ANNUA 2 50% | 1057 2701 PROBABILITO ON PERIO FOR INDICAL EXCEEDAL | 1650 TY OF INDD OF RE CATED RE NCE PROB | 478 | .29 OUS PEAK F INTERVAL, IN PERCEN | 100
FLOW | PERIOD (CON-
SECU-
TIVE DAYS) 1 3 7 15 | DISCH
2 50%
13100
10700
9540
7580 | HARGE, II
INTER
EXCEEDAL
5
20%
18200
14400
12600
10000 | N CFS, F6
VAL, IN N
NCE PROB
10
10%
21100
16500
14100
11200 | RECORD OR INDIC. YEARS, AI ABILITY, 25 4% 24400 18800 15400 12400 | 1951-82 ATED RECUIND ANNUAL IN PERCEI 50 2\$ 26500 20300 16200 13100 | RRENCE | #### 14158000 WILLAMETTE RIVER AT SPRINGFIELD, OR LOCATION.--Lat 44°02'45", long 123°01'40", in SE½ sec.34, T.17 S., R.3 W., Lane County, Hydrologic Unit 17090003, near center of span on downstream side of bridge on U.S. Highway 126 at Springfield, and at mile 185.6. DRAINAGE AREA. -- 2,030 mi², approximately. PERIOD OF RECORD.—October 1911 to December 1913, June 1919 to September 1957. Monthly discharge only for October 1911, published in WSP 1318. Published as "at Eugene" June 1919 to September 1928; gage-height records collected at site at Eugene since 1878 are contained in reports of U.S. Weather Bureau. GAGE.--Water-stage recorder. Datum of gage is 423.77 ft National Geodetic Vertical Datum of 1929. Nov. 27, 1911, to Dec. 31, 1913, chain gage on bridge 0.2 mi upstream at different datum. June 1, 1919, to Nov. 24, 1928, staff gage at site 3.4 mi downstream at datum 23.92 ft lower than described gage. REMARKS.--Flow regulated by Cottage Grove (since 1942), Dorena (since 1949), and Lookout Point Reservoirs (since 1954). Small diversions for irrigation above station. AVERAGE DISCHARGE.--40 years (water years 1912-13, 1920-57), 5,453 ft³/s, 3,948,000 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 140,000 ft³/s Dec. 29, 1945, gage height, 20.9 ft, from rating curve extended above 93,000 ft³/s; minimum, 500 ft³/s Aug. 11, 1926. EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage recorded by U.S. Weather Bureau, 22.0 ft Jan. 25, 1903, at Eugene. Floods of Dec. 4, 1861, and Feb. 3, 1890, reached about the same stage. ### STATISTICAL SUMMARIES (BEFORE THE CONSTRUCTION OF UPSTREAM RESERVOIRS) MONTHLY AND ANNUAL MEAN DISCHARGES 1912-42 MAGNITUDE AND PROBABILITY OF ANNUAL LOW FLOW BASED ON PERIOD OF RECORD 1913-42 | | Management | MANAMA | M51 | STAN-
DARD
DEVIA- | COEFFI-
CIENT OF | PERCENT
OF | PERIOD
(CON-
SECU- | | IARGE, IN
INTERVAL
EXCEEDAN | , IN YEA | RS, AND | ANNUAL N | ON- | |-----------|------------|------------------|---------------|-------------------------|---------------------|------------------|--------------------------|----------|-----------------------------------|-----------|----------|------------------|-----------| | MONTH | (CFS) | MAXIMUM
(CFS) | MEAN
(CFS) | TION
(CFS) | VARI-
ATION | ANNUAL
RUNOFF | TIVE
DAYS) | 2
50% | 5
20 % | 10
10% | 20
5% | 50
2 % | 100
1% | | OCTOBER | 659 | 4999 | 1411 | 906 | .64 | 2.4 | 1 | 650 | 562 | 527 | 503 | 480 | | | NOVEMBER | 629 | 15190 | 5216 | 3887 | .75 | 8.8 | 3 | 661 | 574 | 540 | 515 | 492 | | | DECEMBER | 1723 | 15250 | 7184 | 3476 | .48 | 12.1 | 7 | 674 | 584 | 548 | 522 | 496 | | | JANUARY | 1961 | 17240 | 8978 | 4871 | .54 | 15.2 | 14 | 691 | 599 | 562 | 536 | 511 | | | FEBRUARY | 2733 | 18220 | 8891 | 4644 | .52 | 15.0 | 30 | 734 | 628 | 583 | 550 | 518 | | | MARCH | 2218 | 16890 | 7626 | 3506 | •46 | 12.9 | 60 | 795 | 666 | 616 | 581 | 549 | | | APRIL . | 2708 | 15340 | 7080 | 3050 | .43 | 12.0 | 90 | 869 | 709 | 645 | 599 | 555 | | | 4AY | 2014 | 8976 | 5400 | 2230 | .41 | 9.1 | 120 | 962 | 765 | 690 | 640 | 592 | | | IUNE | 1121 | 9708 | 3926 | 2281 | .58 | 6.6 | 183 | 1530 | 1130 | 985 | 886 | 794 | | | JULY | 726 | 4399 | 1598 | 811 | .51 | 2.7 | | | | | | | | | AUGUST | 547 | 1482 | 913 | 239 | •26 | 1.5 | | | | | | | | | SEPTEMBER | 614 | 2669 | 989 | 451 | • 46 | 1.7 | | | | | | | | | ANNUAL | 2783 | 7247 | 4911 | 1392 | .28 | 100 | | | | | | | | | | | | | | NCE INTER | | PERIOD | DISC | INTER | VAL, IN | YEARS, A | ATED RECUIND ANNUAL | | |-------------|----------------------|------------------|-----------|----------|------------------|-----------|------------------------|----------|------------------|-----------|-----------------|---------------------|-----| | 1.25
80% | 2
50 %
 | 5
20 % | 10
10% | 25
4% | 50
2 % | 100
1% | SECU-
TIVE
DAYS) | 2
50% | 5
20 % | 10
10% | 25
4% | 50
2% | 100 | | 38000 | 50900 | 68100 | 79100 | 92700 | 103000 | | | | | | | | | | WC LOUTE | D CKCM | | | | | | 1 | 44300 | 58400 | 66800 | 76600 | 83400 | | | WEIGHTE | D SKEW = | 039 | | | | | 2 | 35000 | 45400 | 51200 | 57600 | 61800 | | | | | | | | | | 7 | 25300 | 32800 | 36800 | 40900 | 43500 | | | | | | | | | | 15 | 19300 | 24600 | 27600 | 30700 | 32700 | | | | | | | | | | 30 | 14600 | 17800 | 19500 | 21100 | 22100 | | | | | | | | | | 60 | 11300 | 13900 | 15400 | 17200 | 18300 | | | | | | | | | | 90 | 9870 | 12100 | 13400 | 14900 | 15800 | | DURATION TABLE OF DAILY MEAN FLOW FOR PERIOD OF RECORD 1912-42 | | | DIS | CHARGE, | IN CFS, | WHICH WAS | EQUALED | OR EXC | EEDED FOR | INDICATED | PERCENT | OF TIME | | | | |-------|--------------|------|---------|---------|-----------|---------|--------|-----------|-----------|---------|---------|-----|-----|-----| | 5 | % 10% | 15% | 20% | 25% | 30% | 40% | 50% | 60% | 70% | 75% | 80% | 85% | 90% | 95% | | 14800 | 10900 | 8860 | 7550 | 6530 | 5670 | 4330 | 3130 | 2110 | 1360 1 | 160 | 990 | 856 | 753 | 666 | 14158500 MCKENZIE RIVER AT OUTLET OF CLEAR LAKE, OR LOCATION.--Lat 44°21'40", long 121°59'40", in SEt sec.8, T.14 S., R.7 E., Linn County, Hydrologic Unit 17090004, Willamette National Forest, on west bank of Clear Lake in narrow channel, 150 ft upstream from outlet and at mile 89.6. DRAINAGE AREA.--92.4 mi², hydrologic drainage boundary uncertain owing to ground-water exchange. PERIOD OF RECORD.--June 1912 to September 1915, October 1947 to September 1982. Monthly discharge only for some periods, published in WSP 1318. GAGE.--Water-stage recorder. Datum of gage is 3,015.32 ft National Geodetic Vertical Datum of 1929 (levels by Eugene Water and Electric Board). June 20, 1912, to July 31, 1915, nonrecording gage at site 1.0 mi north at different datum. REMARKS.--Flow regulated by natural storage in lake. At high stages an undetermined flow enters numerous sinkholes in lava rock along south edge of lake above station. AVERAGE DISCHARGE.--38 years, 469 ft^3/s , 68.93 in/yr, 339,800 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 3,300 ft³/s Dec. 23, 1964, gage height, 8.15 ft; minimum, 137 ft³/s Sept. 23, 1977, Nov. 4, 1980. #### STATISTICAL SUMMARIES MONTHLY AND ANNUAL MEAN DISCHARGES 1913-82 MAGNITUDE AND PROBABILITY OF ANNUAL LOW FLOW BASED ON PERIOD OF RECORD 1914-82 | | MINIMUM | MAXIMUM | MEAN | STAN-
DARD
DEVIA-
TION | COEFFI-
CIENT OF
VARI- | PERCENT
OF
ANNUAL | PERIOD
(CON-
SECU- | | INTERVAL | , IN YEA | R INDICAT
RS, AND A
BILITY, | ANNUAL N | 0N- | |-----------|---------|-------------|---------------|---------------------------------|------------------------------|-------------------------|--------------------------|----------|------------------|-----------|-----------------------------------|------------------|-----------| | MONTH | (CFS) | (CFS) | MEAN
(CFS) | (CFS) | ATION | RUNOFF | TIVE
DAYS) | 2
50% | 5
20 % | 10
10% | 20
5% | 50
2 % | 100
1% | | OCTOBER | 145 | 428 | 262 | 70 | •27 | 4.7 | 1 | 210 | 173 | 156 | 143 | 130 | | | NOVEMBER | 163 | 829 |
379 | 134 | . 35 | 6.7 | 3 | 211 | 174 | 157 | 144 | 131 | | | DECEMBER | 209 | 1209 | 558 | 249 | .45 | 9.9 | 7 | 212 | 175 | 158 | 145 | 132 | | | JANUARY | 191 | 999 | 531 | 214 | . 40 | 9.4 | 14 | 215 | 177 | 160 | 146 | 133 | | | FEBRUARY | 180 | 986 | 531 | 214 | .40 | 9.4 | 30 | 223 | 183 | 164 | 151 | 136 | | | MARCH | 224 | 1205 | 482 | 179 | . 37 | 8.6 | 60 | 237 | 192 | 172 | 157 | 141 | | | APRIL | 341 | 815 | 574 | 134 | .23 | 10.2 | 90 | 251 | 203 | 181 | 165 | 148 | | | MAY | 370 | 1178 | 717 | 218 | .30 | 12.7 | 120 | 268 | 215 | 192 | 174 | 156 | | | JUNE | 303 | 1202 | 608 | 250 | .41 | 10.8 | 183 | 315 | 255 | 230 | 213 | 195 | | | JULY | 173 | 7 37 | 410 | 137 | .33 | 7.3 | | | | | | | | | AUGUST | 149 | 499 | 316 | 96 | .31 | 5.6 | | | | | | | | | SEPTEMBER | 143 | 392 | 263 | 67 | . 25 | 4.7 | | | | | | | | | ANNUAL | 241 | 683 | 469 | 102 | .22 | 100 | | | | | | | | MAGNITUDE AND PROBABILITY OF INSTANTANEOUS PEAK FLOW BASED ON PERIOD OF RECORD MAGNITUDE AND PROBABILITY OF ANNUAL HIGH FLOW BASED ON PERIOD OF RECORD 1913-82 51 |) SCHARGE,
YEARS, A | | | | | | | PERIOD
(CON- | | INTERV | AL, ÎN Y | EARS, AN | TED RECUI
D ANNUAL
IN PERCEI | | |------------------------|--------------|----------------------|-----------|----------|----------------------|-----------|------------------------|------------------|--------|----------|----------|------------------------------------|-----| | 1.25
80% | 2
50%
 | 5
20 %
 | 10
10% | 25
4% | 50
2 %
 | 100
1% | SECU-
TIVE
DAYS) | 2
50 % | 5 20% | 10 | 25
4% | 50
2% | 100 | 1 | 1380 | 1890 | 2220 | 2630 | 2940 | | | WEIGHTED | SKEW = | | | | | | 3 | 1270 | 1690 | 1950 | 2260 | 2490 | | | | | | | | | | 7 | 1150 | 1480 | 1690 | 1940 | 2110 | | | | | | | | | | 15 | 1040 | 1270 | 1410 | 1550 | 1650 | | | | | | | | | | 30 | 923 | 1110 | 1210 | 1310 | 1380 | | | | | | | | | | 60 | 789 | 948 | 1030 | 1120 | 1180 | | | | | | | | | | 90 | 719 | 852 | 920 | 989 | 1030 | | DURATION TABLE OF DAILY MEAN FLOW FOR PERIOD OF RECORD 1913-82 | _ | | | DISCH | ARGE, | IN CFS, | WHICH WAS | EQUALED | OR EXCE | DED FOR | INDICATED | PERCENT | OF TIME | | | | |---|-----|-----|-------|-------|---------|-----------|---------|---------|---------|-----------|-------------|---------|-----|-----|-----| | _ | 5% | 10% | 15% | 20% | 25% | 30% | 40% | 50% | 60% | 70% | 75 % | 80% | 85% | 90% | 95% | | | 970 | 819 | 718 | 641 | 583 | 531 | 453 | 404 | 360 | 314 | 290 | 269 | 245 | 220 | 193 | #### 14158790 SMITH RIVER ABOVE SMITH RIVER RESERVOIR, NEAR BELKNAP SPRINGS, OR LOCATION.--Lat 44°20'05", long 122°02'45", in SW±SW± sec.24, T.14 S., R.6 E., Linn County, Hydrologic Unit 17090004, in Willamette National Forest, on right bank 200 ft upstream from Smith River Reservoir, 0.7 mi downstream from Browder Creek, 10 mi north of town of Belknap Springs, and at mile 4.4. DRAINAGE AREA .-- 16.2 mi2. PERIOD OF RECORD. -- October 1960 to September 1982. GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 2,610.00 ft National Geodetic Vertical Datum of 1929 (levels by Eugene Water and Electric Board). Prior to Sept. 10, 1964, at datum 1.56 ft higher. REMARKS.--No regulation or diversion above station. AVERAGE DISCHARGE.--22 years, 91.2 ft³/s, 76.45 in/yr, 66,070 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 5,160 ft³/s Dec. 22, 1964, gage height, 11.9 ft, from floodmark, from rating curve extended above 560 ft³/s, on basis of slope-area measurement of peak flow; minimum, 2.5 ft³/s Sept. 15-18, 1980. STATISTICAL SIMMADIES | | | | | | 5 | IAIISIICA | AL SUMMARIES | | | | | | | |--|------------------------|--------------------------|----------------------------------|---------------------------------|------------------------------|-----------------------------|--|---|--|--|---|--|-----------| | M | ONTHLY AN | ND ANNUAL | MEAN DIS | CHARGES | 1961-82 | | MAG | SNITUDE A
BASED | | | F ANNUAL
CORD 19 | | W | | ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ | MINIMUM | MAXIMUM | MEAN | STAN-
DARD
DEVIA-
TION | COEFFI-
CIENT OF
VARI- | PERCENT
OF
ANNUAL | PERIOD
(CON-
SECU- | 1 | NTERVAL, | IN YEAR | INDICATE
S, AND A | NNUAL NO | N- | | MONTH | (CFS) | (CFS) | (CFS) | (CFS) | ATION | RUNOFF | TIVE
DAYS) | 2
50% | 5
20 % | 10
10% | 20
5 % | 50
2% | 100
1% | | OCTOBER
NOVEMBER
DECEMBER
JANUARY | 4.3
13
9.9
14 | 76
213
404
293 | 25
112
167
136 | 21
68
94
71 | .84
.61
.56 | 2.2
10.2
15.2
12.4 | 1
3
7
14 | 3.8
3.8
3.9
4.2 | 3.2
3.3
3.3
3.5 | 3.0
3.0
3.1
3.2 | 2.8
2.8
2.9
3.1 |

 | | | FEBRUARY
MARCH
APRIL
MAY | 13
48
50
53 | 309
321
260
318 | 134
100
133
172 | 84
59
53
80 | .63
.59
.40
.47 | 12.2
9.1
12.1
15.7 | 30
60
90
120 | 4.6
5.5
7.0
10 | 3.9
4.6
5.5
7.3 | 3.6
4.3
4.9
6.3 | 3.4
4.1
4.5
5.5 | |

 | | JUNE
JULY
AUGUST
SEPTEMBER | 7.4
4.2
4.2 | 260
52
12
24 | 85
18
7.1
8.3 | 64
12
2.4
5.0 | .76
.67
.33
.61 | 7.7
1.7
.6
.8 | 183
 | 29 | 20 | 16
 | 13
 | | | | ANNUAL | 39 | 136 | 91 | 24 | .26 | 100 | | | | | | | | | DISCHARGE | | | | | | | | | | | 001.0 750 | 51-82 | | | YEARS, | AND ANNUA | FOR INDI | NCE PROB | ABILITY, | IN PERCE | NT
 | PERIOD
(CON- | | INTERVA | L, IN YE | INDICATE ARS, AND | ED RECUR | | | | | | | | IN PERCE | | | | INTERVA | L, IN YE | INDICATE
ARS, AND | ED RECUR | | | YEARS,
1.25 | AND ANNUA | 5
20% | NCE PROB
10
10% | ABILITY,
25 | IN PERCEI | NT
100 | (CON-
SECU-
TIVE
DAYS) | 2
50% | INTERVA
XCEEDANC
5
20% | L, IN YE
E PROBAB
10
10% | INDICATE ARS, AND ILITY, IN | ED RECUR
ANNUAL
N PERCEN | T
100 | | YEARS,
1.25
80%
737 | AND ANNUA
2
50% | 5
20% | NCE PROB
10
10% | ABILITY,
25
4% | IN PERCEI | NT
100 | (CON-
SECU-
TIVE
DAYS)
 | 2
50%
776
631
491
354 | 1130
879
650
436 | 10
10%
1390
1050
744
482 | INDICATE ARS, AND ILITY, IN 25 4% 1750 1260 855 532 | ED RECUR
ANNUAL
N PERCEN | T
100 | | YEARS,
1.25
80%
737 | 2
50%
1040 | 5
20% | NCE PROB
10
10% | ABILITY,
25
4% | IN PERCEI | NT
100 | (CON-
SECU-
TIVE
DAYS)

1
3
7 | 776
631
491 | 1130
879
650 | 10
10%
1390
1050
744 | INDICATE ARS, AND ILITY, IN 25 4% 1750 1260 855 | ED RECUR
ANNUAL
N PERCEN
50
2% | T
100 | | YEARS,
1.25
80%
737 | 2
50%
1040 | 5
20% | 10
10%
2010 | 25
4%
2660 | 50
2% | NT | (CON-
SECU-
TIVE
DAYS)
 | 776
631
491
354
279
212 | 1130
879
650
436
333
251
222 | 1390
1050
744
482
363
273
240 | 1750
1260
855
532
397
298 | ED RECUR
ANNUAL
N PERCEN
50
2% | T
100 | | YEARS,
1.25
80%
737 | 2
50%
1040 | 1570
.614 | NCE PROB/
10
10%
2010 : | 25
4%
2660 | IN PERCEI | NT | (CON-
SECU-
TIVE
DAYS)
 | 776
631
491
354
279
212
187 | 1130
879
650
436
333
251
222 | 10
10
10
10
10
10
482
363
273
240 | 1750
1260
855
532
397
298
261 | ED RECUR
ANNUAL
N PERCEN
50
2% | T
100 | | YEARS,
1.25
80%
737 | 2
50%
1040 | 1570
.614 | NCE PROB/
10
10%
2010 : | 25
4%
2660 | IN PERCEI 50 2% DF DAILY) | MEAN FLOW | (CON-
SECU-
TIVE
DAYS)
 | 776
631
491
354
279
212
187 | 1130
879
650
436
333
251
222 | 10
10
10
10
10
10
482
363
273
240 | 1750
1260
855
532
397
298
261 | ED RECUR
ANNUAL
N PERCEN
50
2% | T
100 | #### 14158850 MCKENZIE RIVER BELOW TRAIL BRIDGE DAM. NEAR BELKNAP SPRINGS. OR LOCATION.--Lat 44°16'05", long 122°02'55", in T.15 S., R.6 E., (unsurveyed), Linn County, Hydrologic Unit 17090004, in Willamette National Forest, on left bank 0.4 mi downstream from Trail Bridge Dam, 0.5 mi upstream from Anderson Creek, 5 mi north of town of Belknap Springs, and at mile 81.5. DRAINAGE AREA. -- 184 mi2. PERIOD OF RECORD. -- October 1959 to September 1982. GAGE.--Water-stage recorder. Datum of gage is 1,980.00 ft National Geodetic Vertical Datum of 1929 (levels by Eugene Water and Electric Board). Prior to Oct. 11, 1963, at datum 5.60 ft higher. REMARKS.--Flow regulated since 1963 by Smith River Reservoir. Diurnal fluctuations by powerplants and by Trail Bridge reregulating reservoir upstream. Water is diverted from McKenzie River in SW½ sec.20, T.14 S., R.7 E., to Smith River Reservoir and returned to river above station. AVERAGE DISCHARGE.--23 years, 1,029 ft³/s, 75.94 in/yr, 745,500 acre-ft/yr, adjusted for storage. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 11,200 ft³/s Dec. 22, 1964, gage height, 12.45 ft, from rating curve extended above 3,700 ft³/s on basis of slope-area measurement of peak flow; minimum, 185 ft³/s Feb. 3, 1963; minimum daily, 425 ft³/s Nov. 23, 1964. #### STATISTICAL SUMMARIES MONTHLY AND ANNUAL MEAN DISCHARGES 1964-82 MAGNITUDE AND PROBABILITY OF ANNUAL LOW FLOW BASED ON PERIOD OF RECORD 1965-82 | | MINIMUM | MAXIMUM | MEAN | STAN-
DARD
DEVIA-
TION | COEFFI-
CIENT OF
VARI- | PERCENT
OF
ANNUAL | PERIOD
(CON-
SECU- | |
INTERVAL | , IN YEA | R INDICAT
RS, AND A
BILITY, 1 | NNUAL N | ON- | |-----------|---------|---------|-------|---------------------------------|------------------------------|-------------------------|--------------------------|----------|----------|-----------|-------------------------------------|----------|-----| | MONTH | (CFS) | (CFS) | (CFS) | (CFS) | ATION | RUNOFF | TIVE
DAYS) | 2
50% | 5
20% | 10
10% | 20
5% | 50
2% | 100 | | OCTOBER | 520 | 858 | 677 | 87 | .13 | 5.5 | 1 | 561 | 505 | 477 | 455 | | | | NOVEMBER | 614 | 1361 | 917 | 226 | .25 | 7.4 | 3 | 574 | 522 | 499 | 482 | | | | DECEMBER | 634 | 2500 | 1299 | 473 | .36 | 10.5 | 7 | 589 | 537 | 516 | 502 | | | | JANUARY | 601 | 1932 | 1280 | 362 | .28 | 10.4 | 14 | 608 | 552 | 530 | 514 | | | | FEBRUARY | 580 | 1813 | 1188 | 333 | .28 | 9.6 | 30 | 624 | 563 | 538 | 521 | | | | MARCH | 731 | 2332 | 1116 | 351 | .31 | 9.1 | 60 | 640 | 576 | 548 | 529 | | | | APRIL | 885 | 1568 | 1115 | 196 | . 18 | 9.1 | 90 | 658 | 589 | 559 | 538 | | | | MAY | 834 | 1903 | 1308 | 339 | . 26 | 10.6 | 120 | 680 | 605 | 573 | 549 | | | | JUNE | 728 | 1888 | 1119 | 346 | -31 | 9.1 | 183 | 764 | 670 | 631 | 602 | | | | JULY | 585 | 1267 | 859 | 203 | .24 | 7.0 | | | | | | | | | AUGUST | 552 | 1034 | 747 | 154 | .21 | 6.1 | | | | | | | | | SEPTEMBER | 535 | 913 | 691 | 120 | . 17 | 5.6 | | | | | | | | | ANNUAL | 700 | 1404 | 1026 | 184 | .18 | 100 | | | | | | | | MAGNITUDE AND PROBABILITY OF INSTANTANEOUS PEAK FLOW BASED ON PERIOD OF RECORD MAGNITUDE AND PROBABILITY OF ANNUAL HIGH FLOW BASED ON PERIOD OF RECORD 1964-82 53 | DISCHARGE,
YEARS, A | | | DICATED R | | | | PERIOD
(CON- | | INTERV | 'AL, ÍN Y | R INDICAT
EARS, AND
BILITY, I | ANNUAL | | |------------------------|--------------|----------|-----------|----------|-----------------|-----------|------------------------|----------|--------|-----------|-------------------------------------|----------|-----| | 1.25
80% | 2
50%
 | 5
20% | 10
10% | 25
4% | 50
2% | 100
1% | SECU-
TIVE
DAYS) | 2
50% | 5 20% | 10 | 25
4% | 50
2% | 100 | 1 | 2830 | 4110 | 5020 | 6240 | | | | WE I GHTED | SKEW = | | | | | | 3 | 2540 | 3640 | 4450 | 5580 | | | | | | | | | | | 7 | 2240 | 3050 | 3620 | 4400 | | | | | | | | | | | 15 | 1950 | 2480 | 2820 | 3240 | | | | | | | | | | | 30 | 1710 | 2080 | 2300 | 2550 | | | | | | | | | | | 60 | 1500 | 1790 | 1960 | 2160 | | | | | | | | | | | 90 | 1400 | 1650 | 1790 | 1960 | | | DURATION TABLE OF DAILY MEAN FLOW FOR PERIOD OF RECORD 1964-82 | | | DISC | HARGE, | IN CFS, | WHICH WAS | EQUALED | OR EXCE | EDED FOR | INDICATED | PERCENT | OF TIM | Ε | | | |------|------|------|--------|---------|-----------|---------|---------|----------|-----------|---------|--------|-----|-----|-----| | 5% | 10% | 15% | 20% | 25% | 30% | 40% | 50% | 60% | 70% | 75% | 80% | 85% | 90% | 95% | | 1790 | 1570 | 1410 | 1300 | 1210 | 1130 | 1020 | 929 | 844 | 763 | 726 | 691 | 657 | 613 | 571 | #### 14159000 MCKENZIE RIVER AT MCKENZIE BRIDGE, OR LOCATION.--Lat 44°10'45", long 122°07'45", on line between NEt and NWt sec.18, T.16 S., R.6 E., Lane County, Hydrologic Unit 17090004, Willamette National Forest, on left bank 1.0 mi upstream from Glen Creek, 1.7 mi east of town of McKenzie Bridge, and at mile 69 9 DRAINAGE AREA.--348 mi² at cableway 1.2 mi upstream, where all discharge measurements are made. PERIOD OF RECORD.--August 1910 to September 1982. Monthly discharge only for some periods, published in WSP 1318. Published as "near McKenzie Bridge" August 1910 to September 1911 and October 1914 to September 1916. GAGE.--Water-stage recorder. Datum of gage is 1,419.04 ft National Geodetic Vertical Datum of 1929. Prior to June 2, 1932, nonrecording gage at several sites within 2 mi of present site at various datums. REMARKS.--Flow regulated since March 1963 by Smith River Reservoir (Carmen-Smith Project) 12 mi upstream. No diversion above station. All records given herein are for measuring site. AVERAGE DISCHARGE.--72 years, 1.681 ft3/s, 1,218,000 acre-ft/yr. WEIGHTED SKEW = -.029 EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 19,100 ft^3/s Dec. 22, 1964, gage height, 10.36 ft, from rating curve extended above 7,100 ft^3/s on basis of slope-area measurement of peak flow; minimum, 805 ft^3/s Oct. 20, 1931. #### STATISTICAL SUMMARIES (BEFORE THE CONSTRUCTION OF SMITH RIVER AND TRAIL BRIDGE DAMS) MONTHLY AND ANNUAL MEAN DISCHARGES 1911-62 MAGNITUDE AND PROBABILITY OF ANNUAL LOW FLOW BASED ON PERIOD OF RECORD 1912-62 | | | | | STAN-
DARD
DEVIA- | COEFFI-
CIENT OF | OF | PERIOD
(CON- | | INTERVAL | CFS, FO
, IN YEA
CE PROBA | RS, AND | ANNUAL N | ON- | |-----------|-------------------|-----------------|---------------|-------------------------|---------------------|------------------|--------------------------|------------------|------------------|---------------------------------|------------------|--------------------|-----| | HONTH | MINIMUM
(CFS) | (CFS) | MEAN
(CFS) | TION
(CFS) | VARI-
ATION | ANNUAL
RUNOFF | SECU-
TIVE
DAYS) | 2
50 % | 5
20 % | 10
10% | 20
5 % | 50
2 % | 100 | | OCTOBER | 833 | 1904 | 1172 | 239 | .20 | 5.9 | 1 | 1040 | 927 | 872 | 827 | 778 | 746 | | IOVEMBER | 882 | 2951 | 1569 | 473 | . 30 | 7.9 | 3 | 1040 | 929 | 873 | 828 | 779 | 747 | | ECEMBER | 952 | 3970 | 1904 | 667 | .35 | 9.5 | 7 | 1040 | 932 | 876 | 831 | 782 | 750 | | ANUARY | 936 | 3557 | 1907 | 605 | .32 | 9.6 | 14 | 1050 | 939 | 883 | 837 | 787 | 755 | | EBRUARY | 1020 | 3443 | 1931 | 600 | .31 | 9.7 | 30 | 1070 | 952 | 893 | 845 | 793 | 759 | | IARCH | 1114 | 3023 | 1788 | 400 | .22 | 9.0 | 60 | 1100 | 970 | 907 | 857 | 803 | 769 | | PRIL | 1072 | 2632 | 1972 | 387 | .20 | 9.9 | 90 | 1130 | 993 | 926 | 873 | 816 | 780 | | AY | 1203 | 3422 | 2065 | 487 | .24 | 10.3 | 120 | 1170 | 1020 | 952 | 897 | 838 | 800 | | UNE | 1040 | 3809 | 1842 | 564 | .31 | 9.2 | 183 | 1290 | 1110 | 1030 | 960 | 893 | 85 | | ULY | 954 | 2333 | 1448 | 318 | .22 | 7.3 | | | | | | | | | UGUST | 871 | 1657 | 1225 | 196 | .16 | 6.1 | | | | | | | | | EPTEMBER | 864 | 1500 | 1138 | 164 | . 14 | 5.7 | | | | | | | | | NNUAL | 1098 | 2397 | 1662 | 264 | .16 | 100 | | | | | | | | | DISCHARGE | BASE
, IN CFS, | D ON PERI | OD OF RE | CORD 191 | INTERVAL |
, IN | | BASE | D ON PER | ABILITY (IOD OF R | ECORD 19 | 911-62
FED RECU | | | YEARS, 1 | AND ANNUA | L EXCEEDA
5 | NCE PROE | 25 | IN PERCEI | NT

100 | PERIOD
(CON-
SECU- | | | AL, IN YI
CE PROBAI | | | NT | | 80% | 50 % | 20 %
 | 10% | 4% | 2% | 1% | TIVE
DAYS) | 2
50 % | 5
20 % | 10
10% | 25
4% | 50
2 % | 100 | | 4360 | 6390 | 9340 1 | 1400 1 | 4000 1 | 6100 18 | 100 | | | | | | | | DURATION TABLE OF DAILY MEAN FLOW FOR PERIOD OF RECORD 1911-62 | | | DIS | CHARGE, | IN CFS, | WHICH WAS | EQUALED | OR EXC | EEDED FOR | INDICAT | ED PERCE | NT OF T | ME | | | |------------|------|------|---------|---------|-----------|---------|-------------|-----------|---------|-------------|---------|------|------|-----| | 5 % | 10% | 15% | 20% | 25% | 30% | 40% | 50 % | 60% | 70% | 75 % | 80% | 85% | 90% | 95% | | 2870 | 2490 | 2270 | 2090 | 1960 | 1830 | 1630 | 1490 | 1370 | 1270 | 1210 | 1160 | 1110 | 1030 | 950 | ## 14159000 MCKENZIE RIVER AT MCKENZIE BRIDGE, OR--Continued ## STATISTICAL SUMMARIES (AFTER THE COMPLETION OF SMITH RIVER AND TRAIL BRIDGE DAMS) MONTHLY AND ANNUAL MEAN DISCHARGES 1964-82 MAGNITUDE AND PROBABILITY OF ANNUAL LOW FLOW BASED ON PERIOD OF RECORD 1965-82 | | 44 1 N 1 M 1 H 4 | MAVIMINA | MEAN | STAN-
DARD
DEVIA- | COEFFI-
CIENT OF | OF | PERIOD
(CON-
SECU- | | INTERVAL | , IN YE | ARS, AND | TED RECUI
ANNUAL NO
IN PERCEI | ON- | |------------------------|------------------------------------|------------------------------------|------------------|---|----------------------------------|-----------------------------|---|---|---|---|--|---|-----------| | ONTH | (CFS) | MAXIMUM
(CFS) | MEAN
(CFS) | TION
(CFS) | VARI-
ATION | ANNUAL
RUNOFF | TIVE
DAYS) | 2
50% | 5
20 % | 10
10% | 20
5% | 50
2% | 100 | | OCTOBER | 928 | 1365 | 1127 | 124 | .11 | 5.4 | 1 | 970 | 907 | 883 | 867 | | | | OVEMBER | 1068 | 2425 | 1570 | 414 | . 26 | 7.5 | 3 | 985 | 917 | 892 | 875 | | | | DECEMBER | 1082 | 4367 | 2298 | 867 | .38 | 11.0 | 7 | 998 | 928 | 902 | 885 | | | | JANUARY | 1052 | 3370 | 2303 | 670 | .29 | 11.0 | 14 | 1020 | 946 | 918 | 899 | | | | EBRUARY | 1027 | 3382 | 2084 | 616 | .30 | 10.0 | 30 | 1040 | 965 | 934 | 913 | | | | 1ARCH | 1331 | 3973 | 1920 | 584 | .30 | 9.2 | 60 | 1060 | 982 | 950 | 927 | | | | PRIL | 1403 | | 1887 | 356 | | 9.0 | 90 | | | 969 | 945 | | | | | | 2630 | | | . 19 | | | 1090 | 1000 | | | | | | IAY | 1406 | 3041 | 2099 | 548 | .26 | 10.1 | 120 | 1130 | 1030 | 994 | 969 | | | | JUNE | 1269 | 3033 | 1798 | 513 | . 29 | 8.6 | 183 | 1260 | 1140 | 1090 | 1060 | | | | JULY | 1058 | 2053 | 1426 | 297 | .21 | 6.8 | | | | | | | | | NUGUST | 988 | 1670 | 1231 | 216 | -18 | 5.9 | | | | | | | | | SEPTEMBER | 954 | 1449 | 1138 | 161 | . 14 | 5.4 | | | | | | | | | NNUAL | 1203 | 2377 | 1739 | 315 | . 18 | 100 | | | | | | | | | OISCHARGE, | BASE
IN CFS, | D ON PERI | OD OF RE | CORD | OUS PEAK |
, !N | | BASE | D ON PER | CFS, FC | RECORD 1 | L HIGH
FL
964-82
TED RECUF | | | SCHARGE,
YEARS, A | BASE
IN CFS,
IND ANNUA | FOR INDI
L EXCEEDA | OD OF RE | CORD
CURRENCE
BABILITY, | INTERVAL
IN PERCE |
, !N | PERIOD
(CON-
SECU- | BASE
DISCH | D ON PER ARGE, IN INTERV | CFS, FO | RECORD 1 | 964-82

TED RECUF | RRENCE | |) SCHARGE,
YEARS, A | BASE
IN CFS, | FOR INDI | OD OF RE | CORD
CURRENCE | INTERVAL
IN PERCE | , IN
NT | PERIOD
(CON- | BASE
DISCH | D ON PER ARGE, IN INTERV | CFS, FO | RECORD 1 | 964-82

TED RECUF
D ANNUAL | RRENCE | | ISCHARGE,
YEARS, A | BASE
IN CFS,
IND ANNUA | FOR INDI
L EXCEEDA | OD OF RE | CORD
CURRENCE
BABILITY, | INTERVAL
IN PERCE | , IN
NT | PERIOD
(CON-
SECU-
TIVE
DAYS) | DISCH | ARGE, IN
INTERV
EXCEEDANG
5
20% | CFS, FCAL, IN YCE PROBA | DR INDICA
(EARS, AN
ABILITY,
25
4% | 964-82 TED RECUF D ANNUAL IN PERCEN 50 2% | RRENCE | | YEARS, A | BASE IN CFS, IND ANNUA 2 50% | FOR INDI
L EXCEEDA | OD OF RE | CORD
CURRENCE
BABILITY, | INTERVAL
IN PERCE | , IN
NT | PERIOD (CON- SECU- TIVE DAYS) | DISCH | D ON PER ARGE, IN INTERV. EXCEEDANCE 5 20% | CFS, FCAL, IN CE PROBA | DR INDICA PEARS, AN ABILITY, 25 4% | 964-82 TED RECUF D ANNUAL IN PERCEN 50 2% | RRENCE | | SCHARGE,
YEARS, A | BASE IN CFS, IND ANNUA 2 50% | FOR INDI
L EXCEEDA | OD OF RE | CORD
CURRENCE
BABILITY, | INTERVAL
IN PERCE | , IN
NT | PERIOD
(CON-
SECU-
TIVE
DAYS) | DISCH | ARGE, IN INTERVALENCE DAMAGE 5 20% 8140 7150 | CFS, FCAL, IN 10CE PROBA-10% | RECORD 11 OR INDICA (EARS, AN BILLITY, 25 4% 11400 10600 | 964-82 TED RECUF D ANNUAL IN PERCEN 50 2% | RRENCE | | YEARS, A | BASE IN CFS, IND ANNUA 2 50% | FOR INDI
L EXCEEDA | OD OF RE | CORD
CURRENCE
BABILITY, | INTERVAL
IN PERCE | , IN
NT | PERIOD (CON- SECU- TIVE DAYS) 1 3 7 | BASE DISCH 2 50% 5730 4950 4190 | D ON PER ARGE, IN INTERV EXCEEDANG 5 20% 8140 7150 5730 | CFS, FC
AL, IN 10
CE PROBA
10
10%
9640
8640
6730 | 25
4%
11400
10600
7970 | 964-82 TED RECUF D ANNUAL IN PERCEN 50 2% | RRENCE | | YEARS, A | BASE IN CFS, IND ANNUA 2 50% | FOR INDI
L EXCEEDA | OD OF RE | CORD
CURRENCE
BABILITY, | INTERVAL
IN PERCE | , IN
NT | PERIOD
(CON-
SECU-
TIVE
DAYS) | DISCH 2 50% 5730 4950 4190 3510 | D ON PER ARGE, IN INTERV. EXCEEDANC 5 20% 8140 7150 5730 4490 | CFS, FC
AL, IN N
CE PROBA
10
10%
9640
8640
6730
5080 | DR INDICA
PEARS, AN
ABILITY,
25
4%
11400
10600
7970
5770 | 964-82 TED RECUF D ANNUAL IN PERCEN 50 2% | RRENCE | | YEARS, A | BASE IN CFS, IND ANNUA 2 50% | FOR INDI
L EXCEEDA | OD OF RE | CORD
CURRENCE
BABILITY, | INTERVAL
IN PERCE | , IN
NT | PERIOD (CON-
SECU-
TIVE DAYS) | DISCH 2 50% 5730 4950 4190 3510 2970 | ARGE, IN INTERVALENCE EDANG 5 20% 8140 7150 5730 4490 3640 | 100 OF F
CFS, FC
AL, IN N
CE PROBA
10
10%
9640
8640
6730
5080
4040 | 11400
10600
7970
4500 | 964-82 TED RECUPD ANNUAL IN PERCEN 50 2% | RRENCE | | 1.25
80% | BASE IN CFS, IND ANNUA 2 50% | FOR INDI
L EXCEEDA | OD OF RE | CORD
CURRENCE
BABILITY, | INTERVAL
IN PERCE | , IN
NT | PERIOD
(CON-
SECU-
TIVE
DAYS) | DISCH 2 50% 5730 4950 4190 3510 | D ON PER ARGE, IN INTERV. EXCEEDANC 5 20% 8140 7150 5730 4490 | CFS, FC
AL, IN N
CE PROBA
10
10%
9640
8640
6730
5080 | DR INDICA
PEARS, AN
ABILITY,
25
4%
11400
10600
7970
5770 | 964-82 TED RECUF D ANNUAL IN PERCEN 50 2% | RRENCE | | 1.25
80% | BASE IN CFS, IND ANNUA 2 50% | FOR INDI
L EXCEEDA | CATED RENCE PROB | CORD COURTENCE ABILITY, 25 4% | INTERVAL IN PERCE 50 2% | , IN
NT
100
1%
 | PERIOD
(CON-
SECU-
TIVE
DAYS)
 | DISCH 2 50% 5730 4950 4990 3510 2970 2580 2410 OF RECO | 8140
7153
8140
7153
4490
3640
3100
870
870
870
870
870
870
870 | 100 OF F
CFS, FC
AL, IN N
CE PROBA-
10
10%
9640
8640
6730
5080
4040
3420
3150 | 11400
10600
1070
10600
10600
1070
1070
1070 | 964-82 TED RECUPD ANNUAL IN PERCEN 50 2% | RRENCE | | YEARS, A | BASE IN CFS, IND ANNUA 2 50% | FOR INDI
L EXCEEDA | CATED RENCE PROB | CORD COURTENCE ABILITY, 25 4% | INTERVAL IN PERCE 50 2% OF DAILY | , IN
NT
100
1%
 | PERIOD (CON- SECU- TIVE DAYS) | DISCH 2 50% 5730 4950 4990 3510 2970 2580 2410 OF RECO | 8140
7153
8140
7153
4490
3640
3100
870
870
870
870
870
870
870 | 100 OF F
CFS, FC
AL, IN N
CE PROBA-
10
10%
9640
8640
6730
5080
4040
3420
3150 | 11400
10600
1070
10600
10600
1070
1070
1070 | 964-82 TED RECUPD ANNUAL IN PERCEN 50 2% | 100
1% | | YEARS, A | BASE IN CFS, ND ANNUA 2 50% SKEW = | D ON PERI FOR INDI L EXCEEDA 5 20% | CATED RENCE PROB | CORD CURRENCE ABILITY, 25 4% N TABLE CFS, WHI | INTERVAL IN PERCE 50 2% OF DAILY | MEAN FLOW | PERIOD (CON- SECU- TIVE DAYS) | 5730
4950
4950
4950
2970
2580
2410
OF RECO | 8140
7150
5736
8140
7150
5730
4490
3640
3100
2870
RD 1964-6 | 9640
8640
6730
5080
4040
3420
3150
82 | 11400
10600
7970
5770
4500
3810
3470 | 964-82 TED RECUPD ANNUAL IN PERCEN 50 2% | RRENCE | ## 14159200 SOUTH FORK MCKENZIE RIVER ABOVE COUGAR LAKE, NEAR RAINBOW, OR LOCATION.--Lat 44°02'50", long 122°13'00", in T.17 S., R.5 E., (unsurveyed), Lane County, Hydrologic Unit 17090004, in Willamette National Forest, on right bank 100 ft upstream from Tipsoo Creek, 8.0 mi south of Rainbow, 9.0 mi southeast of town of Blue River, and at mile 10.4. DRAINAGE AREA.--160 \min^2 at cableway 0.2 \min downstream, where all discharge measurements are made. PERIOD OF RECORD.--October 1957 to September 1982. Prior to October 1971, published as "South Fork McKenzie River above Cougar Reservoir" GAGE.--Water-stage recorder. Datum of gage is 1,709.51 ft National Geodetic Vertical Datum of 1929 (Corps of Engineers bench mark). REMARKS.--No regulation or diversion above station. All records given herein are for measuring site. AVERAGE DISCHARGE.--25 years, 637 ft3/s, 54.07 in/yr, 461,500 acre-ft/yr. 1570 1230 1040 907 807 725 587 475 366 287 263 248 233 220 206 EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 18,400 ft³/s Dec. 22, 1964, gage height, 20.06 ft, from floodmark, from rating curve extended above 7,600 ft³/s, on basis of slope-area measurement of peak flow; minimum, 171 ft³/s Sept. 16, 17, 1981. #### STATISTICAL SUMMARIES | | W. M. W. | MAVIMIN | MEAN | STAN-
DARD
DEVIA- | COEFFI-
CIENT OF | PERCENT | PERIOD
(CON- | DISC | INTERVAL | , IN YEA | RS, AND | ATED RECUI
ANNUAL NO
IN PERCEI | -AC | |--------------------------------------|--------------------------------|-------------------------|------------------|---|---|------------------|---|---|---|--
--|---|---------------------------| | MONTH | MINIMUM
(CFS) | MAXIMUM
(CFS) | MEAN
(CFS) | TION
(CFS) | VARI-
ATION | ANNUAL
RUNOFF | SECU-
TIVE
DAYS) | 2
50% | 5
20% | 10
10% | 20
5% | 50
2% | 100 | | OCTOBER | 188 | 442 | 277 | 67 | .24 | 3.6 | 1 | 204 | 190 | 184 | 178 | 172 | | | NOVEMBER | 261 | 1121 | 606 | 281 | . 46 | 7.9 | 3 | 204 | 191 | 184 | 179 | 173 | | | DECEMBER | 231 | 2915 | 1001 | 588 | .59 | 13.1 | 7 | 206 | 192 | 185 | 179 | 173 | | | IANUARY | 234 | 1827 | 952 | 450 | - 47 | 12.4 | 14 | 208 | 195 | 188 | 182 | 176 | | | EBRUARY | 232 | 1778 | 889 | 386 | .43 | 11.6 | 30 | 214 | 199 | 192 | 187 | 181 | | | MARCH | 410 | 2065 | 763 | 335 | . 44 | 10.0 | 60 | 221 | 206 | 199 | 194 | 188 | | | \PR I L | 445 | 1391 | 833 | 225 | .27 | 10.9 | 90 | 231 | 215 | 207 | 201 | 195 | | | 4AY | 426 | 1383 | 929 | 277 | .30 | 12.1 | 120 | 242 | 224 | 217 | 213 | 209 | | | JUNE | 298 | 1418 | 622 | 295 | .47 | 8.1 | 183 | 327 | 283 | 266 | 255 | 244 | | | JULY | 221 | 457 | 302 | 70 | .23 | 3.9 | | | | | | | | | AUGUST | 196 | 338 | 242 | 34 | .14 | 3.2 | | | | | | | | | SEPTEMBER | 197 | 304 | 236 | 27 | .11 | 3.1 | | | | | | | | | ANNUAL | 346 | 917 | 636 | 144 | .23 | 100 | | | | | | | | | MAGNI | | PROBABILI
D ON PERIO | | | OUS PEAK 1
8-82 | FLOW | MA(| | AND PROB | | | L HIGH FI
958-82 | _OW | | OI SCHARGE | BASE
, IN CFS,
AND ANNUA | FOR INDIC | OD OF RE | CORD 195
CURRENCE | 8-82
INTERVAL
IN PERCEI | , IN
NT | PERIOD
(CON- | BASE
DISCH | D ON PER | CFS, FO | RECORD 1 | | RRENCE | | OISCHARGE
YEARS, A | BASE
, IN CFS,
AND ANNUA | FOR INDIC
L EXCEEDAL | OD OF RE | CORD 195
CURRENCE
ABILITY, | 8-82
INTERVAL
IN PERCEI | , IN
NT | PERIOD
(CON-
SECU- | BASE
DISCH | IARGE, IN
INTERV | CFS, FCAL, IN Y | RECORD 1 | 958-82
TED RECUI
ID ANNUAL
IN PERCEI | RRENCE | | OISCHARGE
YEARS, / | BASE
, IN CFS,
AND ANNUA | FOR INDIC | OD OF RE | CORD 195
CURRENCE | 8-82
INTERVAL
IN PERCEI | , IN
NT | PERIOD
(CON- | BASE
DISCH | D ON PER | CFS, FO | RECORD 1 | 958-82
TED RECUI | RRENCE | | VISCHARGE
YEARS, / | BASE
, IN CFS,
AND ANNUA | FOR INDIO | OD OF RE | CORD 195 CURRENCE BABILITY, 25 4% | 8-82
INTERVAL
IN PERCEI | , IN
NT | PERIOD
(CON-
SECU-
TIVE | BASE
DISCH | ID ON PER
HARGE, IN
INTERV
EXCEEDAN | CFS, FC
AL, IN Y
CE PROBA | RECORD 1 | 958-82
TED RECUI
ID ANNUAL
IN PERCEI |
RRENCE | | 1.25
80% | BASE , IN CFS, AND ANNUA 2 50% | FOR INDIC | OD OF RE | CORD 195 CURRENCE BABILITY, 25 4% | 8-82
INTERVAL
IN PERCEI | , IN
NT | PERIOD
(CON-
SECU-
TIVE
DAYS) | DISCH | HARGE, IN
INTERV
EXCEEDAN
5
20% | CFS, FCAL, IN YCE PROBA | PR INDICATEARS, AN BILITY, 25 4% | 958-82 ATED RECUI ID ANNUAL IN PERCEI 50 2% | RRENCE | | I SCHARGE
YEARS, 1
1.25
80% | BASE , IN CFS, AND ANNUA 2 50% | FOR INDIO | OD OF RE | CORD 195 CURRENCE BABILITY, 25 4% | 8-82
INTERVAL
IN PERCEI | , IN
NT | PERIOD
(CON-
SECU-
TIVE
DAYS) | DISCH | IARGE, IN
INTERV
EXCEEDAN
5
20% | CFS, FC
AL, IN Y
CE PROBA
10%
7760
6430 | PR INDICATEARS, AND BILITY, 25 4% 9730 8680 | 958-82
ITED RECULI
IN PERCEN
50
2%
11200
10700 | RRENCE
NT
100 | | 1.25
80% | BASE , IN CFS, AND ANNUA 2 50% | FOR INDIC | OD OF RE | CORD 195 CURRENCE BABILITY, 25 4% | 8-82
INTERVAL
IN PERCEI | , IN
NT | PERIOD (CON- SECU- TIVE DAYS) | DISCH
2
50%
4050
3100
2360 | ID ON PER
HARGE, IN
INTERV
EXCEEDAN
5
20%
6240
4930
3530 | CFS, FC
AL, IN Y
CE PROBA
10
10%
7760
6430
4430 | PRECORD 1 PRECOR | 958-82 ITED RECUI ID ANNUAL IN PERCEI 50 2% 11200 10700 6840 | 100
19 | | 1 SCHARGE
YEARS, /
1.25
80% | BASE , IN CFS, AND ANNUA 2 50% | FOR INDIC | OD OF RE | CORD 195 CURRENCE BABILITY, 25 4% | 8-82
INTERVAL
IN PERCEI | , IN
NT | PERIOD (CON-
SECU-
TIVE DAYS) | DISCH
2
50%
4050
3100
2360
1780 | ARGE, IN INTERVENCE EXCEEDAN 5 20% 6240 4930 3530 2450 | T760 6430 4430 2930 | PRECORD 11 PRECORD 12 | 958-82
ITED RECUI
ID ANNUAL
IN PERCEN-
50
2%
11200
10700
6840
4120 | RRENCI
NT
100
19 | | 1 SCHARGE
YEARS, /
1.25
80% | BASE , IN CFS, AND ANNUA 2 50% | FOR INDIC | OD OF RE | CORD 195 CURRENCE BABILITY, 25 4% | 8-82
INTERVAL
IN PERCEI | , IN
NT | PERIOD (CON-
SECU-
TIVE DAYS) | BASE DISCH 2 50% 4050 3100 2360 1780 1430 | ED ON PER
ARGE, IN
INTERV
EXCEEDAN
5
20%
6240
4930
3530
2450
1880 | TOD OF FOR THE PROBLEM TO PROBLE | PRECORD 18 INDICA INDIC | 958-82 ITED RECUI ID ANNUAL IN PERCEN 50 2% 11200 10700 6840 4120 2960 | 100
19 | | 1.25
80% | BASE , IN CFS, AND ANNUA 2 50% | FOR INDIC | OD OF RE | CORD 195 CURRENCE BABILITY, 25 4% | 8-82
INTERVAL
IN PERCEI | , IN
NT | PERIOD
(CON-
SECU-
TIVE
DAYS)
 | BASE DISCH 2 50% 4050 3100 2360 1780 1430 1180 | 10 ON PER
10 INTERV
EXCEEDAN
5 20%
6240
4930
3530
2450
1880
1490 | CFS, FC AL, IN Y CE PROBA 10 10% | PRINDICAL PRINDICAL PRINDICAL PRINDICAL PRINDICAL PRINCIPLE PRINCI | 958-82 ITED RECUI ID ANNUAL IN PERCEI 50 2% 11200 10700 6840 4120 2960 2220 | 100
19 | | 1 SCHARGE
YEARS, /
1.25
80% | BASE , IN CFS, AND ANNUA 2 50% | FOR INDIC | OD OF RE | CORD 195 CURRENCE BABILITY, 25 4% | 8-82
INTERVAL
IN PERCEI | , IN
NT | PERIOD (CON-
SECU-
TIVE DAYS) | BASE DISCH 2 50% 4050 3100 2360 1780 1430 | ED ON PER
ARGE, IN
INTERV
EXCEEDAN
5
20%
6240
4930
3530
2450
1880 | TOD OF FOR THE PROBLEM TO PROBLE | PRECORD 18 INDICA INDIC | 958-82 ITED RECUI ID ANNUAL IN PERCEN 50 2% 11200 10700 6840 4120 2960 | RRENCI
NT
100
19 | | 1 SCHARGE
YEARS, /
1.25
80% | BASE , IN CFS, AND ANNUA 2 50% | FOR INDIC | CATED RENCE PROB | CORD 195 CURRENCE ABILITY, 25 4% 2400 1 | 8-82 INTERVAL IN PERCEI 50 2% 4800 | , IN NT 100 1% | PERIOD
(CON-
SECU-
TIVE
DAYS)
 | DISCH
2
50%
4050
3100
2360
1780
1430
1180 | ARGE, IN INTERVEXCEEDAN 5 20\$ 6240 4930 3530 2450 1880 1490 | TOD OF F
CFS, FC
AL, IN Y
CE PROBA
10
10%
7760
6430
4430
2930
2190
1710
1520 | PRINDICAL PRINDICAL PRINDICAL PRINDICAL PRINDICAL PRINCIPLE PRINCI | 958-82 ITED RECUI ID ANNUAL IN PERCEI 50 2% 11200 10700 6840 4120 2960 2220 | RRENCI
NT
100
19 | | 1.25
80% | BASE , IN CFS, AND ANNUA 2 50% | FOR INDIG | CATED RENCE PROB | CORD 195 CURRENCE ABILITY, 25 4% 2400 1 | 8-82 INTERVAL IN PERCEI 50 2% 4800 OF DAILY N | , IN NT 100 1% | PERIOD (CON-
SECU-
TIVE DAYS) | DISCH-250% 4050 3100 2360 1780 1430 1180 00 F RECO | IARGE, IN INTERVEXCEEDAN 5 20% 6240 4930 3530 2450 1880 1490 1350 RD 1958- | TOD OF F
CFS, FC
AL, IN Y
CE PROBA
10
10%
7760
6430
2930
2190
1710
1520 | PR INDICA
PEARS, AN
BILITY,
25
4%
9730
8680
5740
3590
2620
2000
1740 | 958-82 ITED RECUI ID ANNUAL IN PERCEI 50 2% 11200 10700 6840 4120 2960 2220 | RRENCE
NT
100 | LOCATION.--Lat 44°08'10", long 122°14'50", in NEt sec.31, T.16 S., R.5 E., Lane County, Hydrologic Unit 17090004, in Willamette National Forest, on right bank 0.2 mi upstream from Cougar Creek, 0.6 mi downstream from Cougar Dam, 2.1 mi south of Rainbow, and 14159500 SOUTH FORK MCKENZIE RIVER NEAR RAINBOW. OR DRAINAGE AREA .-- 208 mi2. 5% 2390 10% 1880 15% 1590 20% 1380 25% 1220 30% 1090 40% 859 50% 672 604 503 70% 366 75% 324 80% 299 85% 278 90% 260 95% 241 PERIOD OF RECORD. -- October 1947 to September 1982. GAGE.--Water-stage recorder. Datum of gage is 1,236.42 ft National Geodetic Vertical Datum of 1929 (Bureau
of Public Roads bench mark). Oct. 1 to Nov. 4, 1947, nonrecording gage at site 40 ft upstream at datum 0.80 ft higher. REMARKS.--Flow regulated since 1963 by Cougar Lake, usable capacity, 165,000 acre-ft. No diversion above station. AVERAGE DISCHARGE.--35 years, 868 ft³/s, 56.67 in/yr, 628,900 acre-ft/yr, adjusted for storage. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 17,600 ft³/s Dec. 11, 1956, gage height, 8.66 ft, from rating curve extended above 8,100 ft³/s; maximum gage height, 8.90 ft Dec. 22, 1955 (backwater from debris); minimum discharge, 17 ft³/s Nov. 18, 1965; minimum daily, 85 ft³/s Apr. 26-28, 1977. EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum discharge, 24,500 ft³/s Dec. 28, 1945, gage height, 8.8 ft, from floodmarks, at Corps of Engineers gage at site 40 ft upstream at datum 0.80 ft higher; gage height at present site and datum, about 9.3 ft, computed by Corps of Engineers. #### STATISTICAL SUMMARIES (BEFORE THE CONSTRUCTION OF COUGAR DAM) MONTHLY AND ANNUAL MEAN DISCHARGES 1948-62 MAGNITUDE AND PROBABILITY OF ANNUAL LOW FLOW BASED ON PERIOD OF RECORD 1949-62 | | MINIMUM | MAXIMUM | MEAN | STAN-
DARD
DEVIA-
TION | COEFFI-
CIENT OF
VARI- | PERCENT
OF
ANNUAL | PERIOD
(CON-
SECU- | DISC | INTERVA | L, IN YE | OR INDICATARS, AND A | ANNUAL N | 0N- | |---------------------------------------|---|---|---|---|--|-------------------------|--|---|---|--|---|--|------------| | MONTH | (CFS) | (CFS) | (CFS) | (CFS) | ATION | RUNOFF | TIVE
DAYS) | 2
50 % | 5
20 % | 10
10% | 20
5 % | 50
2% | 100
1% | | OCTOBER | 242 | 1081 | 472 | 256 | .54 | 4.2 | 1 | 233 | 214 | 206 | 199 | | | | NOVEMBER | 265 | 1804 | 967 | 495 | .51 | 8.7 | 3 | 235 | 216 | 207 | 200 | | | | DECEMBER | 444 | 3484 | 1334 | 794 | .60 | 11.9 | 7 | 238 | 218 | 209 | 201 | | | | JANUARY | 465 | 2809 | 1211 | 702 | . 58 | 10.8 | 14 | 241 | 221 | 212 | 205 | | | | FEBRUARY | 759 | 2279 | 1426 | 518 | .36 | 12.8 | 30 | 248 | 229 | 221 | 214 | | | | 4ARCH | 756 | 1921 | 1141 | 374 | . 33 | 10.2 | 60 | 261 | 242 | 234 | 227 | | | | APRIL | 979 | 1827 | 1381 | 289 | -21 | 12.4 | 90 | 277 | 254 | 244 | 237 | | | | MAY | 861 | 2175 | 1401 | 371 | . 26 | 12.5 | 120 | 298 | 267 | 255 | 246 | | | | JUNE | 457 | 1796 | 914 | 394 | .43 | 8.2 | 183 | 447 | 364 | 333 | 313 | | | | JULY | 272 | 543 | 373 | 85 | .23 | 3.3 | | | | | | | | | AUGUST | 228 | 323 | 280 | 27 | -10 | 2.5 | | | | | | | | | | | 314 | 265 | 28 | .10 | 2.4 | | | | | | | | | SEPTEMBER | 220 | 214 | | | | | | | | | | | | | SEPTEMBER ANNUAL MAGNI | 749

TUDE AND | 1300 | 927
TY OF IN | | .15
OUS PEAK F
8-62 | 100 |
MA(| | | | OF ANNUAL | |
LOW | | MAGNI
DISCHARGE | 749
TUDE AND
BASE | PROBABILI
D ON PERI | 927 TY OF IN | ISTANTANE
CORD 194 | OUS PEAK F | 100
FLOW | MAI | BASI | HARGE, II | N CFS, F | | 948-62

FED RECUR
O ANNUAL |
RRENCE | | MAGNI DISCHARGE YEARS, 1 | 749 TUDE AND BASE , IN CFS, | PROBABILI
D ON PERI
FOR INDI
L EXCEEDA | 927 TY OF IN OD OF RE CATED RE NCE PROE | ISTANTANE
CORD 194
CURRENCE
BABILITY, | OUS PEAK F
8-62
INTERVAL,
IN PERCEN | 100
FLOW | PERIOD
(CON-
SECU- | BASI
DISCI | HARGE, II | N CFS, FO | RECORD 19 OR INDICAT YEARS, AND ABILITY, I | 948-62
FED RECUE
ANNUAL
IN PERCEI | RRENCE | | MAGNI
MAGNI
DISCHARGE
YEARS, | 749 TUDE AND BASE , IN CFS, | PROBABILI
D ON PERI
FOR INDI | 927 TY OF IN OD OF RE | NSTANTANE
CORD 194
CORRENCE
COURRENCE
BABILITY, | OUS PEAK F
8-62
INTERVAL,
IN PERCEN | 100
FLOW | PERIOD
(CON- | BASI | HARGE, II | N CFS, F | RECORD 19

OR INDICAT
YEARS, AND | 948-62

FED RECUR
O ANNUAL |
RRENCE | | MAGNI DISCHARGE YEARS, | 749 TUDE AND BASE , IN CFS, | PROBABILI
D ON PERI
FOR INDI
L EXCEEDA | 927 TY OF IN OD OF RE CATED RE NCE PROE | ISTANTANE
CORD 194
CURRENCE
BABILITY, | OUS PEAK F
8-62
INTERVAL,
IN PERCEN | 100
FLOW | PERIOD
(CON-
SECU-
TIVE
DAYS) | DISCI | HARGE, II INTER EXCEEDAI | N CFS, FI
VAL, IN
NCE PROB | RECORD 19 OR INDICA YEARS, AND ABILITY, 1 25 4% | 948-62
FED RECUE
O ANNUAL
IN PERCEI
50
2% | RRENCE | | MAGNI DISCHARGE YEARS, 1.25 80% | 749 TUDE AND BASE , IN CFS, AND ANNUA 2 50% | PROBABILI
D ON PERI
FOR INDI
L EXCEEDA
5
20% | 927 TY OF IN OD OF RE CATED RE NCE PROE | STANTANE
CORD 194
CCURRENCE
BABILITY,
25
4% | OUS PEAK F
8-62
INTERVAL,
IN PERCEN | 100
FLOW | PERIOD (CON- SECU- TIVE DAYS) | DISCI | HARGE, II INTER EXCEEDAI 5 20% | N CFS, FOVAL, IN STANCE PROBLEM 10 10% | RECORD 19 | 948-62
FED RECUR
O ANNUAL
IN PERCER
50
2% | RRENCE | | MAGNI DISCHARGE YEARS, 1.25 80% | 749 TUDE AND BASE , IN CFS, AND ANNUA | PROBABILI
D ON PERI
FOR INDI
L EXCEEDA
5
20% | 927 TY OF IN OD OF RE CATED RE NCE PROE | STANTANE
CORD 194
CCURRENCE
BABILITY,
25
4% | OUS PEAK F
8-62
INTERVAL,
IN PERCEN | 100
FLOW | PERIOD
(CON-
SECU-
TIVE
DAYS) | DISCI | HARGE, II INTER EXCEEDAI 10500 7480 | N CFS, FI
VAL, IN N
NCE PROB.
10
10% | RECORD 19 OR INDICA YEARS, AND ABILITY, 11 25 4% 16100 10500 | 948-62
TED RECUI
O ANNUAL
IN PERCEI
50
2% | RRENCE | | MAGNI DISCHARGE YEARS, 1.25 80% | 749 TUDE AND BASE , IN CFS, AND ANNUA 2 50% | PROBABILI
D ON PERI
FOR INDI
L EXCEEDA
5
20% | 927 TY OF IN OD OF RE CATED RE NCE PROE | STANTANE
CORD 194
CCURRENCE
BABILITY,
25
4% | OUS PEAK F
8-62
INTERVAL,
IN PERCEN | 100
FLOW | PERIOD (CON- SECU- TIVE DAYS) 1 3 7 | DISCI 2 50% 6950 5380 3790 | HARGE, II
INTER
EXCEEDAI
5
20%
10500
7480
4910 | N CFS, FF
VAL, IN
NCE PROB.
10
10% | RECORD 19 OR INDICA- YEARS, AND ABILITY, 1 25 4% 16100 10500 6510 | 948-62
FED RECUI
O ANNUAL
IN PERCEI
50
2% | RRENCE | | MAGNI DISCHARGE YEARS, 1.25 80% | 749 TUDE AND BASE , IN CFS, AND ANNUA 2 50% | PROBABILI
D ON PERI
FOR INDI
L EXCEEDA
5
20% | 927 TY OF IN OD OF RE CATED RE NCE PROE | STANTANE
CORD 194
CCURRENCE
BABILITY,
25
4% | OUS PEAK F
8-62
INTERVAL,
IN PERCEN | 100
FLOW | PERIOD
(CON-
SECU-
TIVE
DAYS)
 | DISCI
2
50%
6950
5380
3790
2740 | HARGE, II
INTER
EXCEEDAL
5
20%
10500
7480
4910
3460 | N CFS, FI
VAL, IN N
NCE PROB.
10
10%
13000
8830
5630
3940 | OR INDICA
YEARS, AND
ABILITY, 1
25
4%
16100
10500
6510
4540 | P48-62 IED RECUI O ANNUAL IN PERCEI 50 2% | RRENCE | | MAGNI DISCHARGE YEARS, 1.25 80% | 749 TUDE AND BASE , IN CFS, AND ANNUA 2 50% | PROBABILI
D ON PERI
FOR INDI
L EXCEEDA
5
20% | 927 TY OF IN OD OF RE CATED RE NCE PROE | STANTANE
CORD 194
CCURRENCE
BABILITY,
25
4% | OUS PEAK F
8-62
INTERVAL,
IN PERCEN | 100
FLOW | PERIOD (CON-
SECU-
TIVE DAYS) 1 3 7 15 30 | DISCI
2
50%
6950
5380
3790
2740
2240 | HARGE, II
INTER
EXCEEDAI
5
20%
10500
7480
4910
3460
2830 | N CFS, FI
VAL, IN:
NCE PROB.
10
103
13000
8830
5630
3940
3240 | OR INDICA
YEARS, AND
ABILITY, 1
25
4%
16100
10500
6510
4540
3780 | 948-62 FED RECUI O ANNUAL IN PERCEI 50 2% | RRENCE | | MAGNI DISCHARGE YEARS, 1.25 80% | 749 TUDE AND BASE , IN CFS, AND ANNUA 2 50% | PROBABILI
D ON PERI
FOR INDI
L EXCEEDA
5
20% | 927 TY OF IN OD OF RE CATED RE NCE PROE | STANTANE
CORD 194
CCURRENCE
BABILITY,
25
4% | OUS PEAK F
8-62
INTERVAL,
IN PERCEN | 100
FLOW | PERIOD (CON- SECU- TIVE DAYS) 1 3 7 15 30 60 | DISCI
2
50%
6950
5380
3790
2740
2240
1830 | HARGE, II
INTER
EXCEEDAI
5
20%
10500
7480
4910
3460
2830
2210 | N CFS, Fi
VAL, IN NCE PROB
10 10%
13000 8830
5630
3940
2460 | 16100
10500
6510
4540
3780
2770 | P48-62 IED RECUI O ANNUAL IN PERCEI 50 2% | RRENCE | | MAGNI DISCHARGE YEARS, 1.25 80% | 749 TUDE AND BASE , IN CFS, AND ANNUA 2 50% | PROBABILI
D ON PERI
FOR INDI
L EXCEEDA
5
20% | 927 TY OF IN OD OF RE CATED RE NCE PROE | STANTANE
CORD 194
CCURRENCE
BABILITY,
25
4% | OUS PEAK F
8-62
INTERVAL,
IN PERCEN | 100
FLOW | PERIOD (CON-
SECU-
TIVE DAYS) 1 3 7 15 30 | DISCI
2
50%
6950
5380
3790
2740
2240 | HARGE, II
INTER
EXCEEDAI
5
20%
10500
7480
4910
3460
2830 | N CFS, FI
VAL, IN:
NCE PROB.
10
103
13000
8830
5630
3940
3240 | OR INDICA
YEARS, AND
ABILITY, 1
25
4%
16100
10500
6510
4540
3780 | 948-62 FED RECUI O ANNUAL IN PERCEI 50 2% | RRENCE | ## 14159500 SOUTH FORK MCKENZIE RIVER NEAR RAINBOW, OR--Continued ## STATISTICAL SUMMARIES (AFTER THE COMPLETION OF COUGAR DAM) MONTHLY AND ANNUAL MEAN DISCHARGES 1964-82 MAGNITUDE AND PROBABILITY OF ANNUAL LOW FLOW BASED ON PERIOD OF RECORD 1965-82 | | MINIMUM | MAXIMUM | MEAN | STAN-
DARD
DEVIA-
TION | COEFFI-
CIENT OF
VARI- | PERCENT
OF
ANNUAL | PERIOD
(CON-
SECU- | DISCH | INTERVAL | , IN YEA | R INDICA
RS, AND A
BILITY, |
ANNUAL NO | ON- | |---------------------------------------|-----------------------------|-------------------------|-------------------------------|---------------------------------------|-------------------------------------|-----------------------------|---|---|--|---|--|--|--------------| | MONTH | (CFS) | (CFS) | (CFS) | (CFS) | ATION | RUNOFF | TIVE
DAYS) | 2
50% | 5
20% | 10
10% | 20
5% | 50
2 % | 100
1% | | OCTOBER | 185 | 1947 | 933 | 315 | .34 | 9.5 | 1 | 159 | 116 |
97 | 84 | | | | NOVEMBER | 276 | 2403 | 1191 | 487 | .41 | 12.1 | 3 | 185 | 131 | 107 | 89 | | | | DECEMBER | 210 | 3221 | 1468 | 818 | .56 | 15.0 | 7 | 217 | 148 | 117 | 94 | | | | JANUARY | 267 | 3246 | 1286 | 631 | .49 | 13.1 | 14 | 230 | 156 | 122 | 98 | | | | EBRUARY | 157 | 2030 | 723 | 592 | .82 | 7.4 | 30 | 256 | 167 | 128 | 100 | | | | MARCH | 101 | 2571 | 532 | 542 | 1.02 | 5.4 | 60 | 304 | 200 | 158 | 128 | | | | APRIL | 90 | 885 | 461 | 233 | .51 | 4.7 | 90 | 411 | 281 | 225 | 184 | | | | 4AY | 158 | 1494 | 728 | 450 | •62 | 7.4 | 120 | 444 | 310 | 254 | 214 | | | | JUNE | 250 | 1584 | 683 | 364 | .53 | | | 553 | 443 | 396 | 361 | | | | | | | | | | 7.0 | 183 | 223 | 443 | 296 | 201 | | | | JULY | 251 | 513 | 410 | 64 | .16 | 4.2 | | | | | | | | | AUGUST | 397 | 823 | 587 | 127 | .22 | 6.0 | | | | | | | | | SEPTEMBER | 560 | 1084 | 806 | 113 | .14 | 8.2 | | | | | | | | | ANNUAL | 453 | 1243 | 818 | 225 | .28 | 100 | | | | | | | | | OISCHARGE, | BASE | O ON PERIO | OD OF RE | CORD CURRENCE | OUS PEAK I |
, IN | | BASE | D ON PER

ARGE, IN | OD OF R | OF ANNUAL
ECORD 19
R INDICA | 964-82

TED RECUR | | | DISCHARGE,
YEARS, A | BASE | FOR INDIC | OD OF RE | CORD
CURRENCE
ABILITY, | INTERVAL
IN PERCEI | , IN
NT | PERIOD
(CON- | BASE
DISCH | O ON PER
ARGE, IN
INTERV | OD OF R CFS, FO AL, IN Y | ECORD 19 | 964-82

TED RECUR
D ANNUAL | RENCE | | OISCHARGE, | BASE | O ON PERIO | OD OF RE | CORD CURRENCE | INTERVAL
IN PERCEI |
, IN | PERIOD
(CON-
SECU-
TIVE | BASE
DISCH | D ON PER ARGE, IN INTERV EXCEEDAN | CFS, FO
AL, IN Y
CE PROBA | ECORD 19 R INDICATEARS, AND BILITY, 1 | P64-82 FED RECURD ANNUAL IN PERCEN | RRENCE | | OISCHARGE,
YEARS, A | BASE
IN CFS,
ND ANNUA | FOR INDIC
L EXCEEDAL | OD OF RECEIVED RESIDENCE PROB | CORD CURRENCE ABILITY, 25 | INTERVAL
IN PERCEI | , IN
NT | PERIOD
(CON-
SECU- | BASE
DISCH | O ON PER ARGE, IN INTERV | CFS, FO AL, IN Y | ECORD 19 R INDICATEARS, AND | 964-82
FED RECUR
O ANNUAL
IN PERCEN | RRENCE | | DISCHARGE,
YEARS, A | BASE
IN CFS,
ND ANNUA | FOR INDIC
L EXCEEDAL | OD OF RECEIVED RESIDENCE PROB | CORD CURRENCE ABILITY, 25 | INTERVAL
IN PERCEI | , IN
NT | PERIOD
(CON-
SECU-
TIVE | BASE
DISCH | D ON PER ARGE, IN INTERV EXCEEDAN | CFS, FO
AL, IN Y
CE PROBA | ECORD 19 R INDICATEARS, AND BILITY, 1 | P64-82 FED RECURD ANNUAL IN PERCEN | RRENCE | | DISCHARGE,
YEARS, A
1.25
80% | BASE | FOR INDIC
L EXCEEDAL | OD OF RECEIVED RESIDENCE PROB | CORD CURRENCE ABILITY, 25 | INTERVAL
IN PERCEI | , IN
NT | PERIOD
(CON-
SECU-
TIVE
DAYS) | BASE DISCH 2 50\$ | O ON PER ARGE, IN INTERV. EXCEEDANN 5 20% | CFS, FO AL, IN Y CE PROBA 10 10 5930 | ECORD 19 R INDICAT EARS, AND BILITY, 1 25 4% | FED RECUF
O ANNUAL
IN PERCEN
50
2% | RRENCE | | DISCHARGE,
YEARS, A | BASE | FOR INDIC
L EXCEEDAL | OD OF RECEIVED RESIDENCE PROB | CORD CURRENCE ABILITY, 25 | INTERVAL
IN PERCEI | , IN
NT | PERIOD
(CON-
SECU-
TIVE
DAYS) | BASE DISCH 2 50% 4530 4100 | D ON PER ARGE, IN INTERV EXCEEDANN 5 20% 5590 5350 | CFS, FO AL, IN Y CE PROBA 10 10 5930 5860 | R INDICATE EARS, AND BILITY, 25 4% 6150 6280 | FED RECUF
O ANNUAL
IN PERCEN
50
2% | RRENCE
IT | | DISCHARGE,
YEARS, A
1.25
80% | BASE | FOR INDIC
L EXCEEDAL | OD OF RECEIVED RESIDENCE PROB | CORD CURRENCE ABILITY, 25 | INTERVAL
IN PERCEI | , IN
NT | PERIOD (CON-
SECU-
TIVE DAYS) | BASE DISCH 2 50\$ 4530 4100 3340 | D ON PER ARGE, IN INTERV EXCEEDANG 5 20% 5590 5350 4640 | CFS, FO AL, IN Y CE PROBA 10 10 5930 5860 5350 | ECORD 19 R INDICATE ARS, AND BILITY, 125 4% 6150 6280 6090 | FED RECUF
O ANNUAL
IN PERCEN
50
2% | 100
1% | | DISCHARGE,
YEARS, A
1.25
80% | BASE | FOR INDIC
L EXCEEDAL | OD OF RECEIVED RESIDENCE PROB | CORD CURRENCE ABILITY, 25 | INTERVAL
IN PERCEI | , IN
NT | PERIOD (CON-
SECU-
TIVE DAYS) | DISCH 2 50\$ 4530 4100 3340 2550 | D ON PER ARGE, IN INTERV. EXCEEDAN 5 20% 5590 5350 4640 3660 | CFS, FO AL, IN Y CE PROBA 10 10 5930 5860 5350 4410 | ECORD 19 | FED RECUF
D ANNUAL
IN PERCEN
50
2% | 100
1% | | DISCHARGE,
YEARS, A
1.25
80% | BASE | FOR INDIC
L EXCEEDAL | OD OF RECEIVED RESIDENCE PROB | CORD CURRENCE ABILITY, 25 | INTERVAL
IN PERCEI | , IN
NT | PERIOD (CON-
SECU-
TIVE DAYS) | BASE DISCH 2 50 4530 4100 3340 2550 1950 | D ON PER ARGE, IN INTERV EXCEEDAN 520\$ 5590 4640 3660 2680 | CFS, FO AL, IN Y CE PROBA 10 10\$ 5930 5860 5350 4410 3170 | R INDICATE ARS, AND BILITY, 125 4% | FED RECURD ANNUAL IN PERCENSON 2% | 100
1% | | DISCHARGE,
YEARS, A
1.25
80% | BASE | FOR INDIC
L EXCEEDAL | OD OF RECEIVED RESIDENCE PROB | CORD CURRENCE ABILITY, 25 | INTERVAL
IN PERCEI | , IN
NT | PERIOD (CON- SECU- TIVE DAYS) 1 3 7 15 30 60 | BASE DISCH 2 50 4530 4100 3340 2550 1950 1520 | D ON PER ARGE, IN INTERV. EXCEEDAN 5 20\$ 5590 5350 4640 3660 2680 2070 | CFS, FO AL, IN Y CE PROBA 10 10 5860 5350 4410 3170 2480 | ECORD 19 R INDICATE ARS, AND BILITY, 10 25 4\$ 6150 6280 6090 5350 3800 3050 | FED RECURD ANNUAL IN PERCENSON 2% | 100
1% | | DISCHARGE,
YEARS, A
1.25
80% | BASE | FOR INDIC
L EXCEEDAL | OD OF RECEIVED RESIDENCE PROB | CORD CURRENCE ABILITY, 25 | INTERVAL
IN PERCEI | , IN
NT | PERIOD (CON-
SECU-
TIVE DAYS) | BASE DISCH 2 50 4530 4100 3340 2550 1950 | D ON PER ARGE, IN INTERV EXCEEDAN 520\$ 5590 4640 3660 2680 | CFS, FO AL, IN Y CE PROBA 10 10\$ 5930 5860 5350 4410 3170 | R INDICATE ARS, AND BILITY, 125 4% | FED RECURD ANNUAL IN PERCENSON 2% | 100
1% | | DISCHARGE,
YEARS, A
1.25
80% | BASE | FOR INDIC
L EXCEEDAL | CATED RENCE PROB | CURRENCE ABILITY, 25 4% | INTERVAL
IN PERCEI
50
2% | , IN
NT
100
1% | PERIOD (CON- SECU- TIVE DAYS) 1 3 7 15 30 60 | BASE DISCH 2 50\$ 4530 4100 3340 2550 1950 1950 1360 | ARGE, IN INTERV. EXCEEDAN. 5 20\$ 5590 5350 4640 2680 2070 1840 | CFS, FO AL, IN Y CE PROBA 10 10 5930 5860 5350 4410 3170 2480 2170 | ECORD 19 R INDICATE ARS, AND BILITY, 10 25 4\$ 6150 6280 6090 5350 3800 3050 | FED RECURD ANNUAL IN PERCENSON 2% | 100
1% | | 1.25
80% | BASE | FOR INDIG | CATED RE CATED RE NCE PROB | CORD CURRENCE ABILITY, 25 4% N TABLE | INTERVAL IN PERCEI 50 2% | , IN
NT
100
1%
 | PERIOD
(CON-
SECU-
TIVE
DAYS)
 | DISCH 2 50\$ 4530 3340 2550 1950 1520 0F RECO | D ON PER ARGE, IN INTERV. EXCEEDAN 5 20 \$ 5590 5350 4640 3660 2680 2070 1840 RD 1964-1 | CFS, FO AL, IN Y CE PROBA 10 10 5930 5860 5350 4410 3170 2480 2170 | ECORD 19 R INDICATE ARS, AND BILITY, 125 4% 6150 6280 6090 5350 3800 3050 2610 | FED RECURD ANNUAL IN PERCENSON 2% | 100
1% | | DISCHARGE,
YEARS, A
1.25
80% | BASE | FOR INDIG | CATED RE CATED RE NCE PROB | CORD CURRENCE ABILITY, 25 4% N TABLE | INTERVAL IN PERCEI 50 2% OF DAILY ! | , IN
NT
100
1%
 | PERIOD (CON- SECU- TIVE DAYS) | DISCH 2 50\$ 4530 3340 2550 1950 1520 0F RECO | D ON PER ARGE, IN INTERV. EXCEEDAN 5 20 \$ 5590 5350 4640 3660 2680 2070 1840 RD 1964-1 | CFS, FO AL, IN Y CE PROBA 10 10 5930 5860 5350 4410 3170 2480 2170 | ECORD 19 R INDICATE ARS, AND BILITY, 125 4% 6150 6280 6090 5350 3800 3050 2610 | FED RECURD ANNUAL IN PERCENSON 2% | 100
1% | # WILLAMETTE RIVER BASIN 14161100 BLUE RIVER BELOW TIDBITS CREEK, NEAR BLUE RIVER, OR WILLAMETTE RIVER BASIN 59 LOCATION.--Lat 44°13'05", long 122°15'50", in SE½NE½ sec.36, T.15 S., R.4 E., Lane County, Hydrologic Unit 17090004, in Willamette National Forest, on left bank 0.2 mi downstream from Tidbits Creek, 5.5 mi northeast of town of Blue River, and at mile 8.5. DRAINAGE AREA .-- 45.8 mi2. PERIOD OF RECORD. -- September 1963 to September 1982. GAGE.--Water-stage recorder. Datum of gage is 1,386.90 ft National Geodetic Vertical Datum of 1929 (Corps of Engineers bench mark). REMARKS. -- No regulation or diversion above station. AVERAGE DISCHARGE.--19 years, 259 ft³/s, 76.80 in/yr, 187,600 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 12,400 ft³/s Dec. 22, 1964, gage height, 15.32 ft, from floodmarks, from rating curve extended above 2,800 ft³/s on basis of slope-area measurement of peak flow; minimum, 8.2 ft³/s Sept. 28, 29, Oct. 2-4, 1965. #### STATISTICAL SUMMARIES | | MINIMUM | MAXIMUM | MEAN | STAN-
DARD
DEVIA-
TION | COEFFI-
CIENT OF
VARI- | PERCENT
OF
ANNUAL | PERIOD
(CON-
SECU- | | ARGE, IN (
INTERVAL,
EXCEEDANCI | IN YEARS | , AND AN | INUAL N | -NC | |-----------|---------|---------|--------|---------------------------------|------------------------------|-------------------------|--------------------------|----------|---------------------------------------|-----------|----------|----------|-----------| | MONTH | (CFS) | (CFS) | (CFS) | (CFS) | ATION | RUNOFF | TIVE
DAYS) | 2
50% | 5
20 % | 10
10% | 20
5% | 50
2% | 100
1% | | OCTOBER | 12 | 180 |
73 | 52 | .72 | 2.3 | 1 | 12 | 10.0 | 9.2 | 8.7 | | | | NOVEMBER | 46 | 731 | 327 | 212
 .65 | 10.4 | 3 | 12 | 10 | 9.4 | 8.8 | | | | DECEMBER | 33 | 1471 | 598 | 352 | .59 | 19.0 | 7 | 13 | 10 | 9.6 | 9.1 | | | | JANUARY | 48 | 1033 | 540 | 293 | .54 | 17.2 | 14 | 13 | 11 | 10 | 9.4 | | | | FEBRUARY | 65 | 914 | 430 | 235 | .55 | 13.7 | 30 | 15 | 12 | 11 | 10 | | | | MARCH | 128 | 995 | 340 | 203 | .60 | 10.8 | 60 | 18 | 14 | 13 | 12 | | | | APRIL | 147 | 529 | 330 | 110 | .33 | 10.5 | 90 | 23 | 17 | 15 | 14 | | | | MAY | 100 | 521 | 281 | 127 | .45 | 8.9 | 120 | 30 | 23 | 20 | 17 | | | | JUNE | 45 | 320 | 130 | 83 | .64 | 4.1 | 183 | 68 | 49 | 41 | 35 | | | | JULY | 23 | 73 | 39 | 15 | .37 | 1.2 | | | | | | | | | AUGUST | 13 | 52 | 23 | 9.4 | .41 | .7 | | | | | | | | | SEPTEMBER | 11 | 82 | 30 | 21 | . 69 | 1.0 | | | | | | | | | ANNUAL | 106 | 404 | 261 | 76 | .29 | 100 | | | | | | | | #### MAGNITUDE AND PROBABILITY OF INSTANTANEOUS PEAK FLOW BASED ON PERIOD OF RECORD 1964-82 MAGNITUDE AND PROBABILITY OF ANNUAL HIGH FLOW BASED ON PERIOD OF RECORD 1964-82 | DISCHARGE,
YEARS, A | | | | RECURRENC
ROBABILIT | | | PERIOD
(CON- | DISCH | INTERV | 'AL, ÎN Y | OR INDICAT
EARS, AND | ANNUAL | | |------------------------|------------------|------------------|-----------|------------------------|-----------------|-----------|------------------------|--------------|------------------|--------------|-------------------------|----------|-----| | 1.25
80% | 2
50 % | 5
20 % | 10
10% | 25
4% | 50
2% | 100
1% | SECU-
TIVE
DAYS) | 2
50% | 5
20 % | 10
10% | 25
4% | 50
2% | 100 | | 2830 | 4080 | 6180 | 7850 | 10300 | | | | 7440 | 4770 | 5040 | 7700 | | | | WEIGHTED | SKEW = | .471 | | | | | 3 | 3110
2340 | 4770
3550 | 5910
4370 | 7390
5410 | | | | | | | | | | | 7
15 | 1740
1130 | 2450
1540 | 2870
1770 | 3330
2030 | | | | | | | | | | | 30 | 860 | 1150 | 1310 | 1490 | | | | | | | | | | | 60
90 | 656
580 | 869
755 | 1000
864 | 1170
997 | | | DURATION TABLE OF DAILY MEAN FLOW FOR PERIOD OF RECORD 1964-82 | DISCHARGE, IN CFS, WHICH WAS EQUALED OR EXCEED | ED FOR INDICATE | D PERCENT 0 | F TIME | | | |--|-----------------|-------------|--------|-----|-----| | 5% 10% 15% 20% 25% 30% 40% 50% | 60% 70% | 75% 8 | 0% 85% | 90% | 95% | | 905 587 450 377 317 270 200 140 | 85 4 6 | 35 2 | 7 22 | 18 | 14 | #### 14161500 LOOKOUT CREEK NEAR BLUE RIVER, OR LOCATION.--Lat 44°12'35", long 122°15'20", in T.15 or 16 S., R.5 E. (unsurveyed), Lane County, Hydrologic Unit 17090004, in Willamette National Forest, on left bank 6.0 mi northeast of town of Blue River, and at mile 0.5. DRAINAGE AREA. -- 24.1 mi2. PERIOD OF RECORD.--August 1949 to September 1955, September 1963 to September 1982. GAGE.--Water-stage recorder. Datum of gage is 1,377.76 ft National Geodetic Vertical Datum of 1929 (Corps of Engineers bench mark). REMARKS.--No regulation or diversion above station. AVERAGE DISCHARGE.--25 years, 127 ft³/s, 71.56 in/yr, 92,010 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.—Maximum discharge, 6,660 ft 3 /s Dec. 22, 1964, gage height, 8.88 ft, from rating curve extended above 1,300 ft 3 /s, on basis of slope-area measurement of peak flow; minimum, 4.8 ft 3 /s Sept. 16, 17, 1981. ## STATISTICAL SUMMARIES MONTHLY AND ANNUAL MEAN DISCHARGES 1950-82 MAGNITUDE AND PROBABILITY OF ANNUAL LOW FLOW BASED ON PERIOD OF RECORD 1951-82 | | MINIMUM | MAX I MUM | MEAN | STAN-
DARD
DEVIA-
TION | COEFFI-
CIENT OF
VARI- | PERCENT
OF
ANNUAL | PERIOD
(CON-
SECU- | 11 | NTERVAL, | CFS, FOR
IN YEARS
E PROBABI | , AND AN | INUAL NO | N- | |-----------|---------|-----------|-------|---------------------------------|------------------------------|-------------------------|--------------------------|----------|----------|-----------------------------------|----------|----------|-----------| | MONTH | (CFS) | (CFS) | (CFS) | (CFS) | ATION | RUNOFF | TIVE
DAYS) | 2
50% | 5
20% | 10
10% | 20
5% | 50
2% | 100
1% | | OCTOBER | 8.9 | 179 | 41 | 43 | 1.04 | 2.7 | 1 | 9.3 | 7.5 | 6.6 | 5.9 | 5.2 | | | NOVEMBER | 10 | 322 | 142 | 95 | .67 | 9.3 | 3 | 9.4 | 7.6 | 6.7 | 6.0 | 5.2 | | | DECEMBER | 20 | 794 | 252 | 166 | .66 | 16.5 | 7 | 9.7 | 7.8 | 6.8 | 6.1 | 5.4 | | | JANUARY | 25 | 591 | 259 | 141 | .54 | 17.0 | 14 | 10 | 8.2 | 7.3 | 6.6 | 5.8 | | | FEBRUARY | 27 | 435 | 216 | 105 | .49 | 14.2 | 30 | 11 | 9.0 | 8.1 | 7.4 | 6.6 | | | MARCH | 61 | 420 | 164 | 84 | •51 | 10.7 | 60 | 13 | 10 | 9.4 | 8.5 | 7.7 | | | APRIL | 70 | 282 | 167 | 56 | •33 | 10.9 | 90 | 15 | 12 | 11 | 9.9 | 9.0 | | | MAY | 55 | 255 | 146 | 60 | .41 | 9.6 | 120 | 18 | 15 | 13 | 12 | 12 | | | JUNE | 30 | 212 | 81 | 50 | .62 | 5.3 | 183 | 35 | 26 | 23 | 21 | 19 | | | JULY | 16 | 46 | 27 | 9.1 | .34 | 1.8 | | | | | | | | | AUGUST | 9.6 | 22 | 16 | 3.6 | .23 | 1.0 | | | | | | | | | SEPTEMBER | 8.6 | 41 | 16 | 6.8 | .42 | 1.1 | | | | | | | | | ANNUAL | 49 | 182 | 127 | 33 | .26 | 100 | | | | | | | | MAGNITUDE AND PROBABILITY OF INSTANTANEOUS PEAK FLOW BASED ON PERIOD OF RECORD 1950-82 MAGNITUDE AND PROBABILITY OF ANNUAL HIGH FLOW BASED ON PERIOD OF RECORD 1950-82 | DISCHARGE,
YEARS, A | | | | | | | PERIOD
(CON- | | INTERV | 'AL, ÍN Y | EARS, AN | TED RECUI
D ANNUAL
IN PERCEI | | |------------------------|----------|----------|-----------|----------|------------------|-----------|------------------------|----------|----------|-----------|----------|------------------------------------|-----| | 1.25
80% | 2
50% | 5
20% | 10
10% | 25
4% | 50
2 % | 100
1% | SECU-
TIVE
DAYS) | 2
50% | 5
20% | 10 | 25
4% | 50
2% | 100 | | 1200 | 1750 | 2680 | 3440 | 4560 | 5520 | | | | | | | | | | NE LOUTED | CKEM | 404 | | | | | 1 | 1380 | 2110 | 2560 | 3090 | 3460 | | | WEIGHTED | SKEW = | - 494 | | | | | 2 | 1030 | 1560 | 1910 | 2340 | 2650 | | | | | | | | | | 7 | 734 | 1070 | 1280 | 1530 | 1710 | | | | | | | | | | 15 | 503 | 701 | 822 | 964 | 1060 | | | | | | | | | | 30 | 399 | 539 | 624 | 721 | 788 | | | | | | | | | | 60 | 306 | 400 | 457 | 524 | 571 | | | | | | | | | | 90 | 277 | 354 | 396 | 444 | 475 | | DURATION TABLE OF DAILY MEAN FLOW FOR PERIOD OF RECORD 1950-82 | DISCHARGE, IN CFS, WHICH WAS EQUALED OR EXCEEDED FO | R INDICATED PERCENT OF TIME | |---|-----------------------------| | 5% 10% 15% 20% 25% 30% 40% 50% 60% | 70% 75% 80% 85% 90% 95% | | 417 285 226 189 161 140 105 76 49 | 27 22 18 16 13 11 | #### 14162000 BLUE RIVER NEAR BLUE RIVER, OR LOCATION.--Lat 44°10'55", long 122°16'45", in NWt sec.13, T.16 S., R.4 E., Lane County, Hydrologic Unit 17090004, on right bank 2.5 mi downstream from Lookout Creek, 3.3 mi upstream from Quartz Creek, 3.5 mi northeast of town of Blue River, and at mile 5.1. DRAINAGE AREA. -- 75.0 mi2. PERIOD OF RECORD. -- September 1935 to September 1964. Monthly discharge only September 1935, published in WSP 1318. GAGE.--Water-stage recorder. Datum of gage Is 1,231.62 ft National Geodetic Vertical Datum of 1929 (Corps of Engineers bench mark). REMARKS.--No regulation or diversion above station. AVERAGE DISCHARGE.--29 years (water years 1936-64), 393 ft³/s, 284,500 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.—Maximum discharge, 13,300 ft 3 /s Dec. 28, 1945, gage height, 9.80 ft, from rating curve extended above 7,400 ft 3 /s; minimum, 11 ft 3 /s Aug. 21, 22, 1961. #### STATISTICAL SUMMARIES | | ONTHLY AN | ND ANNUAL | MEAN DIS | SCHARGES | 1936-64 | | MA | | AND PROB | | | AL LOW FLO
1937-64 | OW | |---|--|--|--|---|--|---------------------------------|---|---|---|---|---|--|-----------| | | MINIMUM | MAXIMUM |
MEAN | STAN-
DARD
DEVIA-
TION | COEFFI-
CIENT OF
VARI- | PERCENT
OF
ANNUAL | PERIOD
(CON-
SECU- | DISC | INTERVAL | ., IN YEA | ARS, AND | ATED RECUI
ANNUAL NO
IN PERCEI | ON- | | MONTH | (CFS) | (CFS) | (CFS) | (CFS) | ATION | RUNOFF | TIVE
DAYS) | 2
50% | 5
20 % | 10
10% | 20
5 % | 50
2 % | 100
1% | | OCTOBER | 18 | 622 | 153 | 169 | 1.10 | 3.2 | 1 | 20 | 16 | 15 | 14 | 13 | | | NOVEMBER | 18 | 1356 | 516 | 338 | .66 | 10.9 | 3 | 20 | 17 | 15 | 14 | 13 | | | DECEMBER | 139 | 1668 | 690 | 436 | -63 | 14.6 | 7 | 21 | 17 | 16 | 15 | 14 | | | JANUARY | 69 | 1821 | 641 | 399 | .62 | 13.5 | 14 | 22 | 18 | 17 | 16 | 15 | | | FEBRUARY | 238 | 1456 | 705 | 310 | .44 | 14.9 | 30 | 25 | 20 | 18 | 17 | | | | MARCH | 165 | 1062 | 580 | 221 | .38 | 12.2 | 60 | 30 | 24 | 21 | 19 | 17 | | | APRIL | 164 | 1089 | 623 | 207 | .33 | 13.2 | 90 | 36 | 27 | 24 | 21 | 19 | | | MAY | 123 | 819 | 461 | 212 | •46 | 9.7 | 120 | 48 | 34 | 28 | 25 | 21 | | | JUNE | 50 | 553 | 225 | 135 | .60 | 4.8 | 183 | 113 | 76 | 62 | 53 | 44 | | | JULY | 26 | 137 | 69 | 26 | • 37 | 1.5 | | | | | | | | | AUGUST | 18 | 54 | 35 | 9.6 | • 27 | .7 | | | | | | | | | SEPTEMBER | 20 | 121 | 38 | 22 | .58 | .8 | ANNUAL

MAGN I T | | | | | .22
OUS PEAK (6-64 | 100
 |
MA(| | | | | AL HIGH FL
1936-64 | . | | MAGNIT | TUDE AND
BASE | PROBABILI
D ON PERI | TY OF IN
OD OF RE | ISTANTANE
CORD 1936 | 0US PE A K
1
6-64 | FLOW |
PERIOD
(CON- | BASE | D ON PER
HARGE, IN
INTERV | CFS, FO | ECORD
R INDICA | | RRENCE | | MAGNIT
DISCHARGE,
YEARS, A | TUDE AND
BASE
IN CFS,
AND ANNUA | PROBABILI
D ON PERI
FOR INDI
L EXCEEDA | TY OF IN
OD OF RE
CATED RE
NCE PROE | ISTANTANE
CORD 1936
CURRENCE
BABILITY, | OUS PEAK 16-64 INTERVAL IN PERCE | FLOW, IN NT | PERIOD
(CON-
SECU- | BASE
DISCH | ID ON PER | CFS, FO | ECORD R INDICA EARS, AI | 1936-64 ATED RECUF ND ANNUAL IN PERCEN | RRENCE | | MAGNII
DISCHARGE,
YEARS, A | TUDE AND
BASE
IN CFS, | PROBABILI
D ON PERI
FOR INDI | TY OF IN
OD OF RE
CATED RE | ISTANTANE
CORD 1936
CURRENCE
BABILITY, | OUS PEAK
6-64
INTERVAL
IN PERCE | FLOW
, IN | PERIOD
(CON-
SECU-
TIVE | DISCH | ED ON PER
HARGE, IN
INTERV
EXCEEDAN | CFS, FO
AL, IN Y
CE PROBA | R INDICA
EARS, AI
BILITY, | 1936-64 ATED RECUF ND ANNUAL IN PERCEN | RRENCE | | MAGNIT
DISCHARGE,
YEARS, A | TUDE AND
BASE
IN CFS,
AND ANNUA | PROBABILI
D ON PERI
FOR INDI
L EXCEEDA | TY OF IN
OD OF RE
CATED RE
NCE PROE | ISTANTANE
CORD 1936
CURRENCE
BABILITY, | OUS PEAK 16-64 INTERVAL IN PERCE | FLOW, IN NT | PERIOD
(CON-
SECU- | BASE
DISCH | ID ON PER | CFS, FO | ECORD R INDICA EARS, AI | 1936-64 ATED RECUF ND ANNUAL IN PERCEN | RRENCE | | MAGNIT
DISCHARGE,
YEARS, A | TUDE AND
BASE
IN CFS,
AND ANNUA | PROBABILI
D ON PERI
FOR INDI
L EXCEEDA | TY OF IN
OD OF RE
CATED RE
NCE PROB | ISTANTANE
CORD 1936
CCURRENCE
SABILITY,
25
4% | OUS PEAK 16-64 INTERVAL IN PERCE | FLOW, IN NT | PERIOD
(CON-
SECU-
TIVE
DAYS) | BASE
DISCH | ED ON PER
HARGE, IN
INTERV
EXCEEDAN
5
20% | CFS, FO
AL, IN Y
CE PROBA | ECORD R INDICA EARS, AI BILITY, 25 4% | 1936-64 ATED RECUP ND ANNUAL IN PERCEN 50 2% | RRENCE | | MAGNIT
DISCHARGE,
YEARS, A
1.25
80% | TUDE AND BASE IN CFS, AND ANNUA 2 50% | PROBABILI
D ON PERI
FOR INDI
L EXCEEDA | TY OF IN
OD OF RE
CATED RE
NCE PROB | ISTANTANE
CORD 1936
CCURRENCE
SABILITY,
25
4% | OUS PEAK
6-64
INTERVAL
IN PERCE
50
2% | FLOW, IN NT | PERIOD
(CON-
SECU-
TIVE
DAYS) | BASE DISCH | ID ON PER
HARGE, IN
INTERV
EXCEEDAN
5
20% | CFS, FO
AL, IN Y
CE PROBA | RECORD REARS, AI BILITY, 25 4% | 1936-64 ATED RECUF ND ANNUAL IN PERCEN 50 2% | RRENCE | | MAGNIT
DISCHARGE,
YEARS, A
1.25
80% | TUDE AND BASE IN CFS, AND ANNUA 2 50% | PROBABILI
D ON PERI
FOR INDI
L EXCEEDA | TY OF IN
OD OF RE
CATED RE
NCE PROB | ISTANTANE
CORD 1936
CCURRENCE
SABILITY,
25
4% | OUS PEAK
6-64
INTERVAL
IN PERCE
50
2% | FLOW, IN NT | PERIOD
(CON-
SECU-
TIVE
DAYS) | DISCH | IARGE, IN INTERV EXCEEDAN 5 20% | CFS, FO
AL, IN Y
CE PROBA
10
10
7760
5370 | RECORD RINDICATERS, AI BILITY, 25 4% 9630 6450 | 1936-64 ATED RECUF ND ANNUAL IN PERCEN 50 25 11100 7270 | RRENCE | | MAGNIT
DISCHARGE,
YEARS, A
1.25
80% | TUDE AND BASE IN CFS, AND ANNUA 2 50% | PROBABILI
D ON PERI
FOR INDI
L EXCEEDA | TY OF IN
OD OF RE
CATED RE
NCE PROB | ISTANTANE
CORD 1936
CCURRENCE
SABILITY,
25
4% | OUS PEAK
6-64
INTERVAL
IN PERCE
50
2% | FLOW, IN NT | PERIOD (CON- SECU- TIVE DAYS) 1 3 7 | DISCH | IARGE, IN INTERVENTE EXCEEDAN 5 20% 6360 4520 2950 | CFS, FO
AL, IN Y
CE PROBA
10
10\$
7760
5370
3390 | ECORD RE INDICA FEARS, AI BILITY, 25 4% 9630 6450 3910 | 1936-64 ATED RECUF ND ANNUAL IN PERCEN 50 25 11100 7270 4260 | RRENCE | | MAGNIT
DISCHARGE,
YEARS, A
1.25
80% | TUDE AND BASE IN CFS, AND ANNUA 2 50% | PROBABILI
D ON PERI
FOR INDI
L EXCEEDA | TY OF IN
OD OF RE
CATED RE
NCE PROB | ISTANTANE
CORD 1936
CCURRENCE
SABILITY,
25
4% | OUS PEAK
6-64
INTERVAL
IN PERCE
50
2% | FLOW, IN NT | PERIOD
(CON-
SECU-
TIVE
DAYS)
 | BASE DISCH 2 50% 4380 3260 2220 1550 | ARGE, IN INTERVEX EXCEEDAN 5 20% 6360 4520 2950 2050 | CFS, FO AL, IN Y CE PROBA 10 10% - 7760 5370 3390 2360 | R INDIC/
EARS, AI
BILITY,
25
4%
9630
6450
3910
2740 | 1936-64 ATED RECUP ND ANNUAL IN PERCEN 50 2\$ 11100 7270 4260 3010 | RRENCE | | MAGNIT
DISCHARGE,
YEARS, A
1.25
80% | TUDE AND BASE IN CFS, AND ANNUA 2 50% | PROBABILI
D ON PERI
FOR INDI
L EXCEEDA | TY OF IN
OD OF RE
CATED RE
NCE PROB | ISTANTANE
CORD 1936
CCURRENCE
SABILITY,
25
4% | OUS PEAK
6-64
INTERVAL
IN PERCE
50
2% | FLOW, IN NT | PERIOD (CON-
SECU-
TIVE DAYS) | BASE DISCH 2 50% 4380 3260 2220 1550 1200 | ED ON PER INTERV EXCEEDAN 5 20% 6360 4520 2950 2050 1590 | 10D OF R CFS, FO AL, IN Y CE PROBA 10 10\$ 7760 5370 3390 2360 1810 | R INDICA
EARS, AI
BILITY,
25
4%
9630
6450
3910
2740
2070 | 1936-64 ATED RECUP ND ANNUAL IN PERCEN 50 2% 11100 7270 4260 3010 2250 | RRENCE | | MAGNIT
DISCHARGE,
YEARS, A
1.25
80% | TUDE AND BASE IN CFS, AND ANNUA 2 50% | PROBABILI
D ON PERI
FOR INDI
L EXCEEDA | TY OF IN
OD OF RE
CATED RE
NCE PROB | ISTANTANE
CORD 1936
CCURRENCE
SABILITY,
25
4% | OUS PEAK
6-64
INTERVAL
IN PERCE
50
2% | FLOW, IN NT | PERIOD
(CON-
SECU-
TIVE
DAYS)
 | BASE DISCH 2 50% 4380 3260 2220 1550 1200 938 | HARGE, IN INTERVEX EXCEEDAN 4520 2950 2050 1590 1200 | 10D OF R CFS, F0 AL, IN Y CE PROBA 10 10\$ 7760 5370 3390 2360 1810 1350 | R INDIC/
EARS, AI
BILITY,
25
4%
9630
6450
3910
2740
2070
1530 | 1936-64 ATED RECUF ND ANNUAL IN PERCEN 50 2% 11100 7270 4260 3010 2250 1640 | RRENCE | | MAGNITONISCHARGE, YEARS, A | TUDE AND BASE IN CFS, AND ANNUA 2 50% | PROBABILI
D ON PERI
FOR INDI
L EXCEEDA | TY OF IN OD OF RE | ISTANTANE
CORD 1930
CURRENCE
BABILITY,
25
4% | OUS PEAK 16-64 INTERVAL IN PERCE 50 2% | FLOW , IN NT 100 1% | PERIOD (CON-
SECU-
TIVE DAYS) | BASE DISCH 2 50% 4380 3260 2220 1550 1200 938 855 | HARGE, IN INTERVEXCEEDAN 5 20% 6360 4520 2950 1590 1200 1050 | CFS, FO AL, IN Y CE PROBA 7760 5370 3390 2360 1810 1350 1160 | R INDICA
EARS, AI
BILITY,
25
4%
9630
6450
3910
2740
2070 | 1936-64 ATED RECUP ND ANNUAL IN PERCEN 50 2% 11100 7270 4260 3010 2250 | RRENCE | | MAGNITODISCHARGE, YEARS, A | TUDE AND BASE IN CFS, AND ANNUA 2 50% | PROBABILI
D ON PERI
FOR INDI
L EXCEEDA
5
20%
8220
026 | TY OF IN OD OF RE | STANTANE
CORD 1930
CURRENCE
BABILITY,
25
4%
2100 1: | OUS PEAK 16-64 INTERVAL IN PERCE 50 2% 3700 | FLOW IN I100 11% MEAN FLOW | PERIOD
(CON-
SECU-
TIVE
DAYS)
 | BASE DISCH 2 50% 4380 3260 2220 1550 1200 938 855 | HARGE, IN INTERVEXCEEDAN 5 20% 6360 4520 2950 2050 1590 1200 1050 RD 1936- | 10D OF R CFS, F0 AL, IN Y CE PROBA 10 10% 7760 5370 3390 2360 1810 1350 1160 | R INDIC/
EARS, AI
BILITY,
25
4%
9630
6450
3910
2740
2070
1530 | 1936-64 ATED RECUF ND ANNUAL IN PERCEN 50 2% 11100 7270 4260 3010 2250 1640 | RRENCE | #### 14162200 BLUE RIVER AT BLUE RIVER, OR LOCATION.--Lat 44°09'45", long 122°19'55", in NW±SE± sec.21, T.16 S., R.4 E., Lane County, Hydrologic Unit 17090004, on right bank 0.3 mi upstream from Simmonds Creek, 0.7 mi north of town of Blue River, 0.8 mi downstream from Blue River Dam, and at mile 0.9. DRAINAGE AREA .-- 87.7 mi2. 1830 1070 782 658 576 526 PERIOD OF RECORD. -- February 1966 to September 1982. GAGE.--Water-stage recorder. Datum of gage is 1,056.53 ft National Geodetic Vertical Datum of 1929 (Corps of Engineers bench mark). Prior to Aug. 25, 1966, nonrecording gage at datum 0.80 ft higher. REMARKS.--Flow regulated since October 1968 by Blue River Lake. No diversion above station. Discharge not adjusted for storage or release from Blue River Lake as losses from reservoir at times exceed natural flow. AVERAGE DISCHARGE.--16 years, 469 ft³/s, 339,800 acre-ft/yr, unadjusted. EXTREMES FOR PERIOD OF RECORD.—Maximum discharge, 7,270 ft 3 /s Feb. 23, 1968, gage height, 8.93 ft; minimum, 0.80 ft 3 /s Oct. 8, 10, 11, 1968; minimum daily, 3.7 ft 3 /s Oct. 8, 1968. #### STATISTICAL SUMMARIES | | | | | | | TATISTICAL | | | | | | | | |-------------|------------------|------------------|-------------------|-------------------------|----------------------|------------------|--------------------------|--|---|--------------------------------------|--|----------------|-----------| | М | ONTHLY AN | ID ANNUAL | MEAN DIS | SCHARGES | 1969-82 | | MAC | | | | OF ANNUAL | | W | | | Meantaillia | MAY I MIN | | STAN-
DARD
DEVIA- | COEFFI-
CIENT OF | PERCENT
OF | PERIOD
(CON-
SECU- | DISCH | INTERVAL | ., IN YEA | R INDICAT
RS, AND A | NNUAL N | -NC | | монтн | MINIMUM
(CFS) | MAXIMUM
(CFS) | MEAN
(CFS) | (CFS) | VARI-
ATION | ANNUAL
RUNOFF | TIVE
DAYS) | 2
50% | 5
20 % | 10
10% | 20
5% | 50
2% | 100
1% | | OCTOBER | 71 | 429 | 232 | 110 | .47 | 4.0 | 1 | 25 | 15 | 12 | 9.1 | | | | NOVEMBER | 130 | 1459 | 580 | 357 | .62 | 10.1 | 3 | 27 | 16 | 12 | 9.2 | | | | DECEMBER | 63 | 2189 | 1182 | 599 | .51 | 20.5 | 7 | 29 | 16 | 12 | 8.9 | | | | JANUARY | 68 | 1371 | 893 | 425 | . 48 | 15.5 | 14 | 37 | 21 | 15 | 11 | | | | FEBRUARY | 33 | 1167 | 466 | 384 | .82 | 8.1 | 30 | 56 | 27 | 17 | 12 | | | | MARCH | 12 | 1766 | 379 | 473 | 1.25 | 6.6 | 60 | 114 | 55 | 35 | 24 | | | | APRIL | 12 | 577 | 304 | 194 | .64 | 5.3 | 90 | 195 | 97 | 61 | 40 | | | | MAY | 35 | 676 | 370 | 213 | • 58 | 6.4 | 120 | 291 | 175 | 116 | 75 | | | | JUNE | 64 | 516 | 241 | 131 | .54 | 4.2 | 183 | 310 | 218 | 163 | 121 | | | | JULY | 99 | 626 | 375 | 168 | .45 | 6.5 | | | | | | | | |
AUGUST | 326 | 765 | 485 | 113 | .23 | 8.4 | | | | | | | | | SEPTEMBER | | 536 | 246 | 133 | .54 | 4.3 | | | | | | | | | ANNUAL | 192 | 727 | 481 | 147 | •31 | 100 | | | | | | | | | | | | | | INTERVAL
IN PERCE | | PERIOD
(CON- | | INTERV | AL, IN Y | R INDICAT
EARS, AND
BILITY, I | ANNUAL | RENCE | | 1.25
80% | 2
50% | 5
20 % | 10
10 % | 25
4% | 50
2% | 100
1% | SECU- | |
5 | 10 | 2 5 | | IT | | | | | | | | 177 | TIVE | 7 | | | | 50 | | | | | | | | | | TIVE
DAYS) | 2
50% | 20% | 10% | 4% | 50
2% | 100
1% | | | | | | | | | | | | 10% | | | 100 | | | | | | | | | DAYS) | 50% | | | | | 100 | | | | | | | | | DAYS)
 | 50% | 20% | | | 2%
 | 100 | | | |
 | | | | | DAYS) 1 3 7 | 50%

2840 | 20%

3310 |

3390 | 4%

3410 | 2%
 | 100 | | | | | | | | | DAYS)
 | 50%

2840
2130 | 20%

3310
2540 | 3390
2650 | 4%

3410
2710 | 2%
 | 100 | | |
 |
 | | | | | DAYS) 1 3 7 15 | 50%

2840
2130
1590 | 20%

3310
2540
2000 | 3390
2650
2170 | 4%

3410
2710
2310 | 2%

 | 100 | | | | | | | | | DAYS) 1 3 7 15 30 | 50%

2840
2130 | 20%

3310
2540 | 3390
2650 | 4%

3410
2710 | 2%
 | 100 | | | |
 | | N TABLE | | MEAN FLOW | DAYS) 1 3 7 15 30 60 | 50% | 20%

3310
2540
2000
1550
1290 | 3390
2650
2170
1740
1440 | 4%

3410
2710
2310
1930 | 2%
 | 100 | | | | DISCHAF | DURATIO | | OF DAILY ! | | DAYS) 1 3 7 15 30 60 90 | 50% 2840 2130 1590 1190 1000 OF RECO | 20% 3310 2540 2000 1550 1290 RD 1969- | 3390
2650
2170
1740
1440 | 4%

3410
2710
2310
1930
1590 | 2%
 | 100 | 301 215 133 413 97 69 56 50 39 #### WILLAMETTE RIVER BASIN 63 14162500 MCKENZIE RIVER NEAR VIDA. OR LOCATION.--Lat 44°07'30", long 122°28'10", in NE1NE1 sec.5, T.17 S., R.3 E., Lane County, Hydrologic Unit 17090004, on right bank 0.4 mi downstream from Mason Creek, 5.4 mi east of Vida, and at mile 47.7. DRAINAGE AREA.--930 mi² at cableway 0.4 mi downstream, where all discharge measurement are made. PERIOD OF RECORD.--July 1910 to March 1911 (published as "at Martins Rapids, near Vida"), September 1924 to September 1982. Monthly discharge only for some periods, published in WSP 1318. GAGE.--Water-stage recorder. Datum of gage is 855.71 ft National Geodetic Vertical Datum of 1929 (levels by Eugene Water and Electric Board). July 1, 1910, to Mar. 31, 1911, nonrecording gage at site 3 mi downstream at different datum. Sept. 1, 1924, to Nov. 16, 1928, nonrecording gage at site 20 ft upstream at datum 0.15 ft lower. Nov. 17, 1928, to Sept. 23, 1968, water-stage recorder at present site on left bank at datum 0.15 ft lower. REMARKS.--Flow regulated since 1963 by Smith River Reservoir and Cougar Lake, and since 1968 by Blue River Lake. No diversion above station. All records given herein are for measuring site. AVERAGE DISCHARGE.--58 years (water years 1925-82), 4,036 ft³/s, 2,924,000 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.—Maximum discharge, $64,400 \text{ ft}^3/\text{s}$ Dec. 28, 1945, gage height, 17.70 ft, site and datum then in use, from rating curve extended above $32,000 \text{ ft}^3/\text{s}$; minimum, 1,260 ft³/s Nov. 7, 1930, Sept. 17, Oct. 4, 8, 9, 1931. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood in January 1923 reached a stage of 17.2 ft, from floodmarks, discharge, 62,000 ft3/s. #### STATISTICAL SUMMARIES (BEFORE THE CONSTRUCTION OF SMITH RIVER, COUGAR, AND BLUE RIVER DAMS) MONTHLY AND ANNUAL MEAN DISCHARGES 1925-62 MAGNITUDE AND PROBABILITY OF ANNUAL LOW FLOW BASED ON PERIOD OF RECORD 1926-62 | | | | MEAN | STAN-
DARD
DEVIA- | COEFFI-
CIENT OF | PERCENT
OF | PERIOD
(CON- | | INTERVAL | ., IN YEA | RS, AND | TED RECUI
ANNUAL NO
IN PERCE | 0 N- | |-----------|------------------|------------------|---------------|-------------------------|---------------------|------------------|------------------------|------------------|----------|-----------|----------|------------------------------------|-------------| | MONTH | MINIMUM
(CFS) | MAXIMUM
(CFS) | MEAN
(CFS) | TION
(CFS) | VARI-
ATION | ANNUAL
RUNOFF | SECU-
TIVE
DAYS) | 2
50 % | 5
20% | 10
10% | 20
5% | 50
2% | 100
1% | | OCTOBER | 1330 | 5062 | 2169 | 876 | .40 | 4.5 | 1 | 1560 | 1390 | 1310 | 1250 | 1190 | | | NOVEMBER | 1367 | 8573 | 4140 | 2106 | .51 | 8.6 | 3 | 1570 | 1400 | 1320 | 1260 | 1190 | | | DECEMBER | 1840 | 13770 | 5395 | 2742 | .51 | 11.2 | 7 | 1580 | 1400 | 1320 | 1260 | 1200 | | | JANUARY | 1658 | 11570 | 5327 | 2387 | . 45 | 11.1 | 14 | 1600 | 1420 | 1340 | 1270 | 1200 | | | EBRUARY | 2343 | 10560 | 5659 | 2209 | .39 | 11.8 | 30 | 1640 | 1450 | 1360 | 1290 | 1210 | | | MARCH | 2250 | 9749 | 5177 | 1542 | .30 | 10.8 | 60 | 1700 | 1490 | 1390 | 1320 | 1240 | | | APRIL | 2312 | 7496 | 5368 | 1316 | .25 | 11.2 | 90 | 1770 | 1530 | 1420 | 1340 | 1260 | | | YAY | 2528 | 8394 | 5018 | 1510 | .30 | 10.4 | 120 | 1880 | 1610 | 1480 | 1390 | 1300 | | | JUNE | 1750 | 8986 | 3853 | 1533 | .40 | 8.0 | 183 | 2330 | 1900 | 1710 | 1580 | 1450 | | | JULY | 1505 | 3589 | 2374 | 547 | .23 | 4.9 | | | | | | | | | AUGUST | 1361 | 2578 | 1889 | 317 | .17 | 3.9 | | | | | | | | | SEPTEMBER | 1314 | 2371 | 1764 | 268 | .15 | 3.7 | | | | | | | | | ANNUAL | 2476 | 6211 | 4001 | 843 | .21 | 100 | | | | | | | | MAGNITUDE AND PROBABILITY OF INSTANTANEOUS PEAK FLOW BASED ON PERIOD OF RECORD 1925-62 MAGNITUDE AND PROBABILITY OF ANNUAL HIGH FLOW BASED ON PERIOD OF RECORD 1925-62 | DISCHARGE
YEARS, | | | | | ICE INTER | | PERIOD
(CON- | DISC | INTER | VAL, IN | YEARS, A | ATED RECUI
ND ANNUAL
IN PERCEI | | |---------------------|--------------|----------|-----------|------------------|--------------|---------------|------------------------|----------|----------|-----------|----------|--------------------------------------|-----------| | 1.25
80% | 2
50%
 | 5
20% | 10
10% | 25
4 % | 50
2%
 | 100
15
 | SECU-
TIVE
DAYS) | 2
50% | 5
20% | 10
10% | 25
4% | 50
2% | 100
1% | | 20100 | 28700 | 40300 | 47800 | 56900 | 63500 | | | | | | | | | | | | | | | | | 1 | 24200 | 33600 | 39300 | 46000 | 50600 | | | WEIGHTE | D SKEW = | 197 | | | | | 3 | 19000 | 25900 | 30200 | 35300 | 38900 | | | | | | | | | | 7 | 14300 | 18500 | 20900 | 23500 | 25300 | | | | | | | | | | 15 | 10800 | 13700 | 15300 | 17000 | 18200 | | | | | | | | | | 30 | 8690 | 10800 | 12100 | 13500 | 14400 | | | | | | | | | | 60 | 7220 | 8850 | 9810 | 10900 | 11700 | | | | | | | | | | 90 | 6620 | 7960 | 8700 | 9500 | 10000 | | DURATION TABLE OF DAILY MEAN FLOW FOR PERIOD OF RECORD 1925-62 | | | DIS | CHARGE, | IN CFS, | WHICH WAS | EQUALED | OR EXCE | EDED FOR | INDICATE | D PERCENT | F OF TIM | E | | | |------|------|------|---------|---------|-----------|---------|---------|----------|----------|-----------|----------|------|------|------| | 5% | 10% | 15% | 20% | 25% | 30% | 40% | 50% | 60% | 70% | 75% | 80% | 85% | 90% | 95% | | 8980 | 7130 | 6220 | 5580 | 5040 | 4580 | 3800 | 3130 | | 2190 2 | | | 1750 | 1630 | 1470 | ## 14162500 MCKENZIE RIVER NEAR VIDA, OR--Continued STATISTICAL SUMMARIES (AFTER THE COMPLETION OF SMITH RIVER, COUGAR, AND BLUE RIVER DAMS) MONTHLY AND ANNUAL MEAN DISCHARGES 1964-82 MAGNITUDE AND PROBABILITY OF ANNUAL LOW FLOW BASED ON PERIOD OF RECORD 1965-82 | | MINIMUM | MAXIMUM | MEAN | STAN-
DARD
DEVIA-
TION | COEFFI-
CIENT OF
VARI- | PERCENT
OF
ANNUAL | PERIOD
(CON-
SECU- | DISC | INTERVAL | _, IN YE | ARS, AND | ATED RECU
ANNUAL N
IN PERCE | ON- | |----------------------|------------------------------|---------------------------------------|----------------------------|---------------------------------|-------------------------------------|-------------------------|---|---|--|--
--|--|------------| | MONTH | (CFS) | (CFS) | (CFS) | (CFS) | ATION | RUNOFF | TIVE
DAYS) | 2
50% | 5
20% | 10
10% | 20
5% | 50
2 % | 100
1% | | CTOBER | 1706 | 3676 | 275 7 | 456 | .17 | 5.6 | 1 | 1810 | 1590 | 1500 | 1430 | | | | IOVEMBER | 2413 | 7477 | 4408 | 1517 | .34 | 8.9 | 3 | 1860 | 1630 | 1530 | 1460 | | | | ECEMBER | 1865 | 14430 | 6766 | 3321 | .49 | 13.7 | 7 | 1970 | 1690 | 1570 | 1480 | | | | ANUARY | 1752 | 11180 | 6554 | 2340 | .36 | 13.3 | 14 | 2040 | 1760 | 1640 | 1550 | | | | EBRUARY | 1542 | 87 7 2 | 4851 | 1896 | .39 | 9.8 | 30 | 2190 | 1880 | 1730 | 1620 | | | | IARCH | 2414 | 11210 | 4284 | 1993 | .47 | 8.7 | 60 | 2300 | 1980 | 1850 | 1740 | | | | PRIL | 2671 | 5681 | 3951 | 956 | .24 | 8.0 | 90 | 2400 | 2080 | 1940 | 1820 | | | | IAY | 2421 | 6567 | 4342 | 1363 | .31 | 8.8 | 120 | 2470 | 2180 | 2050 | 1950 | | | | UNE | 2180 | 6604 | 3608 | 1272 | .35 | 7.3 | 183 | 2710 | 2410 | 2280 | 2190 | | | | ULY | 1813 | 3529 | 2654 | 447 | - 17 | 5.4 | | | | | | | | | UGUST | 1824 | 3510 | 2631 | 506 | .19 | 5.3 | | | | | | | | | EPTEMBER | 1874 | 3358 | 2575 | 388 | .15 | 5.2 | | | | | | | | | NNUAL | 2447 | 5823 | 4115 | 910 | •22 | 100 | | | | | | | | | | BASE | PROBABILIT
D ON PERIC
FOR INDIC | DD OF RE | CORD | | | MA(| BASE | D ON PER | RIOD OF F | RECORD 1 | L HIGH FI
964-82
TED RECUI | | | I SCHARGE, | BASE
IN CFS, | D ON PERIO | OD OF RE | CORD

CURRENCE | INTERVAL
IN PERCE | . IN | PERIOD
(CON-
SECU- | BASE | ARGE, IN | RIOD OF F | RECORD 1 | 964-82 |
RRENCE | | SCHARGE,
YEARS, A | BASE
IN CFS, | FOR INDIC | OD OF RE | CORD
CURRENCE
ABILITY, | INTERVAL
IN PERCE | , IN
NT | PERIOD
(CON-
SECU-
TIVE | BASE
DISCH | ID ON PER
HARGE, IN
INTERV
EXCEEDAN | I CFS, FO | RECORD 1 OR INDICA (EARS, AN ABILITY, 25 | 964-82 TED RECUI D ANNUAL IN PERCEN | RRENCE | | SCHARGE,
YEARS, A | BASE
IN CFS,
AND ANNUA | FOR INDIC
L EXCEEDAN | OD OF RECATED RENCE PROB | CORD
CURRENCE
ABILITY, | INTERVAL
IN PERCEI | , IN
NT | PERIOD
(CON-
SECU- | BASE
DISCH | ID ON PER | CFS, FO | RECORD 1 | 964-82
TED RECUI
ID ANNUAL
IN PERCEI | RRENCE | | YEARS, A | BASE IN CFS, AND ANNUA 2 50% | FOR INDIC
L EXCEEDAN | OD OF RECATED RENCE PROB | CORD
CURRENCE
ABILITY, | INTERVAL
IN PERCEI | , IN
NT | PERIOD (CON- SECU- TIVE DAYS) | DISCH | HARGE, IN
INTERV
EXCEEDAN
5
20% | I CFS, F(VAL, IN) ICE PROBA 10 10% | DR INDICA PEARS, AN ABILITY, 25 4% 29000 | 964-82
LITED RECUID ANNUAL
IN PERCEI
50
2% | RRENCE | | SCHARGE,
YEARS, A | BASE IN CFS, AND ANNUA 2 50% | FOR INDIC
L EXCEEDAN | OD OF RECATED RENCE PROB | CORD
CURRENCE
ABILITY, | INTERVAL
IN PERCEI | , IN
NT | PERIOD
(CON-
SECU-
TIVE
DAYS) | DISCH | HARGE, IN INTERVENCE EXCEEDAN 5 20% | I CFS, FC IAL, IN) ICE PROBA 10 10 25200 22800 | PRECORD 1 PRECOR | 964-82 TED RECUI D ANNUAL IN PERCEN | RRENCE | | YEARS, A | BASE IN CFS, AND ANNUA 2 50% | FOR INDIC
L EXCEEDAN | OD OF RECATED RENCE PROB | CORD
CURRENCE
ABILITY, | INTERVAL
IN PERCEI | , IN
NT | PERIOD
(CON-
SECU-
TIVE
DAYS) | DISCH | HARGE, IN INTERVENCEDAN 5 20% 21800 19000 16400 | I CFS, F(VAL, IN) ICE PROBA 10 10% | 29000 27500 21600 | 964-82
LITED RECUID ANNUAL
IN PERCEI
50
2% | RRENCE | | YEARS, A | BASE IN CFS, AND ANNUA 2 50% | FOR INDIC
L EXCEEDAN | OD OF RECATED RENCE PROB | CORD
CURRENCE
ABILITY, | INTERVAL
IN PERCEI | , IN
NT | PERIOD
(CON-
SECU-
TIVE
DAYS) | DISCH
2
50%
15700
13200
12000
10500 | HARGE, IN INTERVEXCEEDAN 20% 21800 19000 16400 13600 | 1 CFS, FC AL, IN 1 ICE PROBA 10 10 25200 22800 18900 15300 | 29000
27500
21600
16900 | 964-82
LITED RECUID ANNUAL
IN PERCEI
50
2% | RRENCE | | YEARS, A | BASE IN CFS, AND ANNUA 2 50% | FOR INDIC
L EXCEEDAN | OD OF RECATED RENCE PROB | CORD
CURRENCE
ABILITY, | INTERVAL
IN PERCEI | , IN
NT | PERIOD (CON-
SECU-
TIVE DAYS) | DISCH | ARGE, IN INTERVEXCEEDAN 5 20% 21800 19000 16400 13600 11200 | I CFS, FC IAL, IN 1 ICE PROBA 10 25200 22800 18900 15300 12600 | 29000 27500 21600 14300 | 964-82
LITED RECUID ANNUAL
IN PERCEI
50
2% | RRENCE | | YEARS, A | BASE IN CFS, AND ANNUA 2 50% | FOR INDIC
L EXCEEDAN | OD OF RECATED RENCE PROB | CORD
CURRENCE
ABILITY, | INTERVAL
IN PERCEI | , IN
NT | PERIOD
(CON-
SECU-
TIVE
DAYS)
 | DISCH
2
50%
15700
13200
12000
10500 | HARGE, IN INTERVEXCEEDAN 20% 21800 19000 16400 13600 | 1 CFS, FC AL, IN 1 ICE PROBA 10 10 25200 22800 18900 15300 | 29000
27500
21600
16900 | 964-82 ITED RECUI D ANNUAL IN PERCEI 50 2% | RRENCE | | YEARS, A | BASE IN CFS, AND ANNUA 2 50% | FOR INDIC
L EXCEEDAN | OD OF RECATED RENCE PROB | CORD
CURRENCE
ABILITY, | INTERVAL
IN PERCEI | , IN
NT | PERIOD (CON-
SECU-
TIVE DAYS) | DISCH | ARGE, IN INTERVEXCEEDAN 5 20% 21800 19000 16400 13600 11200 | I CFS, FC IAL, IN 1 ICE PROBA 10 25200 22800 18900 15300 12600 | 29000 27500 21600 14300 | 964-82 ITED RECUI D ANNUAL IN PERCEI 50 2% | RRENCE | | YEARS, A | BASE IN CFS, AND ANNUA 2 50% | FOR INDIC
L EXCEEDAN | CATED RE | CURRENCE ABILITY, 25 4% | INTERVAL
IN PERCEI
50
2% | , IN
NT
100
1% | PERIOD
(CON-
SECU-
TIVE
DAYS)
 | DISCH 2 50% 15700 13200 12000 12000 8550 7140 6510 | ARGE, IN INTERVEXCEEDAN 21800 19000 16400 11200 9300 8360 | I CFS, FC (AL, IN) (CE PROBA) 10 10 25200 22800 22800 18900 15300 12600 10600 9430 | RECORD 1 | 964-82 ITED RECUI D ANNUAL IN PERCEI 50 2% | RRENCE | | YEARS, A | BASE IN CFS, AND ANNUA 2 50% | FOR INDIC | CATED RE CATED RE NCE PROB | CURRENCE ABILITY, 25 4% | INTERVAL IN PERCEI 50 2% | , IN
NT
100
1% | PERIOD
(CON-
SECU-
TIVE
DAYS)
 | DISCH 2 50% 15700 13200 10500 8550 7140 6510 OF RECC | ARRGE, IN INTERVEXCEEDAN 21800 19000 16400 113600 11200 9300 8360 | 10 CFS, FC (AL, IN) (CE PROBA-10) (10% | 25 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 964-82 ITED RECUI D ANNUAL IN PERCEI 50 2% | RRENCE | | YEARS, A | BASE IN CFS, AND ANNUA 2 50% | FOR INDIC | CATED RE CATED RE NCE PROB | CURRENCE ABILITY, 25 4% | INTERVAL IN PERCEI 50 2% OF DAILY N | , IN
NT
100
1% | PERIOD (CON- SECU- TIVE DAYS) | DISCH 2 50% 15700 13200 10500 8550 7140 6510 OF RECC | ARRGE, IN INTERVEXCEEDAN 21800 19000 16400 113600 11200 9300 8360 | 10 CFS, FC (AL, IN) (CE PROBA-10) (10% | 25 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 964-82 ITED RECUI D ANNUAL IN PERCEI 50 2% |
RRENCE | #### 14163000 GATE CREEK AT VIDA, OR LOCATION.--Lat 44°08'45", long 122°34'15", in SWL sec.28, T.16 S., R.2 E., Lane County, Hydrologic Unit 17090004, on right bank 300 ft downstream from bridge on State Highway 126, at Vida, and at mile 0.2. DRAINAGE AREA .-- 47.6 mi 2. PERIOD OF RECORD. -- June 1951 to September 1957; annual maximums, water years 1958-65; August 1966 to September 1982. GAGE.--Water-stage recorder. Datum of gage is 764.56 ft National Geodetic Vertical Datum of 1929. June 11, 1951, to Sept. 30, 1957, water-stage recorder, and Oct. 1, 1957, to Aug. 1, 1966, crest-stage gage at same site and datum. REMARKS.--No regulation or diversion above station. AVERAGE DISCHARGE.--22 years (water years 1952-57, 1967-82), 214 ft³/s, 61.05 in/yr, 155,000 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 7,140 ft³/s Dec. 22, 1964, gage height, 12.18 ft, from slope-area measurement of peak flow; minimum, 12 ft³/s Nov. 26, 27, 1952. ## STATISTICAL SUMMARIES MONTHLY AND ANNUAL MEAN DISCHARGES 1952-82 MAGNITUDE AND PR MAGNITUDE AND PROBABILITY OF ANNUAL LOW FLOW BASED ON PERIOD OF RECORD 1953-82 65 | OCTOBER
NOVEMBER
DECEMBER | 17
19
33 | 253
70 4
927 | 72
244
461 | 57
179
223 | .79
.73 |
2.8
9.5
17.9 | DAYS)

1
3
7 | 50%

17
18
18 | 20%

15
15
15 | 10%
14
14
14 | 5%
13
13
13 | 2 %

 | 1%

 | |--|--|--|---|---|---|------------------------------------|---|---------------------------|---|---------------------------------|--|--|------------| | JANUARY
FEBRUARY
MARCH
APRIL | 53
60
110
124 | 879
769
644
515 | 455
380
348
267 | 230
170
154
87 | .51
.45
.44 | 17.7
14.8
13.5
10.4 | 14
30
60
90 | 19
21
25
28 | 16
18
20
23 | 15
16
18
20 | 14
15
17 |

 | | | MAY | 74
54 | 274
184 | 154
91 | 59
38 | .38 | 6.0
3.5 | 120
183 | 33
59 | 27
45 | 24
39 | 22
35 | | | | JUNE
JULY
AUGUST | 30
19 | 93
62 | 43
29 | 14
9.4 | | 1.7
1.1 | | | | | | | | | JUNE JULY RUGUST SEPTEMBER ANNUAL MAGNIT | 30
19
18
92
FUDE AND
BASE | 62
71
318
 | 29
31
214
 | 9.4
14
59
 | .32
.46
.27
 | 1.1
1.2
100
 |
MAG | BASE | D ON PER | 10D OF R | OF ANNUAL
ECORD 19 | 52-82 | | | UNE ULY UGUST SEPTEMBER NNUAL MAGNIT | 30
19
18
92
FUDE AND
BASE
IN CFS, | 62
71
318
PROBABILI
D ON PERIO
FOR INDIG
L EXCEEDA | 29
31
214
TY OF IN
OD OF RE | 9.4
14
59
ISTANTANE
CORD 195
CURRENCE | .32
.46
.27
OUS PEAK F
2-82
INTERVAL,
IN PERCEI | 1.1
1.2
100
\$\infty\$LOW | PERIOD
(CON- | BASE
DISCH | D ON PER ARGE, IN INTERV | CFS, FO | | 52-82
ED RECUR
ANNUAL | RENCE | | JUNE JULY LUGUST SEPTEMBER LINNUAL MAGNIT | 30
19
18
92
TUDE AND
BASE | 62
71
318
 | 29
31
214
TY OF IN
OD OF RE | 9.4
14
59
ISTANTANE
CORD 195 | .32
.46
.27
OUS PEAK F
2-82
INTERVAL,
IN PERCEI | 1.1
1.2
100
 | PERIOD | BASE
DISCH | D ON PER ARGE, IN INTERV | CFS, FO | ECORD 19

R INDICAT
EARS, AND | 52-82
ED RECUR
ANNUAL | RENCE | | UNE ULY ULY UGUST EPTEMBER NNUAL MAGNIT ISCHARGE, YEARS, A 1.25 80% | 30
19
18
92
FUDE AND
BASE
IN CFS,
NND ANNUA | 62
71
318
PROBABILI'
D ON PERIO
FOR INDIO
L EXCEEDAD | 29
31
214
TY OF IN
DD OF RE
CATED RE
NCE PROB | 9.4
14
59
ISTANTANE
CORD 195
CURRENCE
BABILITY, | .32
.46
.27
OUS PEAK I
2-82
INTERVAL,
IN PERCEI | 1.1
1.2
100
 | PERIOD
(CON-
SECU-
TIVE
DAYS) | DISCH | D ON PER ARGE, IN INTERV EXCEEDAN 5 20% | CFS, FO AL, IN Y CE PROBA | ECORD 19 R INDICAT EARS, AND BILITY, 1 | ED RECUR
ANNUAL
N PERCEN
50
2% | RENCE | | UNE
ULLY
ULGUST
BEPTEMBER
NNUAL
MAGNIT
TISCHARGE,
YEARS, A
1.25
80% | 30
19
18
92
FUDE AND
BASE
IN CFS,
AND ANNUA
2
50% | 62
71
318
PROBABILI'
D ON PERIO
FOR INDIO
L EXCEEDAD | 29
31
214
TY OF IN
DD OF RE
CATED RE
NCE PROE | 9.4
14
59
ISTANTANE
CORD 195
CURRENCE
SABILITY,
25
4% | .32
.46
.27
OUS PEAK I
2-82
INTERVAL,
IN PERCEI | 1.1
1.2
100
 | PERIOD
(CON-
SECU-
TIVE | BASE
DISCH | D ON PER ARGE, IN INTERV EXCEEDAN | CFS, FO
AL, IN Y
CE PROBA | ECORD 19 R INDICAT EARS, AND BILITY, 1 | ED RECUR
ANNUAL
N PERCEN | RENCE | |
 | | DISCH | ARGE, IN | CFS, WH | ICH WAS | EQUALED (| R EXCEEDE | D FOR I | NDICATED | PERCENT | OF TIME | | | | |---------|-----|-------|----------|---------|---------|-----------|-----------|---------|----------|---------|---------|-----|-----|-----| |
5% | 10% | 15% | 20% | 25% | 30% | 40% | 50% | 60% | 70% | 75% | 80% | 85% | 90% | 95% | |
768 | 506 | 390 | 322 | 271 | 229 | 168 | 116 | 74 | 48 | 39 | 32 | 27 | 23 | 20 | #### 14165000 MOHAWK RIVER NEAR SPRINGFIELD, OR LOCATION.--Lat 44°05'34", long 122°57'20", in SE¼NW½ sec.17, T.17 S., R.2 W., Lane County, Hydrologic Unit 17090004, on left bank 50 ft downstream from bridge, 1.3 mi northeast of Springfield, and at mile 1.59. DRAINAGE AREA . -- 177 mi2. PERIOD OF RECORD. -- September 1935 to September 1952, October 1963 to September 1982. Prior to October 1935 monthly discharge only, published in WSP 1318. GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 442.47 ft National Geodetic Vertical Datum of 1929. Oct. 1, 1935, to Sept. 30, 1952, nonrecording gage at same site and datum. REMARKS. -- Many diversions for irrigation above station. AVERAGE DISCHARGE. -- 36 years, 535 ft³/s, 41.05 in/yr, 387,600 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 13,000 ft³/s Dec. 22, 1964, gage height, 22.60 ft; minimum, 8.2 ft³/s Sept. 9, 1967. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of Dec. 22, 1955, reached at stage of 22.9 ft, from floodmark, probably affected by backwater from McKenzie River, discharge, 9,200 ft³/s. #### STATISTICAL SUMMARIES MONTHLY AND ANNUAL MEAN DISCHARGES 1936-82 MAGNITUDE AND PROBABILITY OF ANNUAL LOW FLOW BASED ON PERIOD OF RECORD 1937-82 | MONTH | MINIMOM | MAXIMUM
(CFS) | MEAN | STAN-
DARD
DEVIA-
TION | COEFFI-
CIENT OF
VARI- | PERCENT
OF
ANNUAL
RUNOFF | PERIOD
(CON-
SECU- | DISCHARGE, IN CFS, FOR INDICATED RECURRENCE
INTERVAL, IN YEARS, AND ANNUAL NON-
EXCEEDANCE PROBABILITY, IN PERCENT | | | | | | |-----------|------------------|------------------|---------------|---------------------------------|------------------------------|-----------------------------------|--------------------------|--|----------|-----------|----------|------------------|-----------| | | MINIMUM
(CFS) | | MEAN
(CFS) | (CFS) | ATION | | TIVE
DAYS) | 2
50% | 5
20% | 10
10% | 20
5% | 50
2 % | 100
1% | | OCTOBER | 27 | 719 | 127 | 165 | 1.30 | 2.0 | 1 | 20 | 15 | 12 | 11 | 9.0 | | | NOVEMBER | 27 | 1653 | 597 | 462 | .77 | 9.3 | 3 | 21 | 15 | 13 | 11 | 9.7 | | | DECEMBER | 53 | 3197 | 1179 | 743 | .63 | 18.3 | 7 | 22 | 16 | 14 | 12 | 10 | | | JANUARY | 84 | 2464 | 1304 | 671 | .51 | 20.2 | 14 | 23 | 17 | 15 | 13 | 11 | | | FEBRUARY | 126 | 2016 | 1106 | 454 | .41 | 17.2 | 30 | 26 | 19 | 17 | 15 | 13 | | | MARCH | 281 | 1975 | 885 | 408 | .46 | 13.7 | 60 | 32 | 24 | 20 | 18 | 15 | | | APRIL | 242 | 1545 | 581 | 277 | .48 | 9.0 | 90 | 38 | 28 | 24 | 21 | 19 | | | MAY | 118 | 710 | 334 | 138 | -41 | 5.2 | 120 | 47 | 35 | 30 | 27 | 24 | | | JUNE | 54 | 581 | 183 | 104 | .57 | 2.8 | 183 | 98 | 69 | 58 | 50 | 42 | | | JULY | 34 | 186 | 72 | 34 | . 48 | 1.1 | | | | | | | | | AUGUST | 15 | 91 | 37 | 18 | .47 | .6 | | | | | | | | | SEPTEMBER | 19 | 112 | 42 | 23 | .54 | .6 | | | | | | | | | ANNUAL | 164 | 847 | 535 | 157 | .29 | 100 | | | | | | | | MAGNITUDE AND PROBABILITY OF INSTANTANEOUS PEAK FLOW BASED ON PERIOD OF RECORD 1936-82 MAGNITUDE AND PROBABILITY OF ANNUAL HIGH FLOW BASED ON PERIOD OF RECORD 1936-82 | ISCHARGE,
YEARS, AI | | | | | | | PERIOD
(CON- | | INTERV | AL, ÍN | YEARS, A | ATED RECUI
ND ANNUAL
IN PERCEI | | |------------------------|----------|------------------|-----------|----------|----------|-----------|------------------------|--------------|--------------|--------------|---------------|--------------------------------------|-----------| | 1.25
80% | 2
50% | 5
20 % | 10
10% | 25
4% | 50
2% | 100
1% | SECU-
TIVE
DAYS) | 2
50% | 5
20% | 10
10% | 25
4% | 50
2 % | 100
1% | | 4100 | 6020 | 8620 | 10300 | 12400 | 13900 | | | | ~~~~ | | | | | | WE I GHTED | SKEW = | 238 | | | | | 3 | 5360
4380 | 7640
6200 | 8850
7180 | 10100
8180 | 10800
8790 | | | | | | | | | | 7 | 3390 | 4610 | 5250 | 5910 | 6320 | | | | | | | | | | 15 | 2510 | 3290 | 3680 | 4070 | 4290 | | | | | | | | | | 30 | 1950 | 2440 | 2650 | 2840 | 2930 | | | | | | | | | | 60 | 1520 | 1940 | 2140 | 2330 | 2440 | | | | | | | | | | 90 | 1350 | 1720 | 1910 | 2080 | 2190 | | DURATION TABLE OF DAILY MEAN FLOW FOR PERIOD OF RECORD 1936-82 | | | | DISCH | ARGE, IN | CFS, W | HICH WAS | EQUALED | OR EXCEED | ED FOR | INDICATED | PERCENT | OF TIME | | | | |---|------|------|-------|----------|--------|----------|---------|-----------|--------|-----------|---------|---------|-----|-----|-----| | | 5% | 10% | 15% | 20% | 25% | 30% | 40% | 50% | 60% | 70% | 75% | 80% | 85% | 90% | 95% | | 2 | 2030 | 1410 | 1060 | 825 | 672 | 563 | 383 | 247 | 143 | 79 | 60 | 46 | 37 | 30 | 24 | 67 #### 14165500 MCKENZIE RIVER NEAR COBURG. OR LOCATION.--Lat 44°06'45", long 123°02'45", in NW&NE& sec.9, T.17 S., R.3 W., Lane County, Hydrologic Unit 17090004, on left bank at downstream side of Armitage Bridge, 2 mi southeast of Coburg, and at mile 7.1. DRAINAGE AREA .-- 1.337 mi2. PERIOD OF RECORD. -- October 1944 to September 1972. 15% 9570 8510 7650 6940 14900 11200 GAGE.--Water-stage recorder. Datum of gage is 392.32 ft National Geodetic Vertical Datum of 1929. Prior to Nov. 24, 1944, nonrecording gage at same site at datum 4.00 ft higher. Nov. 25, 1944, to Feb. 28, 1965, water-stage recorder at same site at datum 4.00 ft higher. REMARKS.--Flow regulated since 1963 by Smith River Reservoir and Cougar Lake, and since 1968 by Blue River Lake. Slight diurnal
fluctuation caused by logponds and powerplants upstream. Water supply for city of Eugene is diverted 10 mi upstream; small diversions for irrigation above station. AVERAGE DISCHARGE.--28 years, 5,916 ft³/s, 60.09 in/yr, 4,286,000 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 88,200 ft3/s Dec. 29, 1945, gage height, 21.36 ft, from rating curve extended above 59,000 ft3/s; minimum, 1,080 ft3/s Aug. 19, 1966. EXTREMES OUTSIDE PERIOD OF RECORD. -- Flood stage of 22.2 ft was reached in December 1861, 21.8 ft in February 1890, and 20.1 ft in January 1943 (information from Corps of Engineers), all at present datum. #### STATISTICAL SUMMARIES MONTHLY AND ANNUAL MEAN DISCHARGES 1945-63 MAGNITUDE AND PROBABILITY OF ANNUAL LOW FLOW BASED ON PERIOD OF RECORD 1946-63 DISCHARGE, IN CFS, FOR INDICATED RECURRENCE STAN-INTERVAL, IN YEARS, AND ANNUAL NON-COEFFI- PERCENT DARD PERIOD DEVIA-CLENT OF ΟF (CON-EXCEEDANCE PROBABILITY. IN PERCENT MINIMUM MAYIMUM MEAN TION VARI-ANNHAL SECII-MONTH (CFS) ATION RUNOFF TIVE 20 50 100 (CFS) (CES) (CFS) 10 DAYS) 50% 20% 10% 5% 2% 1% OCTOBER 3110 1503 4.3 1610 1530 1470 NOVEMBER 1933 12180 6309 2945 .47 8.7 1820 1640 1560 1490 DECEMBER 2061 20700 9198 4566 -50 12.7 1840 1660 1570 1500 JANUARY 3308 18020 8763 4058 .46 12.1 14 1870 1690 1600 1530 FEBRUARY 5607 17200 10210 3135 .31 30 1930 1740 1570 14.1 1640 MARCH 2010 5565 13290 8296 2166 .26 60 1810 1720 1640 1790 APRIL 5787 9913 7862 1221 .16 10.8 90 2120 1900 1710 MAY 3599 10130 7053 1665 .24 9.7 120 2310 2040 1920 1820 JUNF 3204 7377 4725 1332 .28 6.5 3070 2700 2450 183 2550 JULY 2041 3773 2811 512 .18 3.9 AUGUST .13 1657 2682 2146 280 3.0 SEPTEMBER 1605 2440 2022 221 .11 2.8 ANNUAL 4575 8275 6018 836 .14 100 MAGNITUDE AND PROBABILITY OF INSTANTANEOUS PEAK FLOW MAGNITUDE AND PROBABILITY OF ANNUAL HIGH FLOW BASED ON PERIOD OF RECORD 1945-63 BASED ON PERIOD OF RECORD 1945-63 DISCHARGE. IN CFS. FOR INDICATED RECURRENCE INTERVAL. IN DISCHARGE, IN CFS, FOR INDICATED RECURRENCE YEARS. AND ANNUAL EXCEEDANCE PROBABILITY, IN PERCENT PERIOD INTERVAL, IN YEARS, AND ANNUAL EXCEEDANCE PROBABILITY, IN PERCENT (CON-1.25 25 50 100 SECU-10 50% 20% 10% 4% 2% 1% TIVE 10 25 100 DAYS) 50% 20% 10% 4% 2% 1% 36500 50500 69000 80900 95600 42000 56900 66200 WEIGHTED SKEW = -.121 33100 43900 51000 59900 __ 23800 30100 34000 38700 __ 15 17600 21900 24400 27300 __ 30 14100 17500 19700 22500 13800 15400 17500 __ 11400 90 10600 12400 13500 15000 DURATION TABLE OF DAILY MEAN FLOW FOR PERIOD OF RECORD 1945-63 DISCHARGE. IN CFS. WHICH WAS EQUALED OR EXCEEDED FOR INDICATED PERCENT OF TIME 5% 10% 20% 25% 30% 95% 40% 5780 50% 4780 60% 3650 70% 75% 80% 85% 90% #### 14166000 WILLAMETTE RIVER AT HARRISBURG, OR LOCATION.--Lat 44°16'14", long 123°10'21", in NW±NE± sec.16, T.15 S., R.4 W., Linn County, Hydrologic Unit 17090003, on right bank 75 ft north of intersection of First Street and Kesling Street in Harrisburg and at mile 161.0. DRAINAGE AREA. -- 3,420 mi², approximately. 36500 27900 20600 16200 13500 11800 9530 8180 7170 6240 5790 5430 5100 4750 4290 PERIOD OF RECORD.--October 1944 to September 1982. Gage-height records collected at same site in 1927-28, 1931, 1934, are contained in reports of National Weather Service. GAGE.--Water-stage recorder. Datum of gage is 288.39 ft National Geodetic Vertical Datum of 1929. Oct 1 to Nov. 14, 1944, nonrecording gage at bridge 1,110 ft upstream at different datum. Nov. 15, 1944, to Aug. 15, 1973, at site 1,100 ft upstream at datum 2,00 ft higher. REMARKS.--Flow regulated by 8 reservoirs above station. Many small diversions above station for irrigation. AVERAGE DISCHARGE.--38 years, 12,250 ft3/s, 8,875,000 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 210,000 ft^3/s Dec. 29, 1945, gage height, 19.69 ft, from rating curve extended above 115,000 ft^3/s ; minimum, 1,990 ft^3/s Oct 30, 1944. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood stage of 20.5 ft was reached in December 1861, and 20.1 ft in February 1890 (information from Corps of Engineers). Flood of Jan. 1, 1943, reached a stage of 19.1 ft from National Weather Service. ## STATISTICAL SUMMARIES | Mo | NTHLY AN | D ANNUAL | MEAN DIS | CHARGES | 1969-82 | | | Dito | ED ON PEI | | | | | |---------------------------------|--|---|--|---|----------------------------------|--|---|---|--|--|---|--|-----------------| | | MINIMUM | MAXIMUM | MEAN | STAN-
DARD
DEVIA-
TION | COEFFI-
CIENT OF
VARI- | PERCENT
OF
ANNUAL | PERIOD
(CON-
SECU- | DISC | INTERVA | L, IN YE | OR INDICAT
ARS, AND A
ABILITY, | ANNUAL NO | 0N- | | 1 ONTH | (CFS) | (CFS) | (CFS) | (CFS) | ATION | RUNOFF | TIVE
DAYS) | 2
50% | 5
20% | 10
10% | 20
5% | 50
2% | 100
1% | | CTOBER | 6978 | 9745 | 8116 | 948 | .12 | 5.6 | 1 | 4250 | 3530 | 3080 | 2700 | | | | IOVEMBER
ECEMBER | 6584 | 28860 | 14180 | 7049 | .50 | 9.7 | 3 | 4360 | 3600 | 3130
3190 | 2730
2780 | | | | ANUARY | 3848
3695 | 42980
36750 | 24930
23710 | 10750
10160 | .43
.43 | 17.1
16.3 | 7
14 | 4480
4570 | 3670
3740 | 3270 | 2880 | | | | EBRUARY | 2859 | 26010 | 15260 | 7330 | .48 | 10.5 | 30 | 4680 | 3890 | 3450 | 3080 | | | | IARCH | 5897 | 36070 | 13850 | 8313 | .60 | 9.5 | 60 | 4890 | 4110 | 3730 | 3430 | | | | PRIL | 4823 | 17520 | 10950 | 4021 | .37 | 7.5 | 90 | 5220 | 4360 | 3940 | 3610 | | | | IAY | 4207 | 12850 | 9430 | 2884 | .31 | 6.5 | 120 | 5630 | 4760 | 4340 | 4020 | | | | IUNE | 3809 | 12540 | 7493 | 2718 | •36 | 5.1 | 183 | 6510 | 5540 | 5080 | 4720 | | | | IULY | 3883 | 6283 | 5051 | 774 | .15 | 3.5 | | | | | | | | | NUGUST | 4533 | 7117 | 5534 | 769 | .14 | 3.8 | | | | | | | | | EPTEMBER | 5020 | 8986 | 7131 | 1176 | . 16 | 4.9 | | | | | | | | | LI I LIIDLII | | | | | | | | | | | | | | | NNUAL | 5233
TUDE AND | 17800 | | 3512
 | .29
 | 100 |
MA | | | | OF ANNUAL | |
_O W | | MAGNIT
ISCHARGE,
YEARS, A | 5233 TUDE AND BASE IN CFS, | PROBABILI
D ON PERI
FOR INDI | TY OF IN
OD OF RE
CATED RE | 3512
ISTANTANE
CORD
CURRENCE | OUS PEAK | 100
FLOW
, IN | PERIOD
(CON- | BAS | ED ON PER

HARGE, IN
INTER | RIOD OF F | | 969-82
FED RECUI | RRENCE | | MAGNIT ISCHARGE, YEARS, A | 5233 TUDE AND BASE IN CFS, | PROBABILI
D ON PERI
FOR INDI
L EXCEEDA | TY OF IN
OD OF RE
CATED RE
NCE PROB | 3512
ISTANTANE
CORD
CURRENCE
BABILITY, | OUS PEAK | 100
FLOW
, IN
NT | PERIOD
(CON-
SECU- | DISCI | HARGE, INTERN | RIOD OF I | RECORD 19 DR INDICAT YEARS, AND ABILITY, 1 | 069-82
FED RECUI
O ANNUAL
IN PERCEN | RRENCE | | MAGNIT
ISCHARGE,
YEARS, A | 5233 TUDE AND BASE IN CFS, | PROBABILI
D ON PERI
FOR INDI | TY OF IN
OD OF RE
CATED RE | 3512
ISTANTANE
CORD
CURRENCE | OUS PEAK | 100
FLOW
, IN | PERIOD
(CON- | BAS | ED ON PER

HARGE, IN
INTER | RIOD OF F | RECORD 19
DR INDICAT
YEARS, AND | 969-82
FED RECUI | RRENCE | | MAGNIT ISCHARGE, YEARS, A | 5233 TUDE AND BASE IN CFS, | PROBABILI
D ON PERI
FOR INDI
L EXCEEDA | TY OF IN
OD OF RE
CATED RE
NCE PROB | 3512
ISTANTANE
CORD
CURRENCE
BABILITY, | OUS PEAK | 100
FLOW
, IN
NT | PERIOD
(CON-
SECU-
TIVE | DISCI | HARGE, INTERNET | RIOD OF E
N CFS, FO
VAL, IN N
NCE PROBA | RECORD 19 DR INDICAT YEARS,
AND ABILITY, 1 | FED RECUI
ANNUAL
IN PERCEN | RRENCE | | MAGNIT
ISCHARGE,
YEARS, A | 5233 "UDE AND BASE IN CFS, ND ANNUA 2 50% | PROBABILI
D ON PERI
FOR INDI
L EXCEEDA | TY OF IN
OD OF RE
CATED RE
NCE PROB | 3512
ISTANTANE
CORD
CURRENCE
BABILITY, | OUS PEAK | 100
FLOW
, IN
NT | PERIOD (CON- SECU- TIVE DAYS) | DISCI | HARGE, II INTER EXCEEDAN 5 20% | N CFS, FO
VAL, IN N
NCE PROBA
10% | RECORD 19 OR INDICAT YEARS, AND ABILITY, 1 25 4% | FED RECUI
ANNUAL
IN PERCEN | RRENCE | | MAGNIT ISCHARGE, YEARS, A | 5233 "UDE AND BASE IN CFS, ND ANNUA 2 50% | PROBABILI
D ON PERI
FOR INDI
L EXCEEDA | TY OF IN
OD OF RE
CATED RE
NCE PROB | 3512
ISTANTANE
CORD
CURRENCE
BABILITY, | OUS PEAK | 100
FLOW
, IN
NT | PERIOD
(CON-
SECU-
TIVE
DAYS) | DISCI | HARGE, IN INTER EXCEEDAN 5 20% 68600 60900 | N CFS, F6
VAL, IN N
NCE PROB/
10
10% | RECORD 19 DR INDICAT YEARS, AND ABILITY, 19 25 44 72200 64000 | DED RECUI
D ANNUAL
IN PERCEN
50
2% | RRENCE | | MAGNIT
ISCHARGE,
YEARS, A | 5233 "UDE AND BASE IN CFS, ND ANNUA 2 50% | PROBABILI
D ON PERI
FOR INDI
L EXCEEDA | TY OF IN
OD OF RE
CATED RE
NCE PROB | 3512
ISTANTANE
CORD
CURRENCE
BABILITY, | OUS PEAK | 100
FLOW
, IN
NT | PERIOD (CON-
SECU-
TIVE DAYS) | DISCI
2
50%
56900
50700
46500 | HARGE, IN INTERN EXCEEDAN 5 20% 68600 60900 55100 | N CFS, F6
VAL, IN N
NCE PROB/
10
10% | OR INDICATE AND A STATE | 069-82
FED RECUI
O ANNUAL
IN PERCEI
50
2% | 100
19 | | MAGNIT
ISCHARGE,
YEARS, A | 5233 "UDE AND BASE IN CFS, ND ANNUA 2 50% | PROBABILI
D ON PERI
FOR INDI
L EXCEEDA | TY OF IN
OD OF RE
CATED RE
NCE PROB | 3512
ISTANTANE
CORD
CURRENCE
BABILITY, | OUS PEAK | 100
FLOW
, IN
NT | PERIOD
(CON-
SECU-
TIVE
DAYS)
 | DISCI 2 50% 56900 50700 46500 40600 | HARGE, II
INTER
EXCEEDAN
5
20%
68600
60900
55100
48900 | N CFS, F6
VAL, IN N
NCE PROB/
10
10%
71100
63100
56700
50700 | DR INDICAT
YEARS, AND
ABILITY, 1
25
4%
72200
64000
57400
51500 | P69-82 FED RECUI ANNUAL N PERCEI 50 2% | 100
19 | | MAGNIT
ISCHARGE,
YEARS, A | 5233 "UDE AND BASE IN CFS, ND ANNUA 2 50% | PROBABILI
D ON PERI
FOR INDI
L EXCEEDA | TY OF IN
OD OF RE
CATED RE
NCE PROB | 3512
ISTANTANE
CORD
CURRENCE
BABILITY, | OUS PEAK | 100
FLOW
, IN
NT | PERIOD
(CON-
SECU-
TIVE
DAYS)
 | DISCI
2
50%
56900
50700
46500
34100 | HARGE, II INTER: EXCEEDAN 5 20% 68600 60900 55100 48900 41500 | N CFS, FO (AL, IN) (NCE PROB/
10 10% 10% 10% 10% 10% 10% 10% 10% 10% 1 | 72200
64000
57400
51500
44300 | ied recui
o annual
in percei
50
2% | 100
19 | | MAGNIT
ISCHARGE,
YEARS, A | 5233 "UDE AND BASE IN CFS, ND ANNUA 2 50% | PROBABILI
D ON PERI
FOR INDI
L EXCEEDA | TY OF IN
OD OF RE
CATED RE
NCE PROB | 3512
ISTANTANE
CORD
CURRENCE
BABILITY, | OUS PEAK | 100
FLOW
, IN
NT | PERIOD
(CON-
SECU-
TIVE
DAYS)
 | DISCI 2 50% 56900 50700 46500 40600 | HARGE, II
INTER
EXCEEDAN
5
20%
68600
60900
55100
48900 | N CFS, F6
VAL, IN N
NCE PROB/
10
10%
71100
63100
56700
50700 | DR INDICAT
YEARS, AND
ABILITY, 1
25
4%
72200
64000
57400
51500 | P69-82 FED RECUI ANNUAL N PERCEI 50 2% | 100
19 | | MAGNIT
ISCHARGE,
YEARS, A | 5233 "UDE AND BASE IN CFS, ND ANNUA 2 50% | PROBABILI
D ON PERI
FOR INDI
L EXCEEDA | TY OF IN OD OF RE | 3512 ISTANTANE CORD CURRENCE ABBILITY, 25 4\$ | OUS PEAK I | 100
FLOW
, IN
NT | PERIOD
(CON-
SECU-
TIVE
DAYS)
 | DISCI 2 50% 56900 50700 46500 46500 34100 27600 24200 | HARGE, II
INTER'
EXCEEDAN
5
20%
68600
60900
55100
41500
35100
31100 | 71100
63100
56700
43400
33500 | 72200
64000
57400
44300
39600 | ied recui
o annual
in percei
50
2% | RRENCE | | MAGNIT
ISCHARGE,
YEARS, A | 5233 "UDE AND BASE IN CFS, ND ANNUA 2 50% | PROBABILID ON PERI | TY OF IN OD OF RE | 3512 ISTANTANE CORD CCURRENCE SABILITY, 25 4% | OUS PEAK INTERVAL IN PERCE 50 2% | TOO FLOW IN IN IN IN IM IM MEAN FLOW | PERIOD
(CON-
SECU-
TIVE
DAYS)
 | 56900
50700
40500
40500
27600
24200
OF RECC | HARGE, II
INTER'
EXCEEDAN
5
20%
68600
60900
55100
41500
35100
31100
DRD 1969- | 71100
63100
56700
43400
33500 | 72200
64000
57400
51500
44300
39600
35200 | ied recui
o annual
in percei
50
2% | 100
13 | #### 14166500 LONG TOM RIVER NEAR NOT!, OR LOCATION.--Lat 44°03'00", long 123°25'30", in sec.33, T.17 S., R.6 W., Lane County, Hydrologic Unit 17090003, on left bank 0.2 mi upstream from Southern Pacific Railroad bridge, 0.8 mi downstream from Noti Creek, 1.3 mi southeast of Noti, and at mile 37.4. DRAINAGE AREA.--89.3 mi2. 922 611 442 349 281 226 PERIOD OF RECORD. -- October 1935 to September 1982. GAGE.--Water-stage recorder. Datum of gage is 389.05 ft National Geodetic Vertical Datum of 1929 (levels by National Weather Service). Prior to Nov. 6, 1940, nonrecording gage at same site and datum. REMARKS.--Slight regulation caused by logpond above Noti. No diversion above station. AVERAGE DISCHARGE.--47 years, 234 ft³/s, 35.58 in/yr, 169,500 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 6,990 ft³/s Dec. 22, 1955, gage height, 20.17 ft; minimum, 0.04 ft³/s Aug. 13, 1977. STATISTICAL SUMMARIES | MARCH 137 923 424 197 .46 15.1 60 16 11 8.8 7.0 5.3 4. APRIL 57 684 260 136 .52 9.3 90 18 13 11 9.0 7.3 6. MAY 55 340 127 53 .42 4.5 120 21 16 13 11 9.4 8. JUNE 25 164 64 23 .37 2.3 183 38 28 24 21 18 16 JULY 6.2 65 30 10 .35 1.1 AUGUST 3.6 33 17 6.5 .38 .6 NOTE: LOW-FLOW STATISTICS UNCERTAIN DUE TO EXCESSIVE SEPTEMBER 7.4 31 18 5.7 .32 .6 SKEW. ANNUAL 46 424 233 78 .33 100 MAGNITUDE AND PROBABILITY OF INSTANTANEOUS PEAK FLOW BASED ON PERIOD OF RECORD 1936-82 DISCHARGE, IN CFS, FOR INDICATED RECURRENCE INTERVAL, IN YEARS, AND ANNUAL EXCEEDANCE PROBABILITY, IN PERCENT YEARS, AND ANNUAL EXCEEDANCE PROBABILITY, IN PERCENT 1.25 2 5 10 25 50 100 SECU- 80% 50% 20% 10% 4% 2% 1% TIVE 2 5 10 25 50 100 BOS 50% 20% 10% 4% 2% 1% TIVE 2 5 10 25 50 100 WEIGHTED SKEW =359 DISCHARGE, IN CFS, WHICH WAS EQUALED OR EXCEEDED FOR INDICATED PERCENT OF TIME DISCHARGE, IN CFS, WHICH WAS EQUALED OR EXCEEDED FOR INDICATED PERCENT OF TIME | | | | | | | STATISTIC | AL SUMMARIE | S | | | | | | | | |--|----------------|-----------|-----------|----------|-----------------------|-----------|-----------|-------------|----------|-------------------------------------|----------|----------------------|----------|--------|--|--| | DARD COEFFI | М | ONTHLY AN | ND ANNUAL | MEAN DI | SCHARGES | 1936-82 | | M/ | | | | | | OW | | | | MONTH (CFS) (CFS) (CFS) (CFS) ATION RUNOFF TIVE 2 5 10 20 50 100 20 50 100 CONTROL (CFS) (CFS) (CFS) (CFS) (CFS) ATION RUNOFF DAYS 50 50 20 50 100 20 50 100 20 50 100 20 50 100 20 50 100 20 50 100 20 100 20 115 20 20 100 20 115 20 20 100 20 115 20 20 100 20 115 20 20 100 20 115 20 20 100 20 115 20 20 100 20 115 20 20 20 100 20 20 115 20 20 20 100 20 20 20 20 20 20 20 20 20 20 20 20 2 | | | MAVIMUM | MEAN | DARD
DEVIA- | CIENT O | F OF | (CON- | DISCH | INTERVAL, IN YEARS, AND ANNUAL NON- | | | | | | | | NOVEMBER 17 708 200 172 86 7.1 3 | МОИТН | | | | | | | TIVE | | | | | | | | | | DECEMBER 24 1425 472 337 7.71 16.8 7 | OCTOBER | 12 | 300 | 42 | 50 | 1.17 | 1.5 | 1 | | | | | | | | | | JANUARY 25 1260 603 352 -98 21.5 14 | NOVEMBER | 17 | 708 | 200 | 172 | .86 | 7.1 | 3 | | | | | | | | | | FEBRUARY 63 1093 552 241 .44 19.7 30 15 9.6 6.5 4.3 2.5 1.1 MARCH 137 923 424 197 .46 15.1 60 16 11 8.8 7.0
5.3 4. APRIL 57 684 260 136 .52 9.3 90 18 13 11 9.0 7.3 6. MAY 55 340 127 53 .42 4.5 120 21 16 13 11 9.4 8. MAY 55 340 127 53 .42 4.5 120 21 16 13 11 9.4 8. JUNE 25 164 64 23 .37 2.3 183 38 28 24 21 18 16 JULY 6.2 65 30 10 .35 1.1 AUGUST 3.6 33 17 6.5 .38 .6 NOTE: LOW-FLOW STATISTICS UNCERTAIN DUE TO EXCESSIVE SEPTEMBER 7.4 31 18 5.7 .32 .6 SKEW. ANNUAL 46 424 233 78 .33 100 MAGNITUDE AND PROBABILITY OF INSTATANEOUS PEAK FLOW BASED ON PERIOD OF RECORD 1936-82 DI SCHARGE, IN CFS, FOR INDICATED RECURRENCE INTERVAL, IN YEARS, AND ANNUAL EXCEEDANCE PROBABILITY, IN PERCENT PERIOD CONTROL | DECEMBER | 24 | 1425 | 472 | 337 | .71 | 16.8 | 7 | | | | | | | | | | MARCH 137 923 424 197 46 15.1 60 16 11 8.8 7.0 5.3 4. APRIL 57 684 260 136 .52 9.3 90 18 13 11 9.0 7.3 6. MAY 55 340 127 53 .42 4.5 120 21 16 13 11 9.4 8.2 JUNE 25 164 64 23 .37 2.3 183 38 28 24 21 18 16 JULY 6.2 65 30 10 .35 1.1 AUGUST 3.6 33 17 6.5 .38 .6 NOTE: LOW-FLOW STATISTICS UNCERTAIN DUE TO EXCESSIVE SEPTEMBER 7.4 31 18 5.7 .32 .6 SKEW. ANNUAL 46 424 233 78 .33 100 MAGNITUDE AND PROBABILITY OF INSTANTANEOUS PEAK FLOW BASED ON PERIOD OF RECORD 1936-82 DISCHARGE, IN CFS, FOR INDICATED RECURRENCE INTERVAL, IN YEARS, AND ANNUAL EXCEEDANCE PROBABILITY, IN PERCENT YEARS, AND ANNUAL EXCEEDANCE PROBABILITY, IN PERCENT 1.25 2 5 10 25 50 100 SECU- 80% 50% 20% 10% 4% 2% 1% TIVE 2 5 10 25 50 100 BOS 50% 20% 10% 4% 2% 1% TIVE 2 5 10 25 50 100 WEIGHTED SKEW =359 DISCHARGE, IN CFS, WHICH WAS EQUALED OR EXCEEDED FOR INDICATED PERCENT OF TIME DISCHARGE, IN CFS, WHICH WAS EQUALED OR EXCEEDED FOR INDICATED PERCENT OF TIME | JANUARY | 25 | 1260 | 603 | 352 | .58 | 21.5 | 14 | | | | | | | | | | APRIL 57 684 260 136 .52 9.3 90 18 13 11 9.0 7.3 6. MAY 55 340 127 53 .42 4.5 120 21 16 13 11 9.0 7.3 6. MAY 55 340 127 53 .42 4.5 120 21 16 13 11 9.4 8.2 JUNE 25 164 64 23 .37 2.3 183 38 28 24 21 18 16 JULY 6.2 65 30 10 .35 1.1 MAGNITUDE AND PROBABILITY OF ANNUAL TO EXCESSIVE SEPTEMBER 7.4 31 18 5.7 .32 .6 NOTE: LOW-FLOW STATISTICS UNCERTAIN DUE TO EXCESSIVE SEPTEMBER 7.4 31 18 5.7 .32 .6 NOTE: LOW-FLOW STATISTICS UNCERTAIN DUE TO EXCESSIVE SEPTEMBER 7.4 31 18 5.7 .32 .6 NOTE: LOW-FLOW STATISTICS UNCERTAIN DUE TO EXCESSIVE SEPTEMBER 7.4 31 18 5.7 .32 .6 NOTE: LOW-FLOW STATISTICS UNCERTAIN DUE TO EXCESSIVE SEPTEMBER 7.4 31 18 5.7 .32 .6 NOTE: LOW-FLOW STATISTICS UNCERTAIN DUE TO EXCESSIVE SEPTEMBER 7.4 31 18 5.7 .32 .6 NOTE: LOW-FLOW STATISTICS UNCERTAIN DUE TO EXCESSIVE SEPTEMBER 7.4 31 18 5.7 .32 .6 NOTE: LOW-FLOW STATISTICS UNCERTAIN DUE TO EXCESSIVE SEPTEMBER 7.4 31 18 5.7 .32 .6 NOTE: LOW-FLOW STATISTICS UNCERTAIN DUE TO EXCESSIVE SEPTEMBER 7.4 31 18 5.7 .32 .6 NOTE: LOW-FLOW STATISTICS UNCERTAIN DUE TO EXCESSIVE SEPTEMBER 7.4 31 18 5.7 .32 .6 NOTE: LOW-FLOW STATISTICS UNCERTAIN DUE TO EXCESSIVE SEPTEMBER 7.4 31 18 5.7 .32 .6 NOTE: LOW-FLOW STATISTICS UNCERTAIN DUE TO EXCESSIVE SEPTEMBER 7.4 31 18 5.7 .32 .6 NOTE: LOW-FLOW STATISTICS UNCERTAIN DUE TO EXCESSIVE SEPTEMBER 7.4 31 18 5.7 .32 .6 NOTE: LOW-FLOW STATISTICS UNCERTAIN DUE TO EXCESSIVE SEPTEMBER 7.4 31 18 18 1.5 .7 .32 .6 NOTE: LOW-FLOW STATISTICS UNCERTAIN DUE TO EXCESSIVE SEPTEMBER 7.4 NOTE: LOW-FLOW STATISTICS UNCERTAIN DUE TO EXCESSIVE SEPTEMBER 7.4 NOTE: LOW-FLOW STATISTICS UNCERTAIN DUE TO EXCESSIVE SEPTEMBER 7.4 NOTE: LOW-FLOW STATISTICS UNCERTAIN DUE TO EXCESSIVE SEPTEMBER 7.4 NOTE: LOW-FLOW STATISTICS UNCERTAIN DUE TO EXCESSIVE SEPTEMBER 7.4 NOTE: LOW-FLOW STATISTICS UNCERTAIN DUE TO EXCESSIVE SEPTEMBER 7.4 NOTE: LOW-FLOW STATISTICS UNCERTAIN DUE TO EXCESSIVE SEPTEMBER 7.4 NOTE: LOW-FLOW STATISTICS UNCERTAIN DUE TO EXCESSIVE SEPTEMBER 7.4 NOTE: LOW-FLOW STATISTICS UNCERTAIN DUE TO EXCESSIVE SEPTEMBER 7.4 NOTE: LOW-FLOW SEPTEMBER 7.4 NOTE: L | FEBRUARY | 63 | 1093 | 552 | 241 | .44 | 19.7 | 30 | 15 | 9.6 | 6.5 | 4.3 | 2.5 | 1.6 | | | | MAY 55 340 127 53 .42 4.5 120 21 16 13 11 9.4 8.7 JUNE 25 164 64 25 .37 2.3 183 38 28 24 21 18 16 JULY 6.2 65 30 10 .35 1.1 AUGUST 3.6 33 17 6.5 .38 .6 NOTE: LOW-FLOW STATISTICS UNCERTAIN DUE TO EXCESSIVE SEPTEMBER 7.4 31 18 5.7 .32 .6 SKEW. ANNUAL 46 424 233 78 .33 100 MAGNITUDE AND PROBABILITY OF INSTANTANEOUS PEAK FLOW BASED ON PERIOD OF RECORD 1936-82 DISCHARGE, IN CFS, FOR INDICATED RECURRENCE INTERVAL, IN YEARS, AND ANNUAL EXCEEDANCE PROBABILITY, IN PERCENT 1.25 2 5 10 25 50 100 80\$ 50\$ 20\$ 10\$ 4\$ 2\$ 1\$ 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | | 923 | 424 | 197 | .46 | 15.1 | 60 | 16 | 11 | 8.8 | 7.0 | 5.3 | 4.3 | | | | JUNE 25 164 64 23 .37 2.3 183 38 28 24 21 18 16 JULY 6.2 65 30 10 .35 1.1 AUGUST 3.6 33 17 6.5 .38 .6 NOTE: LOW-FLOW STATISTICS UNCERTAIN DUE TO EXCESSIVE SEPTEMBER 7.4 31 18 5.7 .32 .6 SKEW. ANNUAL 46 424 233 78 .33 100 MAGNITUDE AND PROBABILITY OF INSTANTANEOUS PEAK FLOW BASED ON PERIOD OF RECORD 1936-82 DISCHARGE, IN CFS, FOR INDICATED RECURRENCE INTERVAL, IN YEARS, AND ANNUAL EXCEEDANCE PROBABILITY, IN PERCENT 1.25 2 5 10 25 50 100 80\$ 50\$ 20\$ 10\$ 4\$ 2\$ 1\$ 10\$ 100 | APRIL | 57 | 684 | 260 | 136 | .52 | 9.3 | 90 | 18 | 13 | 11 | 9.0 | 7.3 | 6.3 | | | | JULY 6.2 65 30 10 .35 1.1 AUGUST 3.6 33 17 6.5 .38 .6 NOTE: LOW-FLOW STATISTICS UNCERTAIN DUE TO EXCESSIVE SEPTEMBER 7.4 31 18 5.7 .32 .6 SKEW. ANNUAL 46 424 233 78 .33 100 MAGNITUDE AND PROBABILITY OF INSTANTANEOUS PEAK FLOW BASED ON PERIOD OF RECORD 1936-82 DISCHARGE, IN CFS, FOR INDICATED RECURRENCE INTERVAL, IN YEARS, AND ANNUAL EXCEEDANCE PROBABILITY, IN PERCENT (CON-CON-CON-CON-CON-CON-CON-CON-CON-CON- | MAY | 55 | 340 | 127 | 53 | .42 | 4.5 | 120 | 21 | 16 | 13 | 11 | 9.4 | 8.2 | | | | ANNUAL 46 424 233 78 .33 100 MAGNITUDE AND PROBABILITY OF INSTANTANEOUS PEAK FLOW BASED ON PERIOD OF RECORD 1936-82 DISCHARGE, IN CFS, FOR INDICATED RECURRENCE INTERVAL, IN YEARS, AND ANNUAL EXCEEDANCE PROBABILITY, IN PERCENT 1.25 2 5 10 25 50 100 SECU- 1.26 20% 10% 4% 2% 1% TIVE 2 5 10 25 50 100 DAYS) 50% 20% 10% 4% 2% 1% TIVE 2 5 10 25 50 100 DAYS) 50% 20% 10% 4% 2% 1% TIVE 2 5 10 25 50 100 WEIGHTED SKEW =359 3 2270 3280 3860 4500 4910 5280 TO SECU- 1 2830 4140 4900 5730 6270 6740 WEIGHTED SKEW =359 DURATION TABLE OF DAILY MEAN FLOW FOR PERIOD OF RECORD 1936-82 DURATION TABLE OF DAILY MEAN FLOW FOR PERIOD OF RECORD 1936-82 | JUNE | 25 | 164 | 64 | 23 | .37 | 2.3 | 183 | 38 | 28 | 24 | 21 | 18 | 16 | | | | SEPTEMBER 7.4 31 18 5.7 32 .6 SKEW. | JULY | 6.2 | 65 | 30 | 10 | . 35 | 1.1 | | | | | | | | | | | ANNUAL 46 424 233 78 .33 100 MAGNITUDE AND PROBABILITY OF INSTANTANEOUS PEAK FLOW BASED ON PERIOD OF RECORD 1936-82 DISCHARGE, IN CFS, FOR INDICATED RECURRENCE INTERVAL, IN YEARS, AND ANNUAL EXCEEDANCE PROBABILITY, IN PERCENT PERIOD (CON- 1.25 2 5 10 25 50 100 SECU- 25 10 25 50 100 DAYS) 50% 20% 10% 4% 2% 1% TIVE 2 5 10 25 50 100 DAYS) 50% 20% 10% 4% 2% 1% TIVE 2 5 10 25 50 100 DAYS) 50% 20% 10% 4% 2% 1% TIVE 2 5 10 25 50 100 DAYS) 50% 20% 10% 4% 2% 1% TIVE 2 5 10 25 50 100 DAYS) 50% 20% 10% 4% 2% 1% TIVE 2 5 10 25 50 100 DAYS) 50% 20% 10% 4% 2% 1% TIVE 2 5 10 25 50 100 DAYS) 50% 20% 10% 4% 2% 1% TIVE 2 5 10 25 50 100 DAYS) 50% 20% 10% 4% 2% 1% TIVE 2 5 10 25 50 100 DAYS) 50% 20% 10% 4% 2% 1% TIVE 2 5 10 25 50 100 DAYS) 50% 20% 10% 4% 2% 1% TIVE 2 5 10 25 50 100 DAYS) 50% 20% 10% 4% 2% 1% TIVE 2 5 10 25 100 DAYS) 50% 20% 10% 4% 2% 1% TIVE 2 5 10 25 100 DAYS) 50% 20% 10% 4% 2% 1% TIVE 2 5 10 25 100 DAYS) 50% 20% 10% 4% 2% 1% TIVE 2 5 100 DAYS) 50% 20% 10% 4% 2% 1% TIVE 2 5 100 DAYS) 50% 20% 10% 4% 2% 1% TIVE 2 5 100 DAYS) 50% 20% 10% 4% 2% 1% TIVE 2 5 100 DAYS) 50% 20% 10% 4% 2% 1% TIVE 2 5 100 DAYS) 50% 20% 10% 4% 2% 1% TIVE 2 5 100 DAYS) 50% 20% 10% 4% 2% 1% TIVE 2 5 100 DAYS) 50% 20% 10% 4% 2% 1% TIVE 2 5 100 DAYS) 50% 20% 10% 4% 2% 1% TIVE 2 5 100 DAYS) 50% 20% 10% 4% 2% 1% TIVE 2 5 100 DAYS) 50% 20% 10% 4% 2% 1% TIVE 2 5 100 DAYS) 50% 20% 10% 4% 2% 1% TIVE 2 5 100 DAYS) 50% 20% 10% 4% 2% 11% TIVE 2 5 100 DAYS) 50% 20% 10% 4% 2% 11% TIVE 2 5 100 DAYS) 50% 20% 10% 4% 2% 11% TIVE 2 5 100 DAYS) 50% 20% 10% 4% 2% 11% TIVE 2 5 100 DAYS) 50% 20% 10% 4% 2% 11% TIVE 2 5 100 DAYS) 50% 20% 10% 4% 2% 11% TIVE 2 5 100 DAYS) 50% 20% 10% 40% 20% 20% 10% 40% 20% 20% 20% 10% 40% 20% 20% 20% 20% 20% 20% 20% 20% 20% 2 | AUGUST | 3.6 | 33 | 17 | 6.5 | . 38 | .6 | NOTE: | LOW-FLOW | STATIST | ICS UNCE | RTAIN DU | E TO EXC | ESSIVE | | | | MAGNITUDE AND PROBABILITY OF INSTANTANEOUS PEAK FLOW BASED ON PERIOD OF RECORD 1936-82 DISCHARGE, IN CFS, FOR INDICATED RECURRENCE INTERVAL, IN YEARS, AND ANNUAL EXCEEDANCE PROBABILITY, IN PERCENT 1.25 2 5 10 25 50 100 80% 50% 20% 10% 4% 2% 1% 11VE 2 5 10 25 50 100 AYS) 50% 20% 10% 4% 2% 1% 11VE 2 5 10 25 50 100 AYS) 50% 20% 10% 4% 2% 1% 15 1990 3120 4690 5700 6940 7830 8690 WEIGHTED SKEW =359 WEIGHTED SKEW =359 DURATION TABLE OF DAILY MEAN FLOW FOR PERIOD OF RECORD 1936-82 MAGNITUDE AND PROBABILITY OF ANNUAL HIGH FLOW BASED ON PERIOD OF RECORD 1936-82 MAGNITUDE AND PROBABILITY OF ANNUAL HIGH FLOW BASED ON PERIOD OF RECORD 1936-82 MAGNITUDE AND PROBABILITY OF ANNUAL HIGH FLOW BASED ON PERIOD OF RECORD 1936-82 MAGNITUDE AND PROBABILITY OF ANNUAL HIGH FLOW BASED ON PERIOD OF RECORD 1936-82 MAGNITUDE AND PROBABILITY OF ANNUAL HIGH FLOW BASED ON PERIOD OF RECORD 1936-82 | SEPTEMBER | 7.4 | 31 | 18 | 5.7 | .32 | .6 | | SKEW. | | | | | | | | | BASED ON PERIOD OF RECORD 1936-82 DISCHARGE, IN CFS, FOR INDICATED RECURRENCE INTERVAL, IN YEARS, AND ANNUAL EXCEEDANCE PROBABILITY, IN PERCENT 1, 25 | ANNUAL | 46 | 424 | 233 | 78 | .33 | 100 | | | | | | | | | | | 80% 50% 20% 10% 4% 2% 1% TIVE 2 5 10 25 50 100 DAYS) 50% 20% 10% 4% 2% 1% 1990 3120 4690 5700 6940 7830 8690 WEIGHTED SKEW =359 | YEARS, | , IN CFS, | FOR INDI | CATED RE | CURRENCE
BABILITY, | INTERVAL | ENT | (CON- | DISCH | IARGE, IN | CFS, FO | R INDICA
EARS, AN | TED RECU | | | | | DAYS) 50% 20% 10% 4% 2% 1% 1990 3120 4690 5700 6940 7830 8690 1 2830 4140 4900 5730 6270 6740 | | | | | | | | | 2 | 5 | 10 | 25 | 50 | 100 | | | | ## DISCHARGE, IN CFS, WHICH WAS EQUALED OR EXCEEDED FOR INDICATED PERCENT OF TIME 1 | | | | | | | | | | | | | | | | | | WEIGHTED SKEW =359 3 2270 3280 3860 4500 4910 5280 7 1640 2330 2720 3150 3440 3690 15 1180
1610 1840 2090 2240 2370 30 900 1180 1320 1460 1540 1610 60 701 916 1020 1120 1170 1220 90 620 814 904 987 1030 1070 DURATION TABLE OF DAILY MEAN FLOW FOR PERIOD OF RECORD 1936-82 DISCHARGE, IN CFS, WHICH WAS EQUALED OR EXCEEDED FOR INDICATED PERCENT OF TIME | 1990 | 3120 | 4690 | 5700 | 6940 | 7830 8 | 8690 | | | | | | | | | | | 7 1640 2330 2720 3150 3440 3690 15 1180 1610 1840 2090 2240 2370 30 900 1180 1320 1460 1540 1610 60 701 916 1020 1120 1170 1220 90 620 814 904 987 1030 1070 DURATION TABLE OF DAILY MEAN FLOW FOR PERIOD OF RECORD 1936-82 DISCHARGE, IN CFS, WHICH WAS EQUALED OR EXCEEDED FOR INDICATED PERCENT OF TIME | | | | | | | | 1 | 2830 | 4140 | 4900 | 5730 | 6270 | 6740 | | | | 15 1180 1610 1840 2090 2240 2370 30 900 1180 1320 1460 1540 1610 60 701 916 1020 1120 1170 1220 90 620 814 904 987 1030 1070 DURATION TABLE OF DAILY MEAN FLOW FOR PERIOD OF RECORD 1936-82 DISCHARGE, IN CFS, WHICH WAS EQUALED OR EXCEEDED FOR INDICATED PERCENT OF TIME | WEIGHTED | SKEW = | 359 | | | | | 3 | 2270 | 3280 | 3860 | 4500 | 4910 | 5280 | | | | 15 1180 1610 1840 2090 2240 2370 30 900 1180 1320 1460 1540 1610 60 701 916 1020 1120 1170 1220 90 620 814 904 987 1030 1070 DURATION TABLE OF DAILY MEAN FLOW FOR PERIOD OF RECORD 1936-82 DISCHARGE, IN CFS, WHICH WAS EQUALED OR EXCEEDED FOR INDICATED PERCENT OF TIME | | | | | | | | 7 | 1640 | 2330 | 2720 | 3150 | 3440 | 3690 | | | | 30 900 1180 1320 1460 1540 1610 60 701 916 1020 1120 1170 1220 90 620 814 904 987 1030 1070 DURATION TABLE OF DAILY MEAN FLOW FOR PERIOD OF RECORD 1936-82 DISCHARGE, IN CFS, WHICH WAS EQUALED OR EXCEEDED FOR INDICATED PERCENT OF TIME | | | | | | | | 15 | 1180 | | | | | | | | | 90 620 814 904 987 1030 1070 DURATION TABLE OF DAILY MEAN FLOW FOR PERIOD OF RECORD 1936-82 DISCHARGE, IN CFS, WHICH WAS EQUALED OR EXCEEDED FOR INDICATED PERCENT OF TIME | | | | | | | | | | | | | | | | | | DURATION TABLE OF DAILY MEAN FLOW FOR PERIOD OF RECORD 1936-82 DISCHARGE, IN CFS, WHICH WAS EQUALED OR EXCEEDED FOR INDICATED PERCENT OF TIME | | | | | | | | 60 | 701 | 916 | 1020 | 1120 | 1170 | 1220 | | | | DISCHARGE, IN CFS, WHICH WAS EQUALED OR EXCEEDED FOR INDICATED PERCENT OF TIME | | | | | | | | 90 | 620 | 814 | 904 | 987 | 1030 | 1070 | | | | | | | | DURAT10 | N TABLE (| OF DAILY | MEAN FLOW | FOR PERIOD | OF RECO | RD 1936-8 | 2 | | | | | | | 5% 10% 15% 20% 25% 30% 40% 50% 60% 70% 75% 90% 95% 90% 95% | | | DISCHAF | RGE, IN | CFS, WHIC | CH WAS EQ | UALED OR | EXCEEDED FO | R INDICA | TED PERCE | NT OF T |
IME | | | | | | |
5 % | 10% | 15% | 20% | 25 % | 30% | 40% 5 | 60% 60% | 70% |
75% | 80% | 85% | 90% | 95% | | | 92 33 26 22 18 15 12 ### 14167000 COYOTE CREEK NEAR CROW. OR LOCATION.--Lat 44°01'19", long 123°15'17", in SW±NE± sec.11, T.18 S., R.5 W., Lane County, Hydrologic Unit 17090003, on right bank 1.0 mi downstream from Spencer Creek, 4.3 mi northeast of Crow, and at mile 3.8. DRAINAGE AREA .-- 95.1 mi2. PERIOD OF RECORD. -- July 1940 to September 1982. GAGE.--Water-stage recorder and concrete control. Datum of gage is 374.0 ft National Geodetic Vertical Datum of 1929 (Corps of Engineers bench mark). Prior to Aug. 31, 1940, nonrecording gage near same site at different datums. REMARKS.--No regulation. Several small diversions for irrigation above station. AVERAGE DISCHARGE.--42 years, 178 ft3/s, 25.42 in/yr, 129,000 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.—Maximum discharge, 10,600 ft 3 /s Feb. 10, 1961, gage height, 14.43 ft, from rating curve extended above 4,700 ft 3 /s; no flow at times most years. STATISTICAL SUMMARIES | M | ONTHLY AN | ID ANNUAL | MEAN DISC | CHARGES | 1941-82 | | M | AGNITUDE
BASE | | | OF ANNUAL | | WC | |---------------------------------|------------------|----------------------|-------------------|---------------------------------|------------------------------|----------------------|--------------------------|------------------------------|------------------------------|------------------------------|-------------------------------------|------------------------------|------------------------------| | | MINIMUM | MAXIMUM | MEAN | STAN-
DARD
DEVIA-
TION | COEFFI-
CIENT OF
VARI- | | PERIOD
(CON-
SECU- | | INTERVAL | , IN YEA | R INDICA
RS, AND A | ANNUAL N | ⊃N | | MONTH | (CFS) | (CFS) | (CFS) | (CFS) | ATION | RUNOFF | TIVE
DAYS) | 2
50% | 5
20 % | 10
10% | 20
5 % | 50
2 % | 100
1% | | OCTOBER
NOVEMBER | 0.0
2.5 | 378
881 | 21
155 | 66
175 | 3.20
1.13 | 1.0 | 1 3 |
 | | | |
 | | | DECEMBER
JANUARY
FEBRUARY | 3.1
4.0
12 | 1926
1067
1171 | 474
534
418 | 392
331
242 | .83
.62
.58 | 22.1
24.9
19.5 | 7
14
30 | | | | | | | | MARCH
APRIL
MAY | 68
19
14 | 683
536
301 | 305
154
61 | 175
114
55 | •57
•74
•90 | 14.2
7.2
2.9 | 60
90
120 | .9
1.7 | - | .1 | - | 0.0
.2 | 0. | | JUNE
JULY
AUGUST | 3.2
.1
0.0 | 61
11
4.6 | 16
3.6
.9 | 10
2.7
1.1 | .61
.73
1.29 | .8
.2
0.0 | 183

NOTE: | 7.7
SHORT-DU | RATION S | | | 1.7
AIN DUE | 1.
10 | | SEPTEMBER
ANNUAL | 0.0 | 5.3
361 | 1.1 | 1.2
67 | 1.08 | 100 | | EXCESSIV | E ZERO EV | VENTS. | | | | | | AND ANNUA | L EXCEED/ | ANCE PROBA | BILITY, | IN PERCE | NT
 | PERIOD
(CON- | | INTERV | AL, ÎN Y | R INDICAT
EARS, AND
BILITY, I | ANNUAL | | | 1.25
80% | 2
50%
 | 5
20%
 | 10
10% | 25
4%
 | 50
2 %
 | 100
1%
 | SECU-
TIVE
DAYS) | 2
50% | 5
20 % | 10
10% | 25
4% | 50
2 % | 100
1% | | 2000
WEIGHTED | 4080
SKEW = | | 10300 13 | 800 10 | 5500 192 | 200 | 1
3
7
15 | 3390
2580
1760
1180 | 5600
4040
2660
1710 | 6860
4820
3140
1980 | 8190
5600
3620
2240 | 9000
6060
3910
2390 | 9680
6430
4150
2510 | | | | | | | | | 30
60
90 | 855
669
566 | 1170
876
735 | 1310
944
790 | 1420
989
824 | 1480
1010
836 | 1520
1020
843 | | | | | DURATION | TABLE | OF DAILY M | MEAN FLOW | FOR PERIOD | OF RECO | RD 1941-8 | 32 | DISCHA | RGE, IN C | FS, WHIC | CH WAS EQU | JALED OR | EXCEEDED FO | R INDICA | TED PERCE | NT OF T | 1 ME | | | | 5% | 10% | DISCHA
15% | | FS, WHIO

25% | · | | EXCEEDED FO | 70% | TED PERCE
75% | 80% | 1ME

85% | 90% | 95% | # WILLAMETTE RIVER BASIN 14169300 AMAZON CREEK AT EUGENE, OR LOCATION.--Lat 44°00'45", long 123°04'35", in SW±SE± sec.8, T.18 S., R.3 W., Lane County, Hydrologic Unit 17090003, on right bank 145 ft south of intersection of 39th Street and E. Amazon Drive in Eugene, and at mile 20.3. DRAINAGE AREA .-- 3.35 mi2. 5% 25 10% 14 15% 20% 5.7 25% 4.2 30% 3.2 PERIOD OF RECORD. -- October 1962 to September 1975. GAGE.--Water-stage recorder and concrete control. Datum of gage is 442.33 ft National Geodetic Vertical Datum of 1929. REMARKS. -- No regulation or diversion above station. AVERAGE DISCHARGE.--13 years, 5.24 ft3/s, 21.24 in/yr, 3,800 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 527 ft³/s Jan. 19, 1964, gage height, 7.29 ft; no flow at times. #### STATISTICAL SUMMARIES MONTHLY AND ANNUAL MEAN DISCHARGES 1963-75 MAGNITUDE AND PROBABILITY OF ANNUAL LOW FLOW BASED ON PERIOD OF RECORD 1964-75 DISCHARGE, IN CFS, FOR INDICATED RECURRENCE INTERVAL, IN YEARS, AND ANNUAL NON-STAN-COFFE I-PERCENT PERIOD DARD EXCEEDANCE PROBABILITY, IN PERCENT CIENT OF DEVIA-OF (CON-MINIMUM MAXIMUM ANNUAL SECU-MEAN VARI-TION MONTH (CES) (CES) (CES) ATION RUNOFE 50 100 (CES) TIVE DAYS) 50% 20% 10% 2% 1% OCTOBER 1.1 0.0 5.8 NOVEMBER 23 1.00 9.2 3 0.0 0.0 0.0 --__ DECEMBER 4.5 33 14 7.9 .57 22.1 0.0 0.0 0.0 TANHARY 2.3 27 18 7.7 . 43 28.2 14 0.0 0.0 0.0 FEBRUARY 2.6 21 8.4 5.5 .65 13.3 30 . 2 . 1 0.0 0.0 __ __ MARCH 60 . 2 1.2 18 8.8 5.4 .61 14.0 . 1 APRIL 12 . 2 .8 3.5 90 4.3 .83 6.8 .2 MAY . 3 8.7 1.21 3.0 120 . 2 1.9 2.3 JUNE .2 1.2 .5 .3 .60 .8 183 JULY .3 .5 .6 .41 . 1 . 1 AUGUST .9 .72 .4 .3 .6 . 1 SEPTEMBER .8 .3 . 2 .5 .62 ANNUAL .33 2.3 5.2 1.7 8.8 100 MAGNITUDE AND PROBABILITY OF INSTANTANEOUS PEAK FLOW MAGNITUDE AND PROBABILITY OF ANNUAL HIGH FLOW BASED ON PERIOD OF RECORD 1963-75 BASED ON PERIOD OF RECORD 1963-75 DISCHARGE, IN CFS. FOR INDICATED RECURRENCE INTERVAL. IN DISCHARGE, IN CFS, FOR INDICATED RECURRENCE YEARS, AND ANNUAL EXCEEDANCE PROBABILITY, IN PERCENT PERIOD INTERVAL, IN YEARS, AND ANNUAL EXCEEDANCE PROBABILITY, IN PERCENT (CON-SECU-10 50 100 50% 20% 2% 10% 4% TIVE 2 100 1% 10% DAYS) 50% 20% 4% 2% 1% 198 270 437 521 126 WEIGHTED SKEW = .011 3 86 130 154 181 --7 58 83 96 110 __ 15 50 31 59 36 35 69 30 23 --__ 41 60 23 26 28 18 DURATION TABLE OF DAILY MEAN FLOW FOR PERIOD OF RECORD 1963-75 DISCHARGE, IN CFS, WHICH WAS EQUALED OR EXCEEDED FOR INDICATED PERCENT OF TIME 50% 60% 70% 75% .3 80% 85% 90% 95% 40% #### 14170000 LONG TOM RIVER AT MONROE. OR LOCATION.--Lat 44°18'50", long 123°17'45", in NE¹/₄ sec.33, T.14 S., R.5 W., Benton County, Hydrologic Unit 17090003, on left bank in canalized river channel at Monroe, 110 ft upstream from bridge on State Highway 99W, 0.1 mi downstream from Shafer Creek, and at mile 6.8. DRAINAGE AREA .-- 391 mi2. PERIOD OF RECORD.--November 1920 to July 1921, October 1921 to April 1926, November 1926 to May 1927, October 1927 to September 1982. Prior to October 1930, published as "near Monroe." GAGE.--Water-stage recorder and concrete control. Datum of gage is 270.57 ft National Geodetic Vertical Datum of 1929. Prior to Nov. 24, 1944, nonrecording gage at various sites ranging from present site to 1.5 mi downstream at different datums. REMARKS.--Flow regulated since 1941 by Fern Ridge Lake. Several small diversions above station. AVERAGE DISCHARGE.--59 years (water years 1922-25, 1928-82), 772 ft3/s, 559,300 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.—Maximum discharge, 19,300 ft³/s Jan. 2, 1943, gage
height, 17.14 ft, site and datum then in use, from graph based on gage readings, includes some overflow from Willamette River near Junction City; no flow Oct. 20-22, 1944 (water filling pool at gage); minimum observed prior to regulation, 7 ft³/s Sept. 29, Oct. 1, 1939. #### STATISTICAL SUMMARIES (BEFORE THE CONSTRUCTION OF FERN RIDGE DAM) MONTHLY AND ANNUAL MEAN DISCHARGES 1922-40 MAGNITUDE AND PROBABILITY OF ANNUAL LOW FLOW BASED ON PERIOD OF RECORD 1923-40 | | MINIMUM | MAXIMUM | MEAN | STAN-
DARD
DEVIA-
TION | COEFFI-
CIENT OF
VARI- | PERCENT
OF
ANNUAL | PERIOD
(CON-
SECU- | | ARGE, IN I
INTERVAL,
EXCEEDANCE | IN YEARS | , AND AN | INUAL N | ⊃ N - | |-----------|---------|---------|-------|---------------------------------|------------------------------|-------------------------|--------------------------|----------|---------------------------------------|-----------|----------|----------|--------------| | MONTH | (CFS) | (CFS) | (CFS) | (CFS) | ATION | RUNOFF | TIVE
DAYS) | 2
50% | 5
20% | 10
10% | 20
5% | 50
2% | 100
1% | | OCTOBER | 16 | 150 | 41 | 31 | .77 | .5 | 1 | 13 | 9.6 | 8.3 | 7.4 | | | | NOVEMBER | 20 | 4265 | 666 | 1094 | 1.64 | 7.9 | 3 | 14 | 10 | 8.8 | 7.8 | | | | DECEMBER | 76 | 2720 | 1240 | 804 | .65 | 14.7 | 7 | 15 | 11 | 9.6 | 8.5 | | | | JANUARY | 485 | 4656 | 1921 | 1266 | •66 | 22.8 | 14 | 16 | 12 | 10 | 9.2 | | | | FEBRUARY | 535 | 4401 | 2087 | 1264 | .61 | 24.8 | 30 | 17 | 13 | 12 | 10 | | | | MARCH | 359 | 3243 | 1204 | 731 | .61 | 14.3 | 60 | 19 | 15 | 13 | 12 | | | | APRIL | 165 | 2326 | 797 | 622 | .78 | 9.5 | 90 | 21 | 16 | 15 | 13 | | | | MAY | 90 | 535 | 240 | 116 | .48 | 2.9 | 120 | 25 | 19 | 17 | 16 | | | | JUNE | 56 | 444 | 123 | 94 | .76 | 1.5 | 183 | 48 | 36 | 32 | 29 | | | | JULY | 23 | 127 | 51 | 24 | .48 | .6 | | | | | | | | | AUGUST | 12 | 45 | 24 | 8.7 | .36 | .3 | | | | | | | | | SEPTEMBER | 12 | 40 | 21 | 7.1 | . 34 | .2 | | | | | | | | | ANNUAL | 308 | 1228 | 703 | 260 | .37 | 100 | | | | | | | | MAGNITUDE AND PROBABILITY OF INSTANTANEOUS PEAK FLOW BASED ON PERIOD OF RECORD 1922-40 MAGNITUDE AND PROBABILITY OF ANNUAL HIGH FLOW BASED ON PERIOD OF RECORD 1922-40 | DISCHARGE,
YEARS, A | | | | RECURRENC
ROBABILITY | | | PERIOD
(CON- | DISC | INTER | VAL, ÍN ' | OR INDICA
YEARS, ANI
ABILITY. | D ANNUAL | | |------------------------|----------|----------|-----------|-------------------------|----------|-----------|-----------------|------|-------|-----------|-------------------------------------|----------|-----| | 1.25
80% | 2
50% | 5
20% | 10
10% | 25
4% | 50
2% | 100
1% | SECU-
TIVE | 2 | 5 | 10 | 25 | 50 | 100 | | | | | | | | | DAYS) | 50% | 20% | 10% | 4% | 2% | 1% | | 5680 | 8480 | 12800 | 16000 | 20200 | | | | | | | | | | | | | | | | | | 1 | 7500 | 11000 | 13600 | 17100 | | | | WE I GHTED | SKEW = | .094 | | | | | 3 | 6680 | 9570 | 11700 | 14500 | | | | | | | | | | | 7 | 5450 | 7260 | 8420 | 9850 | | | | | | | | | | | 15 | 4240 | 5590 | 6420 | 7390 | | | | | | | | | | | 30 | 3070 | 4020 | 4560 | 5150 | | | | | | | | | | | 60 | 2300 | 3020 | 3440 | 3910 | | | | | | | | | | | 90 | 1940 | 2570 | 2930 | 3350 | | | DURATION TABLE OF DAILY MEAN FLOW FOR PERIOD OF RECORD 1922-40 | | | DISC | HARGE, | IN CFS, | WHICH WAS | EQUALED | OR EXCE | EDED FOR | INDICATED | PERCENT | OF TIME | | | | |------|------|------|--------|---------|-----------|---------|---------|----------|-----------|---------|---------|-----|-----|-----| | 5% | 10% | 15% | 20% | 25% | 30% | 40% | 50% | 60% | 70% | 75% | 80% | 85% | 90% | 95% | | 3360 | 2130 | 1470 | 1060 | 776 | 567 | 300 | 156 | 82 | 45 | 34 | 27 | 23 | 19 | 15 | ### 14170000 LONG TOM RIVER AT MONROE, OR--Continued ### STATISTICAL SUMMARIES (AFTER THE COMPLETION OF FERN RIDGE DAM) MONTHLY AND ANNUAL MEAN DISCHARGES 1942-82 MAGNITUDE AND PROBABILITY OF ANNUAL LOW FLOW BASED ON PERIOD OF RECORD 1943-82 | | MINIMUM | MAXIMUM | MEAN | STAN-
DARD
DEVIA-
TION | COEFFI-
CIENT OF
VARI- | PERCENT
OF
ANNUAL | PERIOD
(CON-
SECU- | | INTERVAL | N CFS, FO
L, IN YEA
NCE PROBA | RS, AND | | ION- | |--------------------------------------|---------------------------------|-----------------------|-----------|---------------------------------|-----------------------------------|-------------------------|--|--|---|---|--|--|--| | MONTH | (CFS) | (CFS) | (CFS) | (CFS) | ATION | RUNOFF | TIVE
DAYS) | 2
50% | 5
20% | 10
10% | 20
5% | 50
2% | 100
1% | | OCTOBER | 27 | 1895 | 746 | 381 | .51 | 7.7 | 1 | | | | | | | | NOVEMBER | 92 | 3437 | 927 | 672 | .72 | 9.5 | 3 | | | | | | | | DECEMBER | 56 | 5355 | 1891 | 1258 | .67 | 19.4 | 7 | 32 | 22 | 17 | 13 | 9.9 | 7.9 | | JANUARY | 44 | 6222 | 2334 | 1427 | .61 | 24.0 | 14 | 34 | 25 | 20 | 16 | 13 | 11 | | FEBRUARY | 44 | 4032 | 1691 | 1023 | .60 | 17.4 | 30 | 37 | 27 | 22 | 19 | 15 | 13 | | MARCH | 136 | 2761 | 954 | 700 | .73 | 9.8 | 60 | 40 | 29 | 2 5 | 22 | 19 | 17 | | APRIL | 55 | 2277 | 493 | 496 | 1.01 | 5.1 | 90 | 45 | 33 | 29 | 27 | 24 | 23 | | MAY | 50 | 1193 | 234 | 229 | .98 | 2.4 | 120 | 54 | 40 | 35 | 32 | 29 | 28 | | JUNE | 35 | 258 | 83 | 45 | .54 | .8 | 183 | 152 | 98 | 76 | 61 | 47 | 39 | | JULY | 23 | 119 | 43 | 16 | .36 | .4 | | | | | | | | | AUGUST | 20 | 524 | 87 | 101 | 1.16 | .9 | NOTE: | SHORT-DU | RATION S | STATISTICS | S UNCERT | TAIN DUE | то | | SEPTEMBER | 12 | 960 | 245 | 279 | 1.14 | 2.5 | | EXCESSIV | | | | | | | ANNUAL | 177 | 1517 | 808 | 282 | .35 | 100 | | | | | | | | | DISCHARGE | BASE
, IN CFS, | D ON PERIO | OD OF RE | CORD

CURRENCE | OUS PEAK I |
, IN | | BASE | D ON PER

ARGE, IN | BABILITY (RIOD OF RI | ECORD 1

R INDICA | 1942-82

TED RECU | | | DISCHARGE
YEARS, | BASE
, IN CFS,
AND ANNUA | FOR INDIC
EXCEEDAN | OD OF RE | CORD
CURRENCE
ABILITY, | INTERVAL
IN PERCEI |
, IN | PERIOD
(CON-
SECU- | BASE
DISCH | D ON PER
ARGE, IN | RIOD OF RI | ECORD 1

R INDICA
EARS, AN | 1942-82
TED RECU | RRENCE | | DISCHARGE
YEARS, | BASE
, IN CFS,
AND ANNUA | FOR INDIC | OD OF RE | CORD
CURRENCE
ABILITY, | INTERVAL, | , IN
NT | PERIOD
(CON- | BASE
DISCH | D ON PER
ARGE, IN | RIOD OF RI | ECORD 1

R INDICA
EARS, AN | 1942-82
TED RECU | RRENCE | | DISCHARGE
YEARS, | BASE
, IN CFS,
AND ANNUA | FOR INDIC
EXCEEDAN | OD OF RE | CORD
CURRENCE
ABILITY, | INTERVAL
IN PERCEI | , IN
NT | PERIOD
(CON-
SECU-
TIVE
DAYS) | DISCH | D ON PER | I CFS, FOR
VAL, IN YE
ICE PROBAE | ECORD 1 R INDICA EARS, AN BILITY, 25 4% | NTED RECU
ID ANNUAL
IN PERCE | RRENCE NT 100 1% | | DISCHARGE
YEARS, /
1.25
80% | BASE , IN CFS, AND ANNUAL 2 50% | FOR INDIG | OD OF RE | CORD
CURRENCE
ABILITY, | INTERVAL
IN PERCEI | , IN
NT | PERIOD (CON- SECU- TIVE DAYS) | DISCH. | D ON PER
ARGE, IN
INTERV
EXCEEDAN
5
20% | I CFS, FOR INCE PROBABLE 10% | ECORD 1 R INDICA EARS, AN BILITY, 25 4% 9710 | ATED RECU
ID ANNUAL
IN PERCE
50
2% | 100
1% | | DISCHARGE
YEARS, | BASE , IN CFS, AND ANNUAL 2 50% | FOR INDIG | OD OF RE | CORD
CURRENCE
ABILITY, | INTERVAL
IN PERCEI | , IN
NT | PERIOD (CON- SECU- TIVE DAYS) | D1SCH. 2 50% 5790 5240 | D ON PER
ARGE, IN
INTERV
EXCEEDAN
20%
7660
6890 | I CFS, FOR
PAL, IN YE
ICE PROBAE
10
10
10
8660
7760 | ECORD 1 R INDICA EARS, AN BILITY, 25 4% 9710 8670 | TED RECU
ID ANNUAL
IN PERCE
50
2% | 10900
9720 | | DISCHARGE
YEARS, /
1.25
80% | BASE , IN CFS, AND ANNUAL 2 50% | FOR INDIG | OD OF RE | CORD
CURRENCE
ABILITY, | INTERVAL
IN PERCEI | , IN
NT | PERIOD (CON- SECU- TIVE DAYS) 1 3 7 | D1SCH
2
50%
5790
5240
4670 | D ON PER
ARGE, IN
INTERV
EXCEEDAN
5
20%
7660
6890
6100 | I CFS, FOR ICE PROBABLE 10 10 10 10 10 10 10 10 10 10 10 10 10 | ECORD 1 R INDICA EARS, AN BILITY, 25 45 9710 8670 7610 | 1942-82
ATED RECU
IN PERCE
50
2%
10400
9230
8080 | 100
1%
10900
9720
8480 | | DISCHARGE
YEARS, /
1.25
80% | BASE , IN CFS, AND ANNUAL 2 50% | FOR INDIG | OD OF RE | CORD
CURRENCE
ABILITY, | INTERVAL
IN PERCEI | , IN
NT | PERIOD (CON-
SECU-
TIVE DAYS) | DISCH. 2 50% 5790 5240 4670 4010 | D ON PEF
ARGE, IN
INTERV
EXCEEDAN
5
20\$
7660
6890
6100
5390 | RIOD OF RI
I CFS, FOR
IAL, IN YEA
ICE PROBAB
10%
10%
8660
7760
6840
6150 | ECORD 1 R INDICA EARS, AN BILITY, 25 4% 9710 8670 7610 6970 | 10400
9230
8080
7500 | 10900
9720
8480
7960 | | DISCHARGE
YEARS, /
1.25
80% | BASE , IN CFS, AND ANNUAL 2 50% | FOR INDIG | OD OF RE | CORD
CURRENCE
ABILITY, | INTERVAL
IN PERCEI | , IN
NT | PERIOD (CON-SECU-TIVE DAYS) 1 3 7 15 30 | D1 SCH | 7660
6890
6100
5390
4420 | 10 CFS, FOR AL, IN YELDE PROBABLE 10 10% | 9710
8670
7610
970
970
970
970 | 1942-82
ITED RECU
ID ANNUAL
IN PERCE
50
2%
10400
9230
8080
7500
6650 | RRENCE
NT
100
13
10900
9720
8480
7960
7220 | | DISCHARGE
YEARS, 1
1.25
80% | BASE , IN CFS, AND ANNUAL 2 50% | FOR INDIG | OD OF RE | CORD
CURRENCE
ABILITY, | INTERVAL
IN PERCEI | , IN
NT | PERIOD
(CON-
SECU-
TIVE DAYS) | DISCH. 2 50% 5790 5240 4670 4010 | D ON PEF
ARGE, IN
INTERV
EXCEEDAN
5
20\$
7660
6890
6100
5390 | RIOD OF RI
I CFS, FOR
IAL, IN YEA
ICE PROBAB
10%
10%
8660
7760
6840
6150 | ECORD 1 R INDICA EARS, AN BILITY, 25 4% 9710 8670 7610 6970 | 10400
9230
8080
7500 | 10900
9720
8480
7960 | | DISCHARGE
YEARS, 1
1.25
80% | BASE , IN CFS, AND ANNUAL 2 50% | FOR INDIG | CATED RE- | CORD CURRENCE ABILITY, 25 4% | INTERVAL
IN PERCEI
50
2% | , IN NT 100 18 | PERIOD (CON-
SECU-
TIVE DAYS) 1 3 7 15 30 60 | 5790
5240
4670
4010
3210
2470
2120 | 7660
6890
6190
4420
3460
2960 | 8660
7760
6840
6150
5170
4040
3410 | R INDICA
EARS, AN
BILITY,
25
4%
9710
8670
7610
6970
6040
4690 | 1942-82 ITED RECU ID ANNUAL IN PERCE 50 2% 10400 9230 8080 7500 6650 5130 | RRENCE NT 100 1% 10900 9720 8480 7960 7220 5530 | | DISCHARGE
YEARS, 1
1.25
80% | BASE , IN CFS, AND ANNUAL 2 50% | FOR INDIG | DURATIO | CORD CURRENCE ABILITY, 25 4% | INTERVAL
IN PERCEI
50
2% | , IN NT 100 1% | PERIOD (CON-
SECU-
TIVE DAYS) | 5790
5240
4670
4010
3210
2470
2120 | 7660
6890
4420
3460
2960 | 8660
7760
6840
6150
5170
4040
3410 | PR INDICA
FARS, AN
BILITY,
25
4%
9710
8670
7610
6970
6040
4690
3890 | 1942-82 ITED RECU ID ANNUAL IN PERCE 50 2% 10400 9230 8080 7500 6650 5130 | RRENCE
NT
100
1%
10900
9720
8480
7960
7960
7220
5530 | | DISCHARGE
YEARS, 1
1.25
80% | BASE , IN CFS, AND ANNUAL 2 50% | FOR INDIG | DURATIO | CORD CURRENCE ABILITY, 25 4% | INTERVAL
IN PERCEN
50
2% | , IN NT 100 1% | PERIOD (CON- SECU- TIVE DAYS) 1 3 7 15 30 60 90 FOR PERIOD | 5790
5240
4670
4010
3210
2470
2120 | 7660
6890
4420
3460
2960 | 8660
7760
6840
6150
5170
4040
3410 | PR INDICA
FARS, AN
BILITY,
25
4%
9710
8670
7610
6970
6040
4690
3890 | 1942-82 ITED RECU ID ANNUAL IN PERCE 50 2% 10400 9230 8080 7500 6650 5130 | RRENCE NT 100 1% 10900 9720 8480 7960 7220 5530 | #### 14170500 ROCK CREEK NEAR PHILOMATH. OR LOCATION.--Lat 44°30'05", long 123°26'20, in SW\nE\neq sec.29, T.12 S., R.6 W., Benton County, Hydrologic Unit 17090003, on left bank 600 ft upstream from bridge on State Highway 34, 4.5 mi southwest of Philomath, and at mile 0.4. DRAINAGE AREA .-- 14.6 mi2. PERIOD OF RECORD.--October 1945 to September 1952, water years 1953-60 (annual maximum), October 1974 to September 1979. GAGE.--Water-stage recorder. Datum of gage is 349.08 ft National Geodetic Vertical Datum of 1929. Prior to October 1974, at site 0.2 mi downstream at datum 5.08 ft higher. REMARKS.--Flow regulated by small storage reservoir operated by city of Corvallis, most low-water flow diverted to city of Corvallis water supply system. AVERAGE DISCHARGE.--12 years, 51.2 ft³/s, 47.62 in/yr, 37,090 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 2,190 ft³/s Dec. 21, 1955, gage height, 6.82 ft, at site and datum then in use, from rating curve extended above 810 ft³/s, on basis of slope-area measurement of peak flow; maximum gage height, 13.17 ft Dec. 15, 1977; minimum discharge, 0.2 ft³/s Aug 24, 1946, for several days in summers of 1949 and 1950, Sept. 1-3, 1952. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of Dec. 24, 1964, reached a stage of 7.30 ft, discharge, 2,500 ft³/s, at site 0.2 mi ### STATISTICAL SUMMARIES MONTHLY AND ANNUAL MEAN DISCHARGES 1946-79 MAGNITUDE AND PROBABILITY OF ANNUAL LOW FLOW BASED ON PERIOD OF RECORD 1947-79 | | WINIMOW | WAYIMIIN | MEAN | STAN-
DARD
DEVIA- | COEFFI-
CIENT OF
VARI- | PERCENT
OF
ANNUAL | PERIOD
(CON-
SECU- | 1 | NTERVAL, | CFS, FOR
IN YEARS
E PROBABI | , AND A | NNUAL N | ON- | |-----------|------------------|------------------|---------------|-------------------------|------------------------------|-------------------------|--------------------------|----------|----------|-----------------------------------|----------|------------------|-----------| | НТИОМ | MINIMUM
(CFS) | MAXIMUM
(CFS) | MEAN
(CFS) | TION
(CFS) | ATION | RUNOFF | TIVE
DAYS) | 2
50% | 5
20% | 10
10% | 20
5% | 50
2 % | 100
1% | | OCTOBER | .9 | 80 | 17 | 24 | 1.40 | 2.8 | 1 | .7 | .3 | .2 | .1 | | | | NOVEMBER | 3.7 | 148 | 62 | 44 | .71 | 10.1 | 3 | •7 | .3 | .2 | .2 | | | | DECEMBER | 4.1 | 187 | 107 | 57 | .53 | 17.3 | 7 | •8 | .4 | .3 | •2 | | | | JANUARY | 3.1 | 215 | 114 | 66 | .58 | 18.4 | 14 | .8 | .4 | .3 | .2 | | | | FEBRUARY | 15 | 256 | 137 | 61 | .44 | 22.1 | 30 | 1.0 | .5 | .4 | .3 | | | | MARCH | 28 | 154 | 89 | 31 | • 34 | 14.4 | 60 | 1.4 | .8 | .6 | •5 | | | | APRIL | 18 | 85 | 46 | 18 | .39 | 7.4 | 90 | 2.0 | 1.3 | 1.1 | .9 | | | | MAY | 12 | 57 | 27 | 14 | •52 | 4.4 | 120 | 3.1 | 2.3 | 1.9 | 1.6 | | | | JUNE | 6.7 | 18 | 10 | 3.5 | .34 | 1.7 | 183 | 7.7 | 5.3 | 4.2 | 3.3 | | | | JULY | 2.5 | 6.5 | 4.1 | 1.3 | .33 | •7 | | | | | | | | | AUGUST | .6 | 5.9 | 2.1 | 1.6 | .77 | .3 | | | | | | | | | SEPTEMBER | .5 | 6.3 | 2.3 | 1.9 | .83 | .4 | | | | | | | | | ANNUAL | 14 | 72 | 51 | 16 | .30 | 100 | | | | | | | | MAGNITUDE AND PROBABILITY OF INSTANTANEOUS PEAK FLOW BASED ON PERIOD OF RECORD 1946-79 MAGNITUDE AND PROBABILITY OF ANNUAL HIGH FLOW BASED ON PERIOD OF RECORD 1946-79 | SCHARGE,
YEARS, A | | | | | | | PERIOD
(CON- | | INTERV | CFS, FOR
AL, IN YE
DE PROBAE | ARS, AND | ANNUAL | | |----------------------|--------------|--------------|-----------|----------|----------|-----------|------------------------|----------|------------------|------------------------------------|----------|----------|-----------| | 1.25
80% | 2
50%
 | 5
20%
 | 10
10% | 25
4% | 50
2% | 100
1% | SECU-
TIVE
DAYS) | 2
50% | 5
20 % | 10
10% | 25
4% | 50
2% | 100
1% | | 702 | 987 | 1430 | 1750 | | | | | | | | | | | | | | | | | | | 1 | 609 | 772 | 860 | | | | | WEIGHTED | SKEW = | .273 | | | | | 3 | 460 | 587 | 659 | | | | | | | | | | | | 7 | 326 | 420 | 480 | | | | | | | | | | | | 15 | 248 | 309 | 343 | | | | | | | | | | | | 30 | 192 | 227 | 241 | | | | | | | | | | | | 60 | 153 | 183 | 193 | | | | | | | | | | | | 90 | 142 | 174 | 184 | | | | DURATION TABLE OF DAILY MEAN FLOW FOR PERIOD OF RECORD 1946-79 | | | DISCH | HARGE, I | N CFS, | WHICH WAS | EQUALED | OR EXCE | EDED FOR | INDICATE | D PERCEN | T OF TIM | IE | | | |-----|-----|-------|----------|--------|-----------|---------|---------|----------|----------|----------|----------|-----|-----|-----| | 5% | 10% | 15% | 20% | 25% | 30% | 40% | 50% | 60% | 70% | 75% | 80% | 85% | 90% | 95% | | 206 | 139 | 105 | 83 | 67 | 54 | 33 | 18 | 9.4 | 4.9 | 3.6 | 2.9 | 2.2 | 1.4 | .7 | #### 14171000 MARYS RIVER NEAR PHILOMATH, OR LOCATION.--Lat 44°31'35", long 123°20'00", in NE\SE\ sec.18, T.12 S., R.5 W., Benton County, Hydrologic Unit 17090003, on left bank 50 ft downstream from bridge on Bellfountain Road, 0.6 mi downstream from Newton Creek, 2.0 mi southeast of Philomath, and at mile DRAINAGE AREA.--159 \min^2 , including drainage area of Evergreen Creek above Bellfountain Road, 1.4 \min south of station. PERIOD OF RECORD. -- October 1940 to September 1982. 1910 1290 916 695 547 432 266 157 42 31 GAGE.--Water-stage recorder. Datum of gage is 224.01 ft National Geodetic Vertical Datum of 1929 (levels by Corps of Engineers). Prior to Oct. 1, 1961, nonrecording gage at bridge 50 ft upstream at same datum. REMARKS.--Records include flow of Evergreen Creek at Bellfountain Road crossing. Slight regulation by small storage reservoir on Rock Creek from which municipal supply is diverted for city of Corvallis. Other small diversions above station for irrigation. AVERAGE DISCHARGE.--42 years, 458 ft³/s, 39.12 in/yr, 331,800 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 13,600 ft³/s Dec. 22, 1964, gage height, 20.72 ft; maximum gage height, 20.91 ft Jan. 15, 1974; minimum discharge, 0.60 ft³/s Aug. 23, 1967. #### STATISTICAL SUMMARIES | М | ONTHLY AN | ID ANNUAL | MEAN DIS | SCHARGES | 1941-82 | | MAI | | AND PROBA
O ON PERI | | | | .011 | |--|---|---|--|---|--|--|---|--|--
---|--|--|--| | | MINIMIM | MAXIMUM | MEAN | STAN-
DARD
DEVIA-
TION | COEFFI-
CIENT OF | PERCENT
OF
ANNUAL | PERIOD
(CON-
SECU- | | INTERVAL, | IN YEAR | RS, AND | ATED RECU
ANNUAL N
IN PERCE | 10N- | | MONTH | (CFS) | (CFS) | (CFS) | (CFS) | ATION | RUNOFF | TIVE
DAYS) | 2
50% | 5
20% | 10
10% | 20
5% | 50
2 % | 100
1% | | OCTOBER NOVEMBER DECEMBER JANUARY FEBRUARY MARCH APRIL MAY JUNE JUNE JUNE JUGUST SEPTEMBER | 8.2
22
30
38
83
190
160
91
43
16
4.9
6.0 | 568
1897
2360
2455
2398
1736
1133
660
185
59
36 | 73
455
1059
1239
1066
793
462
219
88
34
17 | 102
398
622
690
486
381
242
122
31
11
7.2 | 1.39
.87
.59
.56
.46
.48
.52
.56
.35
.32
.42 | 1.3
8.2
19.2
22.4
19.3
14.4
4.0
1.6
.6 | 1
3
7
14
30
60
90
120
183 | 9.5
9.8
10
11
12
15
18
24
54 | 5.7
6.1
6.7
7.3
8.5
10
13
18
38 | 4.1
4.6
5.2
5.8
6.9
8.7
11
15
32 | 4.7
5.8 | 5 2.5
1 3.1
7 3.6
3 4.7
1 6.2 | 2.0
2.5
3.0
4.7
5.5 | | ANNUAL
 | 104
TUDE AND | | | | .31
OUS PEAK F | 100
 |
MA (| | | | | AL HIGH F | LOW | | MAGNI
DISCHARGE
YEARS, | TUDE AND
BASE
, IN CFS, | PROBABILI
D ON PERI
FOR INDI
L EXCEEDA | TY OF IN
OD OF RE
CATED RE
NCE PROB | ISTANTANE
CORD 194
CURRENCE
BABILITY, | OUS PEAK F
1-82
INTERVAL,
IN PERCEI | -LOW
, IN | PERIOD
(CON- | BASEC
DISCHA | ON PERI | OD OF RECEIVED | ECORD 1 R INDICA EARS, AN | | RRENCE | | MAGNI | TUDE AND
BASE | PROBABILI
D ON PERI
FOR INDI | TY OF IN
OD OF RE | ISTANTANE
CORD 194 | OUS PEAK F
1-82
INTERVAL,
IN PERCEI | FLOW | PERIOD | BASEC
DISCHA | ON PERI | OD OF RECEIVED | ECORD 1 R INDICA EARS, AN | 1941-82
TED RECUND ANNUAL | RRENCE | | MAGNI DISCHARGE YEARS, 1.25 80% | TUDE AND
BASE
, IN CFS,
AND ANNUA | PROBABILI
D ON PERI
FOR INDI
L EXCEEDA
5
20% | TY OF IN
OD OF RE
CATED RE
NCE PROB | ISTANTANE
CORD 194
CURRENCE
BABILITY, | OUS PEAK I
1-82
INTERVAL,
IN PERCEI | FLOW
, IN
NT | PERIOD
(CON-
SECU-
TIVE | BASEC
DISCHA
E | O ON PERI
ARGE, IN
INTERVA
EXCEEDANC | OD OF RECEIVED | ECORD 1 R INDICA EARS, AN BILITY, | 1941-82
ATED RECU
ND ANNUAL
IN PERCE | IRRENCE
NT | | MAGNI DISCHARGE YEARS, 1.25 80% | 104 TUDE AND BASE , IN CFS, AND ANNUA 2 50% | PROBABILI
D ON PERI
FOR INDI
L EXCEEDA
5
20% | TY OF IN OD OF RE | STANTANE
CORD 194
CURRENCE
BABILITY,
25
4% | OUS PEAK F
1-82
INTERVAL
IN PERCEI
50
2% | FLOW , IN NT 100 1% | PERIOD (CON-
SECU-
TIVE DAYS) | DISCHA E 2 50% 5230 4400 3270 22560 1810 1420 1260 | RGE, IN INTERVAL XXCEEDANC 5 20% 7300 6060 4410 3130 2320 1840 1640 | OD OF RECEIVED | 9790
8060
5730
3990
2240 | 1941-82
NTED RECUID ANNUAL
IN PERCE
50
2%
10600
8750
6170
4260
2350 | IRRENCE 100 1% 11400 9360 6570 4440 2950 22440 | | MAGNI DISCHARGE YEARS, 1.25 80% | 104 TUDE AND BASE , IN CFS, AND ANNUA 2 50% | PROBABILI
D ON PERI
FOR INDI
L EXCEEDA
5
20%
8920 1 | TY OF IN OD OF RECATED RECATED RECATED RECATED RECATED ROSE | ISTANTANE CORD 194 CURRENCE ABILITY, 25 4% 2900 1. | OUS PEAK F
1-82
INTERVAL,
IN PERCEI | FLOW IN NT IOO If POO MEAN FLOW | PERIOD
(CON-
SECU-
TIVE
DAYS)
 | DISCHA 2 50% 5230 4400 3270 2360 1810 1420 1420 0F RECOR | 7300
6060
4410
3130
2320
1840 | OD OF RE | 9790
8060
5730
3990
2750
2240
1970 | 1941-82
NTED RECUID ANNUAL
IN PERCE
50
2%
10600
8750
6170
4260
2350 | 1140
936
657
449
295 | #### 14172000 CALAPOOIA RIVER AT HOLLEY, OR LOCATION.--Lat 44°21'05", long 122°47'10", in SEt sec.15, T.14 S., R.1 W., Linn County, Hydrologic Unit 17090003, on right bank 200 ft downstream from bridge on State Highway 228, 0.3 mi southwest of Holley, 5.0 mi upstream from Brush Creek, and at mile 45.4. DRAINAGE AREA .-- 105 mi 2. 1540 1070 825 676 564 480 350 241 147 PERIOD OF RECORD. -- September 1935 to September 1982. Prior to October 1963, published as "Calapooya River at Holley". GAGE.--Water-stage recorder. Datum of gage Is 527.58 ft National Geodetic Vertical Datum of 1929. Prior to Oct. 7, 1963, nonrecording gage at present site and datum. REMARKS.--Slight regulation at times during low-water periods by small dam upstream. Diversions for irrigation above station. AVERAGE DISCHARGE.--47 years, 440 ft³/s, 56.91 in/yr, 318,800 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 12,600 ft³/s Dec. 22, 1964, gage height, 14.60 ft; maximum gage height, 15.30 ft Dec. 22, 1964 (backwater from debris); minimum discharge observed, 13 ft³/s Sept. 8, 1940. #### STATISTICAL SUMMARIES MONTHLY AND ANNUAL MEAN DISCHARGES 1936-82 MAGNITUDE AND PROBABILITY OF ANNUAL LOW FLOW BASED ON PERIOD OF RECORD 1937-82 | | | | | STAN-
DARD
DEVIA- | COEFFI-
CIENT OF | PERCENT
OF | PERIOD
(CON- | | IARGE, IN
INTERVAL
EXCEEDAN | , IN YEA | RS, AND | ANNUAL I | NON- | |-------------------------------------|--|---|------------------|-----------------------------------|--|-----------------------------------|--|---|---|---|--|--|---| | MONTH | MINIMUM
(CFS) | MAXIMUM
(CFS) | MEAN
(CFS) | TION
(CFS) | VARI-
ATION | ANNUAL
RUNOFF | SECU-
TIVE
Days) | 2
50% | 5
20% | 10
10% | 20
5% | 50
2% | 100 | | OCTOBER | 22 | 697 | 144 | 153 | 1.06 | 2.7 | 1 • | 25 | 21 | 18 | 17 | 15 | 14 | | NOVEMBER | 19 | 1417 | 544 | 368 | .68 | 10.3 | 3 | 25 | 21 | 19 | 18 | 17 | 16 | | DECEMBER | 60 | 2408 | 905 | 538 | . 59 | 17.1 | 7 | 26 | 22 | 20 | 19 | - 17 | 17 | | JANUARY | 78 | 1934 | 895 | 481 | .54 | 16.9 | 14 | 27 | 23 | 21 | 19 | 18 | 17 | | FEBRUARY | 102 | 1895 | 831 | 350 | .42 | 15.7 | 30 | 30 | 25 | 22 | 21 | 19 | 18 | | MARCH | 190 | 1363 | 711 | 295 | .41 | 13.4 | 60 | 36 | 28 | 25 | 23 | 20 | 19 | | APRIL | 194 | 1276 | 565 | 213 | . 38 | 10.7 | 90 | 42 | 32 | 28 | 25 | 23 | 21 | | MAY | 121 | 727 | 361 | 156 | .43 | 6.8 | 120 | 53 | 39 | 33 | 30 | 26 | 23 | | JUNE | 66 | 534 | 184 | 93 | .50 | 3.5 | 183 | 110 | 80 | 67 | 58 | 49 | 44 | | JULY | 35 | 153 | 73 | 27 | .37 | 1.4 | | | | | | | | | AUGUST | 21 | 106 | 42 | 14 | .34 | -8 | | | | | | | | | SEPTEMBER | | 133 | 47 | 27 | .57 | .9 | | | | | | | | | ANNUAL | 189 | 671 | 440 | 107 | .24 | 100 | | | | | | | | | | BASE | PROBABILI
D ON PERI | OD OF RE | CORD 193 | | FLOW | MAG | BASE | AND PROBA | IOD OF R | ECORD 1 | 936-82 | | | OISCHARGE
YEARS, | BASE
, IN CFS,
AND ANNUA | PROBABIL! D ON PERI | OD OF RE | CORD 193 | 6-82
INTERVAL
IN PERCE | FLOW
, IN | PERIOD
(CON- | BASE
DISCH | D ON PER | CFS, FO | ECORD 1 R INDICA EARS, AN | 936-82
TED RECUID ANNUAL | JRRENCE | | OI SCHARGE | BASE
, IN CFS, | PROBABIL! D ON PERI | OD OF RE |
CORD 193 | 6-82
INTERVAL
IN PERCE | FLOW | PERIOD
(CON-
SECU-
TIVE | BASE
DISCH | D ON PER ARGE, IN INTERV EXCEEDANCE 5 | CFS, FO
AL, IN Y
CE PROBA | ECORD 1 R INDICA EARS, AN BILITY, | 936-82
TED RECUID ANNUAL
IN PERCE | URRENCE
ENT | | OISCHARGE
YEARS, | BASE
, IN CFS,
AND ANNUA | PROBABIL!
D ON PER!
FOR IND!
L EXCEEDA | CATED RENCE PROB | CURRENCE
BABILITY, | INTERVAL
IN PERCE | FLOW
, IN
NT | PERIOD
(CON-
SECU- | BASE
DISCH | D ON PER ARGE, IN INTERV EXCEEDANCE | CFS, FO
AL, IN Y | ECORD 1 R INDICA EARS, AN BILITY, | 936-82
TED RECUID ANNUAL
IN PERCE | JRRENCE | | OISCHARGE
YEARS, | BASE
, IN CFS,
AND ANNUA | PROBABILI
D ON PERIO
FOR INDI-
LL EXCEEDA
5
20% | CATED RENCE PROB | CORD 193 CURRENCE MABILITY, 25 4% | INTERVAL
IN PERCE | FLOW
, IN
NT | PERIOD
(CON-
SECU-
TIVE
DAYS) | DISCH | D ON PER ARGE, IN INTERV EXCEEDANC 5 20% | CFS, FO
AL, IN Y
CE PROBA | ECORD 1 R INDICA EARS, AN BILITY, 25 4% | 936-82 TED RECUID ANNUAL IN PERCE | URRENCE
ENT
100 | | 01SCHARGE
YEARS,
1.25
80% | BASE , IN CFS, AND ANNUA 2 50% | PROBABILI
D ON PERIO
FOR INDI-
L EXCEEDA
5
20% | CATED RENCE PROB | CORD 193 CURRENCE MABILITY, 25 4% | INTERVAL
IN PERCE | FLOW
, IN
NT
100
1% | PERIOD
(CON-
SECU-
TIVE
DAYS) | DISCH | D ON PER ARGE, IN INTERV EXCEEDANG 5 20% 6520 | CFS, FO
AL, IN Y
CE PROBA
10
10% | R INDICA
EARS, AN
BILITY,
25
4% | 936-82 TED RECUID ANNUAL IN PERCE 50 2% | JRRENCE
ENT
100
1% | | 01SCHARGE
YEARS,
1.25
80% | BASE
, IN CFS,
AND ANNUA
2
50% | PROBABILI
D ON PERIO
FOR INDI-
L EXCEEDA
5
20% | CATED RENCE PROB | CORD 193 CURRENCE MABILITY, 25 4% | INTERVAL
IN PERCE | FLOW
, IN
NT
100
1% | PERIOD
(CON-
SECU-
TIVE
DAYS) | DISCH | D ON PER ARGE, IN INTERV EXCEEDANG 5 20% 6520 5010 | CFS, F0 AL, IN Y CE PROBA 10 10% 7850 5930 | R INDICA
EARS, AN
BILITY,
25
4%
9530
7040 | 936-82
STED RECUID ANNUAL
IN PERCE
50
2%
10800
7820 | JRRENCE
ENT
100
1% | | 01SCHARGE
YEARS,
1.25
80% | BASE , IN CFS, AND ANNUA 2 50% | PROBABILI
D ON PERIO
FOR INDI-
L EXCEEDA
5
20% | CATED RENCE PROB | CORD 193 CURRENCE MABILITY, 25 4% | INTERVAL
IN PERCE | FLOW
, IN
NT
100
1% | PERIOD (CON- SECU- TIVE DAYS) 1 3 | DISCH 2 50% 4500 3550 2580 | D ON PER ARGE, IN INTERV EXCEEDANG 5 20% 6520 5010 3490 | CFS, FO
AL, IN Y
CE PROBA
10
10%
7850
5930
4030 | ECORD 1 R INDICA EARS, AN BILITY, 25 4% 9530 7040 4640 | 936-82
ITED RECLID ANNUAL
IN PERCE
50
2%
10800
7820
5050 | 12000
8580
5430 | | 01SCHARGE
YEARS,
1.25
80% | BASE , IN CFS, AND ANNUA 2 50% | PROBABILI
D ON PERIO
FOR INDI-
L EXCEEDA
5
20% | CATED RENCE PROB | CORD 193 CURRENCE MABILITY, 25 4% | INTERVAL
IN PERCE | FLOW
, IN
NT
100
1% | PERIOD
(CON-
SECU-
TIVE
DAYS)
 | DISCH 2 50% 4500 3550 2580 1860 | D ON PER ARGE, IN INTERV EXCEEDANC 5 20% 6520 5010 3490 2410 | CFS, FO
AL, IN Y
CE PROBA
10
10%
7850
5930
4030
2720 | ECORD 1 R INDICA EARS, AN BILITY, 25 4% 9530 7040 4640 3060 | 936-82
ITED RECLID ANNUAL
IN PERCE
50
2%
10800
7820
5050
3280 | 12000
8580
5430
3470 | | 01 SCHARGE
YEARS,
1.25
80% | BASE , IN CFS, AND ANNUA 2 50% | PROBABILI
D ON PERIO
FOR INDI-
L EXCEEDA
5
20% | CATED RENCE PROB | CORD 193 CURRENCE MABILITY, 25 4% | INTERVAL
IN PERCE | FLOW
, IN
NT
100
1% | PERIOD (CON-
SECU-
TIVE DAYS) 1 3 7 15 30 | DISCH | D ON PER ARGE, IN INTERV, EXCEEDANC 5 20% 6520 5010 3490 2410 1830 | CFS, FO
AL, IN Y
CE PROBA
10
10
7850
5930
4030
2720
2020 | ECORD 1 R INDICA EARS, AN BILITY, 25 43 9530 7040 4640 43060 2210 | 936-82
TED RECLID ANNUAL
IN PERCE
50
2%
10800
7820
5050
3280
2320 | 12000
8580
5430
3470
2420 | | 01 SCHARGE
YEARS,
1.25
80% | BASE , IN CFS, AND ANNUA 2 50% | PROBABILI
D ON PERIO
FOR INDI-
L EXCEEDA
5
20% | CATED RENCE PROB | CORD 193 CURRENCE MABILITY, 25 4% | INTERVAL
IN PERCE | FLOW
, IN
NT
100
1% | PERIOD (CON- SECU- TIVE DAYS) 1 3 7 15 30 60 | DISCH 2 50% 4500 3550 2580 1860 1450 1140 | D ON PER | CFS, FO AL, IN Y CE PROBA 10 10 10 5930 4030 2720 2020 1610 | ECORD 1 R INDICA EARS, AN BILITY, 25 4% 9530 7040 4640 3060 2210 1780 | 936-82
ITED RECL
IN PERCE
50
2%
10800
7820
5050
3280
2320
1900 | 12000
8580
5430
3470
2420
2000 | | 01SCHARGE
YEARS,
1.25
80% | BASE , IN CFS, AND ANNUA 2 50% | PROBABILI
D ON PERIO
FOR INDI-
L EXCEEDA
5
20% | CATED RENCE PROP | CURRENCE ABILITY, 25 4 4 2 2100 1 | 1NTERVAL
IN PERCEI
50
2%
3700 15 | FLOW , IN NT 100 1% 200 | PERIOD (CON- SECU- TIVE DAYS) 1 3 7 15 30 60 90 | DISCH 2 50% 4500 3550 2580 1860 1450 1140 1010 | ARGE, IN INTERV, EXCEEDANC 5 20% 5010 3490 2410 1830 1440 1260 | CFS, FO AL, IN Y CE PROBA 10 10% 7850 5930 4030 2720 2020 1610 1400 | ECORD 1 R INDICA EARS, AN BILITY, 25 43 9530 7040 4640 43060 2210 | 936-82
TED RECLID ANNUAL
IN PERCE
50
2%
10800
7820
5050
3280
2320 | 12000
8580
5430
3470
2420 | | 01 SCHARGE
YEARS,
1.25
80% | BASE , IN CFS, AND ANNUA 2 50% | PROBABILI
D ON PERIO
FOR INDI-
L EXCEEDA
5
20% | CATED RENCE PROP | CURRENCE ABILITY, 25 4 4 2 2100 1 | 1NTERVAL
IN PERCEI
50
2%
3700 15 | FLOW , IN NT 100 1% 200 | PERIOD (CON- SECU- TIVE DAYS) 1 3 7 15 30 60 | DISCH 2 50% 4500 3550 2580 1860 1450 1140 1010 | ARGE, IN INTERV, EXCEEDANC 5 20% 5010 3490 2410 1830 1440 1260 | CFS, FO AL, IN Y CE PROBA 10 10% 7850 5930 4030 2720 2020 1610 1400 | ECORD 1 R INDICA EARS, AN BILITY, 25 4% 9530 7040 4640 3060 2210 1780 | 936-82
ITED RECL
IN PERCE
50
2%
10800
7820
5050
3280
2320
1900 | 12000
8580
5430
3470
2420
2000 | | 01 SCHARGE
YEARS,
1.25
80% | BASE , IN CFS, AND ANNUA 2 50% | PROBABILI
D ON PERIO
FOR INDI-
L EXCEEDA
5
20%
8200 | CATED RENCE PROB | CURRENCE ABILITY, 25 43 2100 1 | INTERVAL
IN PERCEI
50
2%
3700 15 | FLOW IN 100 13 200 MEAN FLOW | PERIOD (CON- SECU- TIVE DAYS) 1 3 7 15 30 60 90 | DISCH 2 50% 4500 3550 2580 1860 1450 1140 1010 OF RECO | D ON PER ARGE, IN INTERV. EXCEEDANG 5 20\$ 6520 5010 3490 2410 1830 1440 1260 RD 1936-8 | CFS, F0 AL, IN Y CE PROBA 10 10% 7850 4030 2720 2020 1610 1400 | PECORD 1 R INDICA EARS, AN BILITY, 25 43 9530 7040 4640 3060 2210 1780 1560 | 936-82
ITED RECL
IN PERCE
50
2%
10800
7820
5050
3280
2320
1900 | 12000
8580
5430
2420
2000 | 84 63 49 40 33 27 #### 14173500 CALAPOOIA RIVER AT ALBANY, OR LOCATION.--Lat 44°37'15", long 123°07'40", in NW± sec.13, T.11 S., R.4 W., Linn County, Hydrologic Unit 17090003, near right bank on downstream side of bridge on Riverside Drive at Albany, O.6 mi downstream from Oak Creek, and at mile 3.0. DRAINAGE AREA. -- 372 mi2. PERIOD OF RECORD.--October 1940 to September 1981. Prior to October 1963, published as "Calapooya River at Albany". GAGE.--Water-stage recorder. Datum of gage is 180.85 ft National Geodetic Vertical Datum of 1929. Prior to May 11, 1962, nonrecording gage at same site and datum. REMARKS.—Higher flows are affected by backwater from Willamette River at times. Diurnal fluctuation caused by ponds at flour mills near Shedd. Diversions for irrigation above station. AVERAGE DISCHARGE.--41 years, 895 ft³/s, 32.67 in/yr, 648,400 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge observed, 32,700 ft³/s Dec. 22, 1955, gage height, 22.12 ft; maximum gage height, 25.5 ft Jan. 2, 1943, from graph based on gage readings (backwater from Willamette River); minimum discharge, 3.5 ft³/s Sept. 7, 1967. #### STATISTICAL SUMMARIES MONTHLY AND ANNUAL MEAN DISCHARGES 1941-81 MAGNITUDE AND PROBABILITY OF ANNUAL LOW FLOW BASED ON PERIOD OF RECORD 1942-81 | | MINIMUM | MAXIMUM | MEAN | STAN-
DARD
DEVIA-
TION | COEFFI-
CIENT OF
VARI- | PERCENT
OF
ANNUAL | PERIOD
(CON-
SECU- | | ARGE, IN (
INTERVAL,
EXCEEDANC | IN YEARS | , AND AN | INUAL NO | N- | |-----------|---------|---------|-------|---------------------------------|------------------------------|-------------------------|--------------------------|----------|--------------------------------------|-----------|----------|----------|-----------| | MONTH | (CFS) | (CFS) | (CFS) | (CFS) | ATION | RUNOFF | TIVE
DAYS) | 2
50% | 5
20 % | 10
10% | 20
5% | 50
2% | 100
1% | | OCTOBER | 20 | 1293 | 201 | 282 | 1.40 | 1.9 | 1 | 13 | 8.6 | 6.6 | 5.2 | 3.9 | 3.1 | | NOVEMBER | 34 | 3408 | 1042 | 830 | .80 | 9.7 | 3 | 19 | 14 | 11 | 9.1- | 7.2 | 6.0 | | DECEMBER | 69 | 5688 | 2123 | 1337 | .63 | 19.7 | 7 | 23 | 17 | 14 | 12 | 10 | 9.1 | | JANUARY | 102 | 4214 | 2276 | 1233 | .54 | 21.1 | 14 | 24 | 18 | 16 | 14 | 12 | 10 | | FEBRUARY | 108 | 4872 | 1845 | 917 | .50 | 17.1 | 30 | 28 | 21 | 18 | 15 | 13 | 11 | | MARCH | 358 | 3020 | 1447 | 730 | .50 | 13.4 | 60 | 35 | 26 | 22 | 19 | 17 | 15 | | APRIL | 280 | 2137 | 914 | 438 | . 48 | 8.5 | 90 | 42 | 30 | 26 | 23 | 20 | 19 | | MAY | 174 | 1598 | 537 | 299 | • 56 | 5.0 | 120 | 56 | 41 | 34 | 30 | 26 | 24 | | JUNE | 84 | 586 | 228 | 107 | .47 | 2.1 | 183 | 133 | 94 | 78 | 66 | 55 | 49 | | JULY | 38 | 227 | 84 | 38 | . 45 | .8 | | | | | | | | | AUGUST | 16 | 103 | 40 | 17 | .42 | .4 | | | | | | | | | SEPTEMBER | 18 | 157 | 49 | 33 | .68 | .5 | | | | | | | | | ANNUAL | 244 | 1512 | 896 | 263 | . 29 | 100 | | | | | | | | MAGNITUDE AND PROBABILITY OF INSTANTANEOUS PEAK FLOW BASED ON PERIOD OF RECORD 1941-81 MAGNITUDE AND PROBABILITY OF ANNUAL HIGH FLOW BASED ON PERIOD OF RECORD 1941-81 | | ,
IN CFS | | | | | | PERIOD
(CON- | DISC | INTER | VAL, ÍN ' | OR INDICA
YEARS, AI
ABILITY. | ND ANNUA | Ĺ | |-------------|--------------|----------|-----------|----------|------------------|-----------|------------------------|----------|----------|-----------|------------------------------------|----------|-------| | 1.25
80% | 2
50%
 | 5
20% | 10
10% | 25
4% | 50
2 % | 100
1% | SECU-
TIVE
DAYS) | 2
50% | 5
20% | 10
10% | 25
4% | 50
2% | 100 | | 7370 | 12300 | 19800 | 25000 | 31700 | 36700 | 41800 | | | | | | | | | | | | | | | | 1 | 11300 | 17200 | 20900 | 25200 | 28100 | 30900 | | WEIGHTE | D SKEW = | 278 | | | | | 3 | 9350 | 13400 | 15700 | 18100 | 19600 | 20900 | | | | | | | | | 7 | 6770 | 9340 | 10700 | 12200 | 13100 | 13800 | | | | | | | | | 15 | 4710 | 6240 | 7010 | 7760 | 8200 | 8570 | | | | | | | | | 30 | 3570 | 4510 | 4910 | 5250 | 5420 | 5550 | | | | | | | | | 60 | 2740 | 3550 | 3940 | 4300 | 4510 | 4670 | | | | | | | | | 90 | 2370 | 3050 | 3380 | 3690 | 3870 | 4010 | DURATION TABLE OF DAILY MEAN FLOW FOR PERIOD OF RECORD 1941-81 | | | DISC | HARGE, | IN CFS, | WHICH WAS | EQUALED | OR EXCE | EDED FOR | INDICATED | PERCENT | OF TIME | | | | |------|------|------|--------|---------|-----------|---------|---------|----------|-----------|---------|---------|-----|-----|-----| | 5% | 10% | 15% | 20% | 25% | 30% | 40% | 50% | 60% | 70% | 75% | 80% | 85% | 90% | 95% | | 3800 | 2380 | 1700 | 1270 | 1000 | 808 | 552 | 347 | 195 | 101 | 74 | 55 | 41 | 32 | 24 | #### 14174000 WILLAMETTE RIVER AT ALBANY, OR LOCATION.--Lat 44°38'20", long 123°06'20", in SW¼ sec.6, T.11 S., R.3 W., Linn County, Hydrologic Unit 17090003, on right bank 5 ft upstream from bridge on U.S. Highway 20 (Ellsworth Street) in Albany, 0.2 mi downstream from Calapooia River, and at mile 119.31. DRAINAGE AREA.--4,840 mi², approximately. PERIOD OF RECORD.--November 1878 to April 1888 (fragmentary), January to June 1892, November 1892 to September 1894, December 1894 to September 1982. Monthly discharge only for some periods, published in WSP 1318. GAGE.--Water-stage recorder. Datum of gage is 167.18 ft National Geodetic Vertical Datum of 1929. Prior to Sept. 27, 1906, nonrecording gage at site 0.2 mi upstream at datum 5.00 ft higher. Sept. 27, 1906, to Nov. 12, 1934, nonrecording gage at site 300 ft upstream at datum 5.00 ft higher. Nov. 14, 1934, to Sept. 30, 1962, at datum 5.00 ft higher. REMARKS.--Flow regulated by nine reservoirs above station. Albany power canal diverts water from South Santiam River at Lebanon and discharges into Calapooia River near mouth; small diversions for irrigation and municipal water supply. AVERAGE DISCHARGE.--88 years (water years 1894, 1896-82), $14,470 \text{ ft}^3/\text{s}$, 40.60 in/yr, 10,480,000 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 266,000 ft³/s Jan. 14, 1881, gage height, 37.8 ft, present datum; minimum, 1,840 ft³/s Sept. 1, 2, 1940. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of Dec. 4, 1861, reached a stage of 41.0 ft, discharge, 340,000 ft³/s, from rating curve extended above 220,000 ft³/s. Flood of Feb. 4, 1890, reached a stage of 38.9 ft, discharge, 291,000 ft³/s. #### STATISTICAL SUMMARIES (BEFORE THE CONSTRUCTION OF NINE RESERVOIRS) MONTHLY AND ANNUAL MEAN DISCHARGES 1894-41 MA MAGNITUDE AND PROBABILITY OF ANNUAL LOW FLOW BASED ON PERIOD OF RECORD 1896-41 | | MINIMA | MANTHUM | MEAN | STAN-
DARD
DEVIA- | COEFFI-
CIENT OF
VARI- | PERCENT
OF | PERIOD
(CON-
SECU- | DISCH | INTERVAL | ., IN YEA | OR INDICA
NRS, AND
NBILITY, | ANNUAL N | ION- | |-----------|--------|------------------|---------------|-------------------------|------------------------------|------------------|--------------------------|----------|----------|-----------|-----------------------------------|----------|-----------| | MONTH | (CFS) | MAXIMUM
(CFS) | MEAN
(CFS) | TION
(CFS) | ATION | ANNUAL
RUNOFF | TIVE
DAYS) | 2
50% | 5
20% | 10
10% | 20
5% | 50
2% | 100
1% | | OCTOBER | 2313 | 16410 | 4419 | 2671 | .60 | 2.7 | 1 | 2590 | 2260 | 2110 | 1990 | 1870 | 1790 | | NOVEMBER | 2242 | 42920 | 13500 | 9776 | .72 | 8.2 | 3 | 2610 | 2270 | 2120 | 2000 | 1880 | 1810 | | DECEMBER | 4999 | 40990 | 20790 | 9531 | .46 | 12.6 | 7 | 2630 | 2290 | 2140 | 2020 | 1900 | 1820 | | JANUARY | 6613 | 54370 | 27190 | 12430 | .46 | 16.5 | 14 | 2670 | 2330 | 2180 | 2080 | 1970 | 1910 | | FEBRUARY | 8541 | 50050 | 25020 | 11330 | .45 | 15.2 | 30 | 2780 | 2430 | 2270 | 2160 | 2040 | 1970 | | MARCH | 6855 | 51030 | 21700 | 9764 | .45 | 13.1 | 60 | 2940 | 2540 | 2370 | 2260 | 2140 | 2070 | | APRIL | 7067 | 38020 | 18000 | 7122 | .40 | 10.9 | 90 | 3170 | 2690 | 2480 | 2330 | 2180 | 2090 | | MAY | 5971 | 28950 | 13110 | 4713 | .36 | 7.9 | 120 | 3450 | 2860 | 2620 | 2450 | 2290 | 2190 | | JUNE | 3316 | 22680 | 9581 | 4349 | .45 | 5.8 | 183 | 5070 | 3950 | 3490 | 3160 | 2830 | 2640 | | JULY | 2497 | 10780 | 5205 | 2019 | .39 | 3.2 | | | | | | | | | AUGUST | 2034 | 5771 | 3312 | 776 | .23 | 2.0 | | | | | | | | | SEPTEMBER | 2153 | 6604 | 3308 | 898 | .27 | 2.0 | | | | | | | | | ANNUAL | 7983 | 18870 | 13530 | 3128 | .23 | 100 | | | | | | | | MAGNITUDE AND PROBABILITY OF INSTANTANEOUS PEAK FLOW BASED ON PERIOD OF RECORD 1896-41 MAGNITUDE AND PROBABILITY OF ANNUAL HIGH FLOW BASED ON PERIOD OF RECORD 1896-41 | YEARS, | AND ANN | S, FOR II | EDANCE P | ROBABILI | TY, IN P | | PERIOD
(CON- | DISC | INTER | N CFS, F
WAL, IN
NCE PROB | YEARS, A | ND ANNUA | L | |-----------------|--------------|--------------|-----------|--------------|--------------|---------------|------------------------|----------|----------|---------------------------------|----------|----------|-----------| | 1.25
80%
 | 2
50%
 | 5
20%
 | 10
10% | 25
4%
 | 50
2%
 | 100
1%
 | SECU-
TIVE
DAYS) | 2
50% | 5
20% | 10
10% | 25
4% | 50
2% | 100
1% | | 70800 | 104000 | 153000 | 187000 | 234000 | 270000 | 307000 | | | | | | | | | | | | | | | | 1 | 98300 | 143000 | 174000 | 215000 | 246000 | 278000 | | EIGHTE | D SKEW | = .059 | | | | | 3 | 87100 | 123000 | 146000 | 175000 | 197000 | 217000 | | | | | | | | | 7 | 68700 | 92000 | 106000 | 122000 | 133000 | 143000 | | | | | | | | | 15 | 51400 | 66200 | 74500 | 83800 | 89900 | 95500 | | | | | | | | | 30 | 39400 | 49000 | 54000 | 59400 | 62800 | 65700 | | | | | | | | | 60 | 31400 | 38600 | 42600 | 46800 | 49500 | 52000 | | | | | | | | | 90 | 27500 | 33600 | 36800 | 40300 | 42500 | 44400 | DURATION TABLE OF DAILY MEAN FLOW FOR PERIOD OF RECORD 1896-41 | | | DIS | CHARGE, | IN CFS, | WHICH WAS | EQUALED | OR EXCE | EDED FOR | INDICATE | D PERCEN | T OF TIM | ME | | | |-------|-------|-------|---------|---------|-----------|---------|---------|----------|----------|----------|----------|------|------|------| | 5% | 10% | 15% | 20% | 25% | 30% | 40% | 50% | 60% | 70% | 75% | 80% | 85% | 90% | 95% | | 40200 | 28800 | 23500 | 19800 | 17300 | 15200 | 12000 | 9250 | 6630 | 4490 | 3870 | 3510 | 3190 | 2890 | 2540 | ### 14174000 WILLAMETTE RIVER AT ALBANY, OR--Continued #### STATISTICAL SUMMARIES (AFTER THE COMPLETION OF NINE RESERVOIRS) MONTHLY AND ANNUAL MEAN DISCHARGES 1969-82 MAGNITUDE AND PROBABILITY OF ANNUAL LOW FLOW BASED ON PERIOD OF RECORD 1970-82 | | | MANIMINA | MCAN | STAN-
DARD
DEVIA- | COEFFI-
CIENT OF | OF | PERIOD
(CON- | DISC | INTERVA | L, IN YE | OR INDICA
ARS, AND
ABILITY, | ANNUAL N | ON- | |-------------------------|---|-----------------------------------|------------------|--|-------------------------------------|------------------|--|--|--|---|---|--|--------------| | МОМТН | (CFS) | MAXIMUM
(CFS) | MEAN
(CFS) | TION
(CFS) | VARI-
ATION | ANNUAL
RUNOFF | SECU-
TIVE
DAYS) | 2
50% | 5
20 % | 10
10% | 20
5% | 50
2% | 100
1% | | OCTOBER | 7454 | 11430 | 9144 | 1191 | .13 | 5.1 | 1 | 4580 | 3800 | 3340 | 2940 | | | | NOVEMBER | 7131 | 39540 | 16600 | 9035 | .54 | 9.2 | 3 | 4680 | 3880 | 3390 | 2980 | | | | DECEMBER | 4150 | 55390 | 32600 | 14980 | .46 | 18.1 | 7 | 4770 | 3940 | 3460 | 3050 | | | | JANUARY | 3901 | 45070 | 31320 | 13550 | . 43 | 17.4 | 14 | 4860 | 4030 | 3560 | 3160 | | | | FEBRUARY | 3208 | 34190 | 20810 | 9616 | .46 | 11.6 | 30 | 4950 | 4170 | 3730 | 3350 | | | | 1ARCH | 6807 | 43270 | 18100 | 10470 | .58 | 10.1 | 60 | 5160 | 4380 | 3990 | 3690 | | | | APRIL | 5630 | 23520 | 13960 | 5671 | .41 | 7.8 | 90 | 5520 | 4640 | 4210 | 3870 | | | | MAY | 4733 | 14810 | 10610 | 3174 | .30 | 5.9 | 120 | 6030 | 5130 | 4700 | 4380 | | | | JUNE | 4281 | 13360 | 8168 | 2878 | .35 | 4.5 | 183 | 7100 | 6050 | 5550 | 5170 | | | | JULY | 4084 | 7333 | 5385 | 963 | .18 | 3.0 | | | | | | | | | AUGUST | 4778 | 7313 | 5672 | 747 | .13 | 3.2 | | | | | | | | | SEPTEMBER | 5245 | 8985 | 7272 | 1107 | .15 | 4.0 | | | | | | | | | ANNUAL | 5831 | 22550 | 14960 | 4656 | .31 | 100 | | | | | | | | | DISCHARGE, | BASE
IN CFS, | D ON PERI | OD OF RE | CORD | OUS PEAK F | | | BASI | ARGE, I | RIOD OF
N CFS, F | OF ANNUA RECORD 1 OR INDICA | 969-82

TED RECU | | | OISCHARGE, | BASE
IN CFS, | D ON PERI | OD OF RE | CORD | INTERVAL
IN PERCEI | | PERIOD
(CON-
SECU- | BASI | HARGE, I | RIOD OF
N CFS, F | RECORD 1 | 969-82
TED RECUID ANNUAL |
RRENCE | | ISCHARGE,
YEARS, A | BASE
IN CFS, | FOR INDI | OD OF RE | CORD
CURRENCE |
INTERVAL
IN PERCEI | , IN
VT | PERIOD
(CON- | BASI | HARGE, I | RIOD OF
N CFS, F | RECORD 1

OR INDICA
YEARS, AN | 969-82
TED RECUID ANNUAL | RRENCE
NT | | OISCHARGE,
YEARS, A | BASE
, IN CFS,
AND ANNUA | FOR INDI
L EXCEEDA | OD OF RE | CORD
CURRENCE
IABILITY, | INTERVAL
IN PERCEI | , IN
NT
 | PERIOD
(CON-
SECU-
TIVE
DAYS) | DISC | HARGE, I
INTER
EXCEEDA | N CFS, F
VAL, IN
NCE PROB | RECORD 1 OR INDICA YEARS, AN ABILITY, 25 4% | 969-82 TED RECUI D ANNUAL IN PERCEI | RRENCE
NT | | 1.25
80% | BASE , IN CFS, AND ANNUA 2 50% | FOR INDI
L EXCEEDA | OD OF RE | CORD
CURRENCE
IABILITY, | INTERVAL
IN PERCEI | , IN
NT
 | PERIOD (CON- SECU- TIVE DAYS) | DISCI 2 50% | HARGE, II INTER EXCEEDA 5 20% | N CFS, F
VAL, IN
NCE PROB
10
10% | RECORD 1 OR INDICA YEARS, AN ABILITY, 25 4% | 969-82 TED RECUID ANNUAL IN PERCEI | RRENCE | | OISCHARGE,
YEARS, A | BASE , IN CFS, AND ANNUA 2 50% | FOR INDI
L EXCEEDA | OD OF RE | CORD
CURRENCE
IABILITY, | INTERVAL
IN PERCEI | , IN
NT
 | PERIOD (CON- SECU- TIVE DAYS) | DISCI | HARGE, II
INTER
EXCEEDA
5
20%
94800
88100 | N CFS, F
VAL, IN
NCE PROB
10
10% | RECORD 1 OR INDICA YEARS, AN ABILITY, 25 4% 105000 95400 | 969-82
ITED RECUI
ID ANNUAL
IN PERCEI
50
2% | RRENCE | | 1.25
80% | BASE , IN CFS, AND ANNUA 2 50% | FOR INDI
L EXCEEDA | OD OF RE | CORD
CURRENCE
IABILITY, | INTERVAL
IN PERCEI | , IN
NT
 | PERIOD (CON- SECU- TIVE DAYS) 1 3 7 | DISCI 2 50% 74800 70900 63700 | HARGE, II
INTER'
EXCEEDA
5
20%
94800
88100
75700 | N CFS, F
VAL, IN
NCE PROB
10
10% | RECORD 1 | 969-82 TED RECUID ANNUAL IN PERCEI | RRENCE | | 1.25
80% | BASE , IN CFS, AND ANNUA 2 50% | FOR INDI
L EXCEEDA | OD OF RE | CORD
CURRENCE
IABILITY, | INTERVAL
IN PERCEI | , IN
NT
 | PERIOD (CON-
SECU-
TIVE DAYS) | DISCI
2
50%
74800
70900
63700
54100 | HARGE, I INTER EXCEEDA 5 20% 94800 88100 75700 64900 | N CFS, F
VAL, IN
NCE PROB
10
10%
101000
92800
78200
67200 | RECORD 1 | 969-82 ITED RECUID ANNUAL IN PERCEI | 100
1% | | 1.25
80% | BASE , IN CFS, AND ANNUA 2 50% | FOR INDI
L EXCEEDA | OD OF RE | CORD
CURRENCE
IABILITY, | INTERVAL
IN PERCEI | , IN
NT
 | PERIOD (CON- SECU- TIVE DAYS) 1 3 7 15 | DISCI
2
50%
74800
70900
63700
54100
45100 | HARGE, I: INTER: EXCEEDA 5 20% 94800 88100 75700 53900 | N CFS, F
VAL, IN
NCE PROB
10
10
10
92800
78200
57200
55700 | OR INDICA YEARS, AN ABILITY, 25 4% 105000 95400 79200 68100 56500 | 969-82 TED RECUID ANNUAL IN PERCEI 50 2% | RRENCE | | 1.25
80% | BASE , IN CFS, AND ANNUA 2 50% | FOR INDI
L EXCEEDA | OD OF RE | CORD
CURRENCE
IABILITY, | INTERVAL
IN PERCEI | , IN
NT
 | PERIOD (CON-
SECU-
TIVE DAYS) | DISCI
2
50%
74800
70900
63700
54100 | HARGE, I INTER EXCEEDA 5 20% 94800 88100 75700 64900 | N CFS, F
VAL, IN
NCE PROB
10
10%
101000
92800
78200
67200 | RECORD 1 | 969-82 ITED RECUID ANNUAL IN PERCEI | 100
1% | | 1.25
80% | BASE , IN CFS, AND ANNUA 2 50% | FOR INDI
L EXCEEDA
5
20% | CATED RENCE PROB | CORD CURRENCE ABILITY, 25 4\$ N TABLE | INTERVAL
IN PERCEI
50
2% | , IN 100 1% | PERIOD (CON- SECU- TIVE DAYS) 1 3 7 15 30 60 90 | DISCI
2
50%
74800
70900
63700
54100
45100
36300
0F RECC | HARGE, I: INTER: EXCEDA: 5 20\$ 94800 88100 75700 64900 53900 46500 41100 DRD 1969 | N CFS, F VAL, IN NCE PROB 10 10% 10% 78200 67200 55700 49800 44600 -82 | OR INDICA YEARS, AN ABILITY, 25 4% 105000 95400 79200 68100 56500 51900 47100 | 969-82 TED RECUID ANNUAL IN PERCEI 50 2% | 100
1% | | 1.25
80%
WEIGHTED | BASE , IN CFS, AND ANNUA 2 50%) SKEW = | FOR INDI
L EXCEEDA
5
20% | CATED RENCE PROB | CCURRENCE LABILITY, 25 4% N TABLE CFS, WHI | INTERVAL IN PERCEI 50 2% OF DAILY I | JALED OR E | PERIOD (CON- SECU- TIVE DAYS) 1 3 7 15 30 60 90 FOR PERIOD | 74800
70900
63700
54100
36300
31400
OF RECC | HARGE, I: INTER: EXCEDA: 5 20\$ 94800 88100 75700 64900 53900 46500 41100 DRD 1969 | N CFS, F VAL, IN NCE PROB 10 10% 10% 78200 67200 55700 49800 44600 -82 | OR INDICA YEARS, AN ABILITY, 25 4% 105000 95400 79200 68100 56500 51900 47100 | 969-82 TED RECUID ANNUAL IN PERCEI 50 2% | 100
1% | | 1.25
80% | BASE , IN CFS, AND ANNUA 2 50% | FOR INDI
L EXCEEDA
5
20% | CATED RENCE PROB | CORD CURRENCE ABILITY, 25 4\$ N TABLE | INTERVAL IN PERCEI 50 2% OF DAILY I | , IN 100 1% | PERIOD (CON- SECU- TIVE DAYS) 1 3 7 15 30 60 90 FOR PERIOD | DISCI
2
50%
74800
70900
63700
54100
45100
36300
0F RECC | HARGE, I: INTER: EXCEDA: 5 20\$ 94800 88100 75700 64900 53900 46500 41100 DRD 1969 | N CFS, F VAL, IN NCE PROB 10 10% 10% 78200 67200 55700 49800 44600 -82 | OR INDICA YEARS, AN ABILITY, 25 4% 105000 95400 79200 68100 56500 51900 47100 | 969-82 TED RECUID ANNUAL IN PERCEI 50 2% | 100
18 | #### 14178000 NORTH SANTIAM RIVER BELOW BOULDER CREEK, NEAR DETROIT, OR LOCATION.--Lat 44°42'25", long 122°06'00", in SE¼NW¼ sec.17, T.10 S., R.6 E., Marion County, Hydrologic Unit 17090005, on right bank 0.5 mi downstream from Boulder Creek, 3.0 mi southeast of Detroit, and at mile 70.7. DRAINAGE AREA. -- 216 mi². PERIOD OF RECORD.--January 1907 to October 1909, October 1928 to September 1982. Monthly discharge only January 1907, published in WSP 1318. Prior to October 1952, published as "at Detroit." GAGE.--Water-stage recorder. Datum of gage is 1,590.07 ft National Geodetic Vertical Datum of 1929. See WSP 1738 for history of changes prior to Oct. 1, 1952. REMARKS.--No regulation or diversion above station. AVERAGE DISCHARGE. -- 56 years, 1,005 ft3/s, 63.18 in/yr, 728,100 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.—-Maximum discharge, 26,700 ft³/s Dec. 22, 1964, gage height, 13.76 ft, temporary backwater from debris, from rating curve extended above 6,600 ft³/s on basis of slope-area measurement of peak flow; minimum, 250 ft³/s Sept. 13, 1909. #### STATISTICAL SUMMARIES | MONTHLY AND ANNUAL MEAN DISCHARGES | 1908-82 | MAGNITUDE AND PROBABILITY OF ANNUAL LOW FLOW | |------------------------------------|---------|--| | | | BASED ON PERIOD OF RECORD 1909-82 | | | MININUM | MAXIMUM | MEAN | STAN-
DARD
DEVIA-
TION | COEFFI-
CIENT OF
VARI- | PERCENT
OF
ANNUAL | PERIOD
(CON-
SECU- | | INTERVAL | CFS, FOI
, IN YEAL
CE PROBA | RS, AND | ANNUAL N | ON- | |-----------|---------|---------|-------|---------------------------------|------------------------------|-------------------------|--------------------------|----------|----------|-----------------------------------|----------|----------|-----------| | MONTH | (CFS) | (CFS) | (CFS) | (CFS) | ATION | RUNOFF | TIVE
DAYS) | 2
50% | 5
20% | 10
10% | 20
5% | 50
2% | 100
1% | | OCTOBER | 312 | 1215 | 515 | 184 | .36 | 4.3 | 1 | 381 | 338 | 319 | 304 | 288 | 279 | | NOVEMBER | 336 | 2167 | 956 | 465 | .49 | 7.9 | 3 | 383 | 339 | 320 | 304 | 289 | 279 | | DECEMBER | 432 | 3840 | 1408 | 734 | .52 | 11.6 | 7 | 386 | 342 | 322 | 306 | 290 | 280 | | JANUARY | 383 | 2991 | 1306 | 602 | .46 | 10.8 | 14 | 393 | 348 | 327 | 310 | 294 | 283 | | FEBRUARY | 404 | 2816 | 1257 | 542 | .43 | 10.4 | 30 | 405 | 357 | 335 | 319 | 301 | 290 | | MARCH | 616 | 2865 | 1143 | 396 | . 35 | 9.5 | 60 | 422 | 371 | 348 | 330 | 311 | 300 | | APRIL | 610 | 2137 | 1338 | 350 | .26 | 11.1 | 90 | 442 | 385 | 359 | 339 | 319 | 306 | | MAY | 701 | 2762 | 1468 | 474 | .32 | 12.1 | 120 | 470 | 405 | 377 | 356 | 336 | 323 | | JUNE | 441 | 2759 | 1139 | 503 | .44 | 9.4 | 183 | 599 | 491 | 446 | 414 | 383 | 364 | | JULY | 375 | 1101 | 640 | 178 | .28 | 5.3 | | | | | | | | | AUGUST | 326 | 663 | 477 | 84 | .18 | 3.9 | | | | | | | | | SEPTEMBER | 309 | 595 | 441 | 68 | . 15 | 3.6 | | | | | | | | | ANNUAL | 569 | 1506 | 1006 | 203 | .20 | 100 | | | | | | | | MAGNITUDE AND PROBABILITY OF INSTANTANEOUS PEAK FLOW BASED ON PERIOD OF RECORD 1908-82 #### MAGNITUDE AND PROBABILITY OF ANNUAL HIGH FLOW BASED ON PERIOD OF RECORD 1908-82 | OISCHARGE,
YEARS, AI | | | | | | | PERIOD
(CON- | | INTER | VAL, IN | OR INDIC/
YEARS, AI
ABILITY. | ND ANNUA | _ | |-------------------------|--------------|--------------|-----------|----------|----------|-----------|------------------------|----------|----------|-----------|------------------------------------|----------|-------| | 1.25
80%
 | 2
50%
 | 5
20%
 | 10
10% | 25
4% | 50
2% | 100
1% | SECU-
TIVE
DAYS) | 2
50% | 5
20% | 10
10% | 25
4% | 50
2% | 100 | | 4970 | 7580 | 11700 | 14600 | 18700 | 22000 | 25400 | | | | | | | | | | | | | | | | • 1 | 6100 | 9060 | 11000 | 13500 | 15300 | 17000 | | WEIGHTED | SKEW = | .062 | | | | | 3 | 4860 | 7130 | 8680 | 10700 | 12200 | 13700 | | | | | | | | | 7 | 3710 | 5110 | 5990 | 7040 | 7780 | 8500 | | | | | | | | | 15 | 2820 | 3630 | 4100 | 4630 | 4980 | 5300 | | | | | | | | | 30 | 2260 | 2800 | 3090 | 3400 | 3600 | 3780 | | | | | | | | | 60 | 1870 | 2250 | 2460 | 2670 | 2810 | 2930 | | | | | | | | | 90 | 1680 | 1990 | 2140 | 2300 | 2400 | 2480 | DURATION TABLE OF DAILY MEAN FLOW FOR PERIOD OF RECORD 1908-82 | | | DISC | HARGE, | IN CFS, | WHICH WAS | EQUALED | OR EXCE | EDED FOR | INDICATED | PERCENT | OF TIME | ====== | | | |------|------|------|--------|---------|-----------|---------|---------|----------|-----------|---------|---------|--------|-----|-----| | 5% | 10% | 15% | 20% | 25% | 30% | 40% | 50% | 60% | 70% | 75% | 80% | 85% | 90% | 95% | | 2320 | 1820 | 1580 | 1390 | 1240 | 1120 | 939 | 784 | 654 | 547 | 509 | 473 | 440 | 406 | 369 | ## WILLAMETTE RIVER BASIN 14179000 BREITENBUSH RIVER ABOVE CANYON CREEK, NEAR DETROIT, OR LOCATION.--Lat 44°45'10", long
122°07'40", in SE±NE± sec.36, T.9 S., R.5 E., Marion County, Hydrologic Unit 17090005, in Willamette National Forest, on left bank 600 ft upstream from Canyon Creek, 1.5 mi northeast of Detroit, and at mile 2.0. DRAINAGE AREA .-- 106 mi2. ANNUAL 276 PERIOD OF RECORD. -- June 1932 to September 1982. Monthly discharge only June 1932, published in WSP 1318. Prior to October 1952, published as "above French Creek, near Detroit." GAGE.--Water-stage recorder. Datum of gage is 1,573.95 ft National Geodetic Vertical Datum of 1929. Prior to Oct. 1, 1952, at site 0.2 mi downstream at datum 13.46 ft lower. REMARKS. -- No regulation or diversion above station. AVERAGE DISCHARGE. -- 50 years, 577 ft3/s, 73.92 in/yr, 418,000 acre-ft/yr. MONTHLY AND ANNUAL MEAN DISCHARGES 1933-82 EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 16,900 ft3/s Dec. 22, 1964, gage height, 14.55 ft; minimum, 87 ft3/s Sept. 2, 1940. STATISTICAL SUMMARIES DISCHARGE, IN CFS, FOR INDICATED RECURRENCE INTERVAL, IN YEARS, AND ANNUAL NON-STAN-COEFFI-PERIOD DARD PERCENT CIENT OF EXCEEDANCE PROBABILITY, IN PERCENT DEVIA-OF (CON-MINIMUM MAXIMUM ANNUAL MEAN TION VARI-SECU-MONTH (CFS) (CFS) (CFS) (CFS) ATION RUNOFF TIVE DAYS) 50% 20% 10% 5% 2% 1% OCTOBER 119 104 827 261 164 .63 3.8 104 97 92 87 84 NOVEMBER 106 1504 648 374 .58 9.3 3 120 105 QR 93 87 84 DECEMBER 2385 7 163 942 519 .55 13.6 122 106 99 94 RR 25 JANUARY 848 142 2135 460 -54 12.2 14 126 109 102 96 90 87 FEBRUARY 393 .50 91 176 788 1867 11.4 30 132 114 106 100 94 MARCH 289 1874 263 . 39 60 122 113 106 99 666 9.6 143 APRIL 295 1280 .32 790 11.4 90 159 132 120 111 103 98 MAY 344 1627 800 282 .35 11.5 120 184 146 131 109 102 JUNE 202 1565 581 270 .48 8.4 183 279 214 187 167 148 137 JULY 129 532 286 107 . 37 4.1 AUGUST 264 .25 2.5 98 172 42 SEPTEMBER 104 267 158 38 .24 2.3 MAGNITUDE AND PROBABILITY OF INSTANTANEOUS PEAK FLOW BASED ON PERIOD OF RECORD 1933-82 577 129 .22 100 892 MAGNITUDE AND PROBABILITY OF ANNUAL HIGH FLOW BASED ON PERIOD OF RECORD 1933-82 MAGNITUDE AND PROBABILITY OF ANNUAL LOW FLOW BASED ON PERIOD OF RECORD 1934-82 Q 1 | SCHARGE,
YEARS, AM | | | | | | | PERIOD
(CON- | | INTERV | I CFS, FO
'AL, IN Y
ICE PROBA | EARS, A | ND ANNUAL | _ | |-----------------------|----------|------------------|-----------|----------|----------|-----------|------------------------|----------|---------------|-------------------------------------|----------|------------------|-----------| | 1.25
80% | 2
50% | 5
20 % | 10
10% | 25
4% | 50
2% | 100
1% | SECU-
TIVE
Days) | 2
50% | 5
20% | 10
10% | 25
4% | 50
2 % | 100
1% | | 4450 | 6320 | 9040 | 10900 | 13400 | 15400 | 17300 | | | | | | | | | | | | | | | | 1 | 4980 | 7020 | 8230 | 9610 | 10500 | 11400 | | WEIGHTED | SKEW = | .072 | | | | | 3 | 3690 | 5240 | 6240 | 7450 | 8320 | 9170 | | | | | | | | | 7 | 2660 | 3 65 0 | 4240 | 4930 | 5400 | 5840 | | | | | | | | | 15 | 1940 | 2550 | 2880 | 3240 | 3480 | 3680 | | | | | | | | | 30 | 1510 | 1930 | 2150 | 2380 | 2530 | 2660 | | | | | | | | | 60 | 1200 | 1490 | 1640 | 1790 | 1890 | 1980 | | | | | | | | | 90 | 1080 | 1310 | 1420 | 1530 | 1600 | 1660 | DURATION TABLE OF DAILY MEAN FLOW FOR PERIOD OF RECORD 1933-82 | | | DISC | HARGE, I | N CFS, | WHICH WAS | EQUALED | OR EXCE | EDED FOR | INDICAT | D PERCE | NT OF TI | ME | | | |------|------|------|----------|--------|-----------|---------|---------|----------|---------|---------|----------|-----|-----|-----| | 5% | 10% | 15% | 20% | 25% | 30% | 40% | 50% | 60% | 70% | 75% | 80% | 85% | 90% | 95% | | 1560 | 1160 | 956 | 822 | 725 | 644 | 512 | 408 | 322 | 241 | 205 | 177 | 155 | 138 | 122 | #### 14181500 NORTH SANTIAM RIVER AT NIAGARA, OR LOCATION.--Lat 44°45'10", long 122°17'50", in NE±NE± sec.34, T.9 S., R.4 E., Linn County, Hydrologic Unit 17090005, on left bank 0.1 mi downstream from Little Sardine Creek, 0.8 mi downstream from Big Cliff Dam, 2.1 mi east of Niagara, and at mile 57.3. DRAINAGE AREA .-- 453 mi2. PERIOD OF RECORD.—December 1908 to January 1920, October 1921 to March 1922, October 1938 to September 1982. Monthly discharge only for some periods, published in WSP 1318. Published as "North Fork of Santiam River near Niagara" prior to October 1913, and as "above Mayflower Creek, near Detroit" October 1938 to September 1952. GAGE.--Water-stage recorder. Datum of gage is 1,093.78 ft National Geodetic Vertical Datum of 1929 (Bureau of Public Roads bench mark). See WSP 1738 for history of changes prior to Oct. 1, 1952. REMARKS.--Flow regulated since 1953 by Detroit Lake and Big Cliff Reservoir, usable capacity for reregulating purposes, 2,930 acre-ft. No diversion above station. AVERAGE DISCHARGE.--54 years (water years 1910-19, 1939-82), 2,335 ft³/s, 70.00 in/yr, 1,692,000 acre-ft/yr, adjusted for storage. EXTREMES FOR PERIOD OF RECORD. -- Maximum discharge, 63,200 ft³/s Nov. 22, 1909, gage height, 16.4 ft, from floodmark, site and datum then in use, from rating curve extended above 35,000 ft³/s; minimum, 19 ft³/s Aug. 21, 1963; minimum daily, 395 ft³/s Mar. 25, 26, 1977 #### STATISTICAL SUMMARIES (BEFORE THE CONSTRUCTION OF DETROIT AND BIG CLIFF DAMS) MONTHLY AND ANNUAL MEAN DISCHARGES 1912-52 MAGNITUDE AND PROBABILITY OF ANNUAL LOW FLOW BASED ON PERIOD OF RECORD 1913-52 | | MINIMUM | MAXIMUM | MEAN | STAN-
DARD
DEVIA-
TION | COEFFI-
CIENT OF
VARI- | PERCENT
OF
ANNUAL | PERIOD
(CON-
SECU- | | INTERVAL | , IN YEA | R INDICAT
RS, AND A
BILITY, I | NNUAL N | ON- | |-----------|---------|---------|-------|---------------------------------|------------------------------|-------------------------|--------------------------|----------|----------|-----------|-------------------------------------|----------|-----------| | MONTH | (CFS) | (CFS) | (CFS) | (CFS) | ATION | RUNOFF | TIVE
DAYS) | 2
50% | 5
20% | 10
10% | 20
5% | 50
2% | 100
1% | | OCTOBER | 491 | 2920 | 1153 | 717 | .62 | 4.2 | 1 | 557 | 479 | 443 | 415 | | | | NOVEMBER | 511 | 5225 | 2654 | 1331 | .50 | 9.8 | 3 | 560 | 483 | 446 | 417 | | | | DECEMBER | 955 | 9568 | 3238 | 2031 | .63 | 11.9 | 7 | 567 | 488 | 452 | 424 | | | | IANUARY | 1057 | 6577 | 2950 | 1424 | .48 | 10.9 | 14 | 581 | 501 | 463 | 434 | | | | EBRUARY | 1455 | 6078 | 3186 | 1171 | •37 | 11.7 | 30 | 606 | 518 | 478 | 448 | | | | MARCH | 1225 | 5348 | 2657 | 925 | .35 | 9.8 | 60 | 648 | 542 | 499 | 469 | | | | PRIL | 1180 | 5257 | 3181 | 1056 | .33 | 11.7 | 90 | 723 | 582 | 522 | 477 | | | | 4AY | 1394 | 5694 | 3127 | 1230 | •39 | 11.5 | 120 | 827 | 640 | 559 | 500 | | | | UNE | 721 | 6101 | 2283 | 1238 | .54 | 8.4 | 183 | 1210 | 905 | 772 | 676 | | | | JULY | 547 | 3177 | 1238 | 657 | .53 | 4.6 | | | | | | | | | AUGUST | 461 | 1281 | 761 | 211 | .28 | 2.8 | | | | | | | | | SEPTEMBER | 502 | 1278 | 737 | 219 | .30 | 2.7 | | | | | | | | | ANNUAL | 1336 | 3458 | 2258 | 541 | .24 | 100 | | | | | | | | MAGNITUDE AND PROBABILITY OF INSTANTANEOUS PEAK FLOW BASED ON PERIOD OF RECORD 1912-52 MAGNITUDE AND PROBABILITY OF ANNUAL HIGH FLOW BASED ON PERIOD OF RECORD 1912-52 | | • | | | RECURRENC
ROBABILITY | | | PERIOD
(CON- | DISC | INTER | VAL, IN | OR INDICAT
YEARS, ANI
ABILITY. | ANNUAL | | |-------------|----------|----------|-----------|-------------------------|----------|-----------|------------------------|----------|----------|-----------|--------------------------------------|----------|-----| | 1.25
80% | 2
50% | 5
20% | 10
10% | 25
4% | 50
2% | 100
1% | SECU-
TIVE
DAYS) | 2
50% | 5
20% | 10
10% | 25
4% | 50
2% | 100 | | 12800 | 20500 | 32600 | 41400 | 53300 | | | | | | | | | | | | | | | | | | 1 | 14900 | 22900 | 28500 | 35800 | | | | WEIGHTE | D SKEW = | 072 | | | | | 3 | 11400 | 17500 | 21900 | 27900 | | | | | | | | | | | 7 | 8790 | 12600 | 15000 | 17900 | | | | | | | | | | | 15 | 6560 | 8990 | 10500 | 12200 | | | | | | | | | | | 30 | 5180 | 6850 | 7820 | 8920 | | | | | | | | | | | 60 | 4360 | 5620 | 6330 | 7100 | | | | | | | | | | | 90 | 3920 | 4910 | 5420 | 5960 | | | DURATION TABLE OF DAILY MEAN FLOW FOR PERIOD OF RECORD 1912-52 | | | DISC | HARGE, | IN CFS, | WHICH WAS | EQUALED | OR EXCE | EDED FOR | INDICATED | PERCENT | OF TIME | | | | |------|------|------|--------|---------|-----------|---------|---------|----------|-----------|---------|-------------|-----|-----|-----| | 5% | 10% | 15% | 20% | 25% | 30% | 40% | 50% | 60% | 70% | 75% | 80% | 85% | 90% | 95% | | 5830 | 4580 | 3770 | 3270 | 2890 | 2560 | 2070 | 1680 | 1360 | 1060 | 907 | 79 1 | 706 | 622 | 543 | ### 14181500 NORTH SANTIAM RIVER AT NIAGARA, OR--Continued ### STATISTICAL SUMMARIES (AFTER THE COMPLETION OF DETROIT AND BIG CLIFF DAMS) MONTHLY AND ANNUAL MEAN DISCHARGES 1954-82 MAGNITUDE AND PROBABILITY OF ANNUAL LOW FLOW BASED ON PERIOD OF RECORD 1955-82 | | | MAXIMUM | MEAN | STAN-
DARD
DEVIA-
TION | COEFFI-
CIENT OF
VARI- | PERCENT
OF
ANNUAL | PERIOD
(CON-
SECU- | DISC | INTERVAL | L, IN YE | ARS, AND | ATED RECU
ANNUAL N
IN PERCE | ON- | |--|---------------------------------|-----------------------------------
--|---|---|-------------------------|--|--|---|---|--|---|-----------| | MONTH | MINIMUM
(CFS) | (CFS) | MEAN
(CFS) | (CFS) | ATION | RUNOFF | TIVE
DAYS) | 2
50% | 5
20% | 10
10% | 20
5% | 50
2% | 100 | | CTOBER | 1837 | 3828 | 2517 | 540 | .21 | 8.8 | 1 | 832 | 665 | 569 | 489 | 403 | | | IOVEMBER | 2200 | 6075 | 3665 | 1126 | .31 | 12.8 | 3 | 909 | 731 | 619 | 523 | 419 | | | ECEMBER | 932 | 9208 | 4247 | 1964 | .46 | 14.9 | 7 | 937 | 756 | 645 | 551 | 448 | | | ANUARY | 880 | 7888 | 3579 | 1697 | .47 | 12.5 | 14 | 966 | 780 | 669 | 575 | 472 | | | EBRUARY | 665 | 5843 | 2252 | 1433 | .64 | 7.9 | 30 | 1010 | 805 | 688 | 590 | 484 | | | IARCH | 508 | 6990 | 1737 | 1228 | .71 | 6.1 | 60 | 1090 | 882 | 773 | 685 | 59 t | | | PRIL | 465 | 3692 | 1836 | 808 | .44 | 6.4 | 90 | 1240 | 995 | 874 | 778 | 676 | | | IAY | 651 | 4033 | 2460 | 993 | .40 | 8.6 | 120 | 1360 | 1080 | 944 | 838 | 727 | | | UNE | 681 | 4263 | 1944 | 895 | .46 | 6.8 | 183 | 1660 | 1350 | 1200 | 1080 | 954 | | | ULY | 848 | 1868 | 1218 | 243 | .20 | 4.3 | | | | | | | | | UGUST | 837 | 1719 | 1225 | 232 | .19 | 4.3 | | | | | | | | | EPTEMBER | | 2394 | 1858 | 284 | .15 | 6.5 | NNUAL | 1206 | 3490 | 2379 | 498 | .21 | 100 | | | | | | | | | I SCHARGE, | BASE | ON PERIO | DD OF RE | CORD CURRENCE | OUS PEAK ! |
, 1N | | BASE | ED ON PER | RIOD OF F | RECORD 1 | TED RECU | - | | I SCHARGE, | BASE | ON PERIO | DD OF RE | CORD CURRENCE | INTERVAL, |
, 1N | PERIOD
(CON-
SECU- | BASE | ED ON PER
HARGE, IN
INTERV | RIOD OF F | RECORD 1 | 954 - 82 | RRENCE | | SCHARGE,
YEARS, A | BASE | FOR INDIC | OD OF RE | CORD

CURRENCE
ABILITY, | INTERVAL, | , IN
NT | PERIOD
(CON- | BASE | ED ON PER
HARGE, IN
INTERV | RIOD OF F | RECORD 1 | 954-82
TED RECUR | RRENCE | | SCHARGE,
YEARS, A | BASE
, IN CFS,
AND ANNUAL | FOR INDIC
EXCEEDAN | OD OF RECOMMENDED RECOMMEND OF RECOMMENDED RECOMMEND OF RECOMMENDED RECOMMEND RECOMMEN | CORD
CURRENCE
ABILITY, | INTERVAL,
IN PERCEI | , IN
NT
 | PERIOD
(CON-
SECU-
TIVE | DISCH | ED ON PER
HARGE, IN
INTERV
EXCEEDAN | I CFS, FO | RECORD 1 OR INDICA YEARS, AN ABILITY, 25 | 954-82 TED RECUFID ANNUAL IN PERCEN | RRENCE | | I SCHARGE,
YEARS, A
1.25
80% | BASE | FOR INDIC
EXCEEDAN | OD OF RECOMMENDED RECOMMEND OF RECOMMENDED RECOMMEND OF RECOMMENDED RECOMMEND RECOMMEN | CORD
CURRENCE
ABILITY, | INTERVAL,
IN PERCEI | , IN
NT
 | PERIOD (CON- SECU- TIVE DAYS) | DISCH | ED ON PER
HARGE, IN
INTERV
EXCEEDAN | I CFS, FO | RECORD 1 OR INDICA YEARS, AN ABILITY, 25 | 954-82 TED RECUFID ANNUAL IN PERCEN | RRENCE | | SCHARGE,
YEARS, A | BASE | FOR INDIC
EXCEEDAN | OD OF RECOMMENDED RECOMMEND OF RECOMMENDED RECOMMEND OF RECOMMENDED RECOMMEND RECOMMEN | CORD
CURRENCE
ABILITY, | INTERVAL,
IN PERCEI | , IN
NT
 | PERIOD
(CON-
SECU-
TIVE
DAYS) | BASE
DISCH | HARGE, IN
INTERV
EXCEEDAN
5
20% | I CFS, FC
VAL, IN N
ICE PROBA | DR INDICA
YEARS, AN
ABILITY,
25
4% | 954-82
TED RECURID ANNUAL
IN PERCEN
50
2% | RRENCE | | I SCHARGE,
YEARS, A
1.25
80% | BASE | FOR INDIC
EXCEEDAN | OD OF RECOMMENDED RECOMMEND OF RECOMMENDED RECOMMEND OF RECOMMENDED RECOMMEND RECOMMEN | CORD
CURRENCE
ABILITY, | INTERVAL,
IN PERCEI | , IN
NT
 | PERIOD (CON- SECU- TIVE DAYS) | BASE
DISCH | HARGE, IN INTERVEXCEEDAN 20% | I CFS, FO
VAL, IN Y
ICE PROBA | DR INDICA FEARS, AN ABILITY, 25 4% | 954-82
TED RECUFID ANNUAL
IN PERCENTED 2% | RRENCE | | I SCHARGE,
YEARS, A
1.25
80% | BASE | FOR INDIC
EXCEEDAN | OD OF RECOMMENDED RECOMMEND OF RECOMMENDED RECOMMEND OF RECOMMENDED RECOMMEND RECOMMEN | CORD
CURRENCE
ABILITY, | INTERVAL,
IN PERCEI | , IN
NT
 | PERIOD
(CON-
SECU-
TIVE
DAYS) | DISCH | HARGE, IN
INTERV
EXCEEDAN
5
20% | 1 CFS, FC
(AL, IN)
ICE PROBA
10
10% | DR INDICA YEARS, AN ABILITY, 25 4% 15100 14300 | 954-82
ITED RECUFI
ID ANNUAL
IN PERCEN | 100
17 | | I SCHARGE,
YEARS, A
1.25
80% | BASE | FOR INDIC
EXCEEDAN | OD OF RECOMMENDED RECOMMEND OF RECOMMENDED RECOMMEND OF RECOMMENDED RECOMMEND RECOMMEN | CORD
CURRENCE
ABILITY, | INTERVAL,
IN PERCEI | , IN
NT
 | PERIOD (CON- SECU- TIVE DAYS) 1 3 7 | DISCH | HARGE, IN INTERVENCEDAN 5 20% | 10 OF F | DR INDICA
(EARS, AN
ABILITY,
25
4%
15100
14300
13500 | 954-82 TED RECUF ID ANNUAL IN PERCEN 50 2% 15200 14400 13800 | 100
17 | | I SCHARGE,
YEARS, A
1.25
80% | BASE | FOR INDIC
EXCEEDAN | OD OF RECOMMENDED RECOMMEND OF RECOMMENDED RECOMMEND OF RECOMMENDED RECOMMEND RECOMMEN | CORD
CURRENCE
ABILITY, | INTERVAL,
IN PERCEI | , IN
NT
 | PERIOD
(CON-
SECU-
TIVE
DAYS) | DISCH 2 50% 11700 11200 9690 7400 | HARGE, IN INTERVEXCEEDAN 5 20% 13900 13200 11900 9540 | 10 OF F | DR INDICA
FEARS, AN
ABILITY,
25
4%
15100
14300
13500
12000 | 954-82 | 100
17 | | I SCHARGE,
YEARS, A
1.25
80% | BASE | FOR INDIC
EXCEEDAN | OD OF RECOMMENDED RECOMMEND OF RECOMMENDED RECOMMEND OF RECOMMENDED RECOMMEND RECOMMEN | CORD
CURRENCE
ABILITY, | INTERVAL,
IN PERCEI | , IN
NT
 | PERIOD (CON- SECU- TIVE DAYS) 1 3 7 15 30 |
DISCH
2
50%
11700
11200
9690
7400
5670 | HARGE, IN INTERVEXCEEDAN 5 20% | I CFS, FC CFS | DR INDICA
(EARS, AN
BEILITY,
25
4%
 | 954-82 ITED RECUE ID ANNUAL IN PERCEN 50 2% 15200 14400 13800 12900 9930 | 100
15 | | I SCHARGE,
YEARS, A
1.25
80% | BASE | FOR INDIC | DO OF RECOME AND ADDRESS OF RECOME AND ADDRESS OF RECOME AND ADDRESS OF RECOME AND ADDRESS OF RECOME A | CORD CURRENCE ABILITY, 25 4\$ N TABLE | INTERVAL,
IN PERCEI
50
2% | , IN NT 100 1% | PERIOD (CON- SECU- TIVE DAYS) 1 3 7 15 30 60 90 FOR PERIOD | DISCH 2 50% 11700 11200 9690 7400 5670 4570 4120 OF RECC | HARGE, IN INTERVEXCEEDAN 13900 13200 11900 9540 7270 5800 5180 | 10 OF F | DR INDICA
CEARS, AN
BILITY,
25
4%
15100
14300
12000
9230
7390
6440 | 954-82 ITED RECUID ANNUAL IN PERCEN 50 2% 15200 14400 13800 12900 9930 7980 | 100
19 | | ISCHARGE,
YEARS, A
1.25
80%

WEIGHTED | BASE | FOR INDIC
EXCEEDAN
5
20% | DO OF RECOME TO THE PROPERTY OF O | CORD CURRENCE ABILITY, 25 4% N TABLE CFS, WHI | INTERVAL
IN PERCEI
50
2%

OF DAILY N | IN NT 100 1% | PERIOD (CON- SECU- TIVE DAYS) 15 30 60 90 FOR PERIOD | DISCH
2
50%
11700
11200
9690
7400
4570
4120
OF RECC | 13900
13200
113200
11900
9540
7270
5800
5180 | 10 CFS, FC (AL, IN) (ICE PROBA-10) (10%) | DR INDICA
(EARS, AN
BILITY,
25
4%
15100
14500
12000
9230
7390
6440 | 954-82 ITED RECUID ANNUAL IN PERCEN 50 2% 15200 14400 13800 12900 9930 7980 6870 | 100 119 | | I SCHARGE,
YEARS, A
1.25
80% | BASE | FOR INDIC | DO OF RECOME AND ADDRESS OF RECOME AND ADDRESS OF RECOME AND ADDRESS OF RECOME AND ADDRESS OF RECOME A | CORD CURRENCE ABILITY, 25 4\$ N TABLE | INTERVAL
IN PERCEI
50
2%

OF DAILY N | , IN NT 100 1% | PERIOD (CON- SECU- TIVE DAYS) 15 30 60 90 FOR PERIOD | DISCH 2 50% 11700 11200 9690 7400 5670 4570 4120 OF RECC | HARGE, IN INTERVEXCEEDAN 13900 13200 11900 9540 7270 5800 5180 | 10 OF F | DR INDICA
CEARS, AN
BILITY,
25
4%
15100
14300
12000
9230
7390
6440 | 954-82 ITED RECUID ANNUAL IN PERCEN 50 2% 15200 14400 13800 12900 9930 7980 | 100
19 | #### 14182500 LITTLE NORTH SANTIAM RIVER NEAR MEHAMA, OR LOCATION.--Lat 44°47'30", long 122°34'40", in NW\ sec.16, T.9 S., R.2 E., Marion County, Hydrologic Unit 17090005, on left bank 2.0 mi east of Mehama and at mile 2.0. DRAINAGE AREA.--112 mi 2 at cableway 1.2 mi downstream where all discharge measurements are made. PERIOD OF RECORD.--October 1931 to September 1982. Records for July to September 1924 and July to September 1931 at site 4 mi upstream not equivalent owing to difference in drainage areas. GAGE.--Water-stage recorder. Datum of gage is 655.41 ft National Geodetic Vertical Datum of 1929. Prior to June 12, 1948, nonrecording gage at about same site and datum. REMARKS.--No regulation or diversion above station. Records herein are for measuring site. AVERAGE DISCHARGE. -- 51 years, 769 ft³/s, 93.24 in/yr, 557,100 acre-ft/yr. MONTHLY AND ANNUAL MEAN DISCHARGES 1932-82 10% 1370 1150 1760 2530 25% 971 838 638 470 EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 36,000 ft³/s Dec. 22, 1964, gage height, 16.73 ft, from rating curve extended above 17,000 ft³/s; minimum, 13 ft³/s Aug. 30, 1961. STATISTICAL SUMMARIES MAGNITUDE AND PROBABILITY OF ANNUAL LOW FLOW 95% 34 | | MINIMIM | MAYIMIM | MEAN | STAN-
DARD
DEVIA- | COEFFI-
CIENT OF | 0F | PERIOD
(CON-
SECU- | DISC | | L, IN YE | ARS, AND | ATED RECU
ANNUAL I
IN PERCU | NON- | |--|---|---|---|---|---|---------------------------|--|---|--|---|--|---|--| | MONTH | MINIMUM
(CFS) | MAXIMUM
(CFS) | MEAN
(CFS) | TION
(CFS) | VARI-
ATION | ANNUAL
RUNOFF | TIVE
DAYS) | 2
50% | 5
20% | 10
10% | 20
5 % | 50
2% | 100
1% | | OCTOBER | 26 | 1594 | 417 | 369 | .88 | 4.5 | 1 | 29 | 23 | 20 | 19 | 17 | 16 | | NOVEMBER | 26 | 3121 | 1129 | 686 | .61 | 12.2 | 3 | 29 | 23 | 21 | 19 | 18 | 17 | | DECEMBER | 193 | 3680 | 1520 | 772 | •51 | 16.4 | 7 | 30 | 24 | 22 | 20 | 19 | 18 | | JANUARY | 218 | 3615 | 1366 | 727 | .53 | 14.8 | 14 | 32 | 25 | 23 | 21 | 20 | 19 | | EBRUARY | 260 | 2581 | 1195 | 546 | .46 | 12.9 | 30 | 37 | 28 | 25 | 23 | 21 | 20 | | MARCH | 302 | 2645 | 1033 | 451 | . 44 | 11.2 | 60 | 49 | 35 | 30 | 27 | 24 | 22 | | APRIL | 268 | 1712 | 993 | 303 | .31 | 10.7 | 90 | 67 | 45 | 37 | 32 | 27 | 25 | | /AY | 241 | 1439 | 825 | 303 | .37 | 8.9 | 120 | 104 | 66 | 52 | 43 | 34 | 30 | | JUNE | 80 | 1684 | 468 | 299 | .64 | 5.1 | 183 | 256 | 179 | 148 | 125 | 104 | 92 | | JULY | 45 | 344 | 130 | 68 | •52 | 1.4 | | | | | | | | | | 19 | 432 | 66 | 60 | .90 | .7 | | | | | | | | | 106031 | | | | | | | | | | | | | | | | 29 | 490 | 115 | 119 | 1.03 | 1.2 | | | | | | | | | SEPTEMBER
ANNUAL | 29
400
 | 1146 | 769
TY 0F IN | 165
 | .21
OUS PEAK F | 100 |
MA(| | AND PROB | | | |
FLOW | | SEPTEMBER ANNUAL MAGNIT | 400
TUDE AND
BASE | 1146
PROBABILI
D ON PERIO | 769 TY OF IN | 165
NSTANTANE
CORD 193 | .21
OUS PEAK F | 100

FLOW
, IN |
PERIOD | BASE | ED ON PER
HARGE, IN | RIOD OF F | RECORD OR INDICA (EARS, A | 1932-82

ATED RECUND ANNUAL | JRRENCE | | DISCHARGE, | 400
TUDE AND
BASE | 1146
PROBABILI
D ON PERIO | 769 TY OF IN | 165
NSTANTANE
CORD 193 | .21
OUS PEAK I
2-82
INTERVAL,
IN PERCEI | 100

FLOW
, IN | | BASI
D1SC | ED ON PER
HARGE, IN | RIOD OF F | RECORD OR INDICATE (EARS, AIABILITY, | 1932-82
ATED RECUND ANNUAL
IN PERCE | JRRENCE | | MAGNIT | 400 FUDE AND BASE , IN CFS, | PROBABILI
D ON PERIO
FOR INDIC
L EXCEEDA | 769 TY OF INDO OF RECATED RENCE PROE | 165
NSTANTANE
ECORD 193
CCURRENCE
BABILITY, | .21
OUS PEAK I
2-82
INTERVAL,
IN PERCEI | 100
FLOW
, IN | PERIOD
(CON-
SECU-
TIVE | BASI
D1SC | HARGE, IN EXCEEDAN | N CFS, FO
VAL, IN N
NCE PROBA | RECORD OR INDICATE (EARS, AIABILITY, | 1932-82
ATED RECUND ANNUAL
IN PERCE | URRENCE
ENT | | MAGNIT
DISCHARGE,
YEARS, / | 400
FUDE AND
BASE
, IN CFS,
AND ANNUA | PROBABILITO ON PERIO | 769 TY OF IN DD OF RE CATED RE NCE PROE | 165
NSTANTANE
ECORD 193
ECURRENCE
BABILITY, | .21
OUS PEAK I
2-82
INTERVAL
IN PERCEI | 100
 | PERIOD
(CON-
SECU- | BASE
DISCE | HARGE, INTERN | RIOD OF A | RECORD OR INDIC/ (EARS, AI | 1932-82
ATED RECUND ANNUAL
IN PERCE | URRENCE
ENT | | MAGNIT
DISCHARGE,
YEARS, / | 400 FUDE AND BASE , IN CFS, AND ANNUA | PROBABILII
D ON PERIO
FOR INDIC
L EXCEEDAL
5
20% | 769 TY OF INDD OF RECATED RENCE PROB | 165 NSTANTANE ECORD 193 ECURRENCE BABILITY, 25 4% | .21 OUS PEAK I 2-82 INTERVAL, IN PERCEI | 100
 | PERIOD
(CON-
SECU-
TIVE
DAYS) | DISCH | HARGE, IN
INTERN
EXCEEDAN | N CFS, FC
VAL, IN N
NCE PROBA | RECORD OR INDIC/ (EARS, AI ABILITY, 25 4% | ATED RECUND ANNUAL IN PERCE | URRENCE
ENT
100 | | MAGNIT
DISCHARGE,
YEARS, /
1.25
80% | 400 FUDE AND BASE IN CFS, AND ANNUA 2 50% | PROBABILITO ON PERIODE FOR INDICAL EXCEEDAL 5 20% | 769 TY OF INDD OF RECATED RENCE PROB | 165
NSTANTANE
ECORD 193
ECURRENCE
BABILITY,
25
4% | .21 OUS PEAK I 2-82 INTERVAL IN PERCEI | 100
FLOW
, IN
NT | PERIOD (CON- SECU- TIVE DAYS) | DISCH | HARGE, IN
INTERN
EXCEEDAN
5
20% | N CFS, FO
VAL, IN N
NCE PROBA
10
10% | OR INDIC/
EARS, AI
ABILITY,
25
4% | ATED RECUND ANNUAL IN PERCE | 19800 | | MAGNIT
MAGNIT
DISCHARGE,
YEARS, /
1.25
80% | 400 FUDE AND BASE , IN CFS, AND ANNUA | PROBABILII
D ON PERIO
FOR INDIC
L EXCEEDAL
5
20% | 769 TY OF INDD OF RECATED RENCE PROB | 165
NSTANTANE
ECORD 193
ECURRENCE
BABILITY,
25
4% | .21 OUS PEAK I 2-82 INTERVAL IN PERCEI | 100
FLOW
, IN
NT | PERIOD (CON- SECU- TIVE DAYS) | BASI
DISCI | HARGE, IN
INTER
EXCEEDAN
5
20% | N CFS, FC
VAL, IN N
NCE PROB/
10
10% | OR INDIC/
/EARS, AI
ABILITY,
25
4% | 1932-82
ATED RECU
IND ANNUAL
IN PERCE
50
2%
18100
12200 | 19800
13200 | | MAGNIT
MAGNIT
DISCHARGE,
YEARS, /
1.25
80% | 400 FUDE AND BASE IN CFS, AND ANNUA 2 50% | PROBABILITO ON PERIODE FOR INDICAL EXCEEDAL 5 20% | 769 TY OF INDD OF RECATED RENCE PROB | 165
NSTANTANE
ECORD 193
ECURRENCE
BABILITY,
25
4% | .21 OUS PEAK I 2-82 INTERVAL IN PERCEI | 100
FLOW
, IN
NT | PERIOD (CON- SECU- TIVE DAYS) 1 3 7 | BASI
D1 SCH
2
50%
8790
6220
4280 | HARGE, IN INTERNAL 5 20% | N CFS, FC
VAL, IN N
NCE PROB/
10
10% | 25
4%
16400
11100
7210 | 1932-82
ATED RECU
IN PERCE
50
2%
18100
12200
7800 | 19800
13200
8350 | | MAGNIT
MAGNIT
DISCHARGE,
YEARS, /
1.25
80% | 400 FUDE AND BASE IN CFS, AND ANNUA 2 50% | PROBABILITO ON PERIODE FOR INDICAL EXCEEDAL 5 20% | 769 TY OF INDD OF RECATED RENCE PROB | 165
NSTANTANE
ECORD 193
ECURRENCE
BABILITY,
25
4% | .21 OUS PEAK I 2-82 INTERVAL IN PERCEI | 100
FLOW
, IN
NT | PERIOD (CON-
SECU-
TIVE DAYS) | D1SCH
2
50%
8790
6220
4280
2980 | HARGE, IN INTERN EXCEEDAN 5 20% | N CFS, FG
VAL, IN N
NCE PROB/
10
10%
14000
9610
6340
4320 | DR INDIC/
(EARS, AI
ABILITY,
25
4%
16400
11100
7210
4900 | 1932-82
ATED RECUMD ANNUAL
IN PERCE
50
2%
18100
12200
7800
5300 | 19800
13200
8350
5670 | | MAGNITAL MAG | 400 FUDE AND BASE IN CFS, AND ANNUA 2 50% | PROBABILITO ON PERIODE FOR INDICAL EXCEEDAL 5 20% | 769 TY OF INDD OF RECATED RENCE PROB | 165
NSTANTANE
ECORD 193
ECURRENCE
BABILITY,
25
4% | .21 OUS PEAK I 2-82 INTERVAL IN PERCEI | 100
FLOW
, IN
NT | PERIOD (CON- SECU- TIVE DAYS) | BASI
DISCI
2
50%
8790
6220
4280
2980
2260 | HARGE, IN
INTERVEXCEEDAN
5
20%
12000
8330
5580
3830
2920 | N CFS, FC
VAL, IN VICE PROB/
10 10 10 10 10 10 10 10 10 10 10 10 10 1 | 25 4% 16400 7210 4900 3820 | 1932-82 ATED RECUID ANNUAL IN PERCE 50 2% 18100 12200 7800 5500 4160 | 19800
13200
1480
1480 | | MAGNIT
DISCHARGE,
YEARS, /
1.25
80% | 400 FUDE AND BASE IN CFS, AND ANNUA 2 50% | PROBABILITO ON PERIODE FOR INDICAL EXCEEDAL 5 20% | 769 TY OF INDD OF RECATED RENCE PROB | 165
NSTANTANE
ECORD 193
ECURRENCE
BABILITY,
25
4% | .21 OUS PEAK I 2-82 INTERVAL IN PERCEI | 100
FLOW
, IN
NT | PERIOD (CON- SECU- TIVE DAYS) 1 3 7 15 30 60 | BASI
DISCH
2
50%
8790
6220
4280
2980
2960
1780 | HARGE, INTERNEXCEEDAN 12000 8330 5580 3830 2920 2270 | N CFS, F(
VAL, IN N
NCE PROB/
10 10 %
14000 9610
6340 4320
33330 2570 | DR INDIC/
(FARS, AI
ABILITY,
25
4%
16400
11100
7210
4900
3820
2920 | 1932-82 ATED RECL ND ANNUAL IN PERCE 50 2% 18100 12200 7800 5300 4160 4160 4180 | 19800
13200
8350
4480
3420 | | MAGNIT | 400 FUDE AND BASE IN CFS, AND ANNUA 2 50% | PROBABILITO ON PERIODE FOR INDICAL EXCEEDAL 5 20% | 769 TY OF INDD OF RECATED RENCE PROB | 165
NSTANTANE
ECORD 193
ECURRENCE
BABILITY,
25
4% | .21 OUS PEAK I 2-82 INTERVAL IN PERCEI | 100
FLOW
, IN
NT | PERIOD (CON- SECU- TIVE DAYS) | BASI
DISCI
2
50%
8790
6220
4280
2980
2260 | HARGE, IN
INTERVEXCEEDAN
5
20%
12000
8330
5580
3830
2920 | N CFS, FC
VAL, IN VICE PROB/
10 10 10 10 10 10 10 10 10 10 10 10 10 1 | 25 4% 16400 7210 4900 3820 | 1932-82 ATED RECUID ANNUAL IN PERCE 50 2% 18100 12200 7800 5500 4160 | 19800
13200
1480
1480 | 175 120 83 59 44 319 14183000 NORTH SANTIAM RIVER AT MEHAMA, OR LOCATION.--Lat 44°47'20", long 122°37'00", In NW± sec.18, T.9 S., R.2 E., Marion County, Hydrologic Unit 17090005, on right bank 300 ft downstream from highway bridge at Mehama, 0.5 mi downstream from Little North Santiam River, and at mile 38.71. DRAINAGE AREA.--655 mi 2 , at cableway 0.8 mi downstream, where all discharge measurements are made. PERIOD OF RECORD.--July 1905 to March 1907, October 1910 to September 1914, September 1921 to September 1982. Monthly discharge only September 1921, published in WSP 1318. Prior to October 1913, published as North Fork of Santiam River at Mehama. GAGE.--Water-stage recorder. Datum of gage is 602.49 ft National Geodetic Vertical Datum of 1929. Prior to June 15, 1933, nonrecording gage at site 100 ft upstream at same datum. REMARKS.--Flow regulated since 1953 by Detroit Lake and Big Cliff Reservoir, usable capacity for reregulating purposes, 2,930 acre-ft. No diversion above station. All records given herein are for measuring site. AVERAGE DISCHARGE.--66 years (water years 1906, 1911-14, 1922-82), 3,367 ft3/s, 2,439,000 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.—Maximum discharge, 76,600 ft³/s Dec. 28, 1945, gage height, 15.37 ft, from rating curve extended above 36,000 ft³/s, on basis of slope-area measurement of peak flow; maximum gage height, 17.5 ft Nov. 20, 1921, from graph based on gage readings, and Jan. 6, 1923, from floodmark, at site then in use; minimum discharge, 254 ft³/s Aug. 3, 1970; minimum daily, 420 ft³/s Sept. 18, 1924. #### STATISTICAL SUMMARIES (BEFORE CONSTRUCTION OF DETROIT AND BIG CLIFF DAMS) | MONTHLY AND ANNUAL MEAN DISCHARGES | 1906-52 | MAGNITUDE AND PROBABILITY OF ANNUAL LOW FLO | |------------------------------------|---------|---| | | | BASED ON PERIOD OF RECORD 1907-52 | | | MINIMUM | MAXIMUM | MEAN | STAN-
DARD
DEVIA-
TION | COEFFI-
CIENT OF
VARI- | PERCENT
OF
ANNUAL | PERIOD
(CON-
SECU- | | IARGE, IN
INTERVAL
EXCEEDAN | , IN YEAR | RS, AND A | ANNUAL N | ON- | |-----------|---------|---------|-------|---------------------------------|------------------------------|-------------------------|--------------------------|----------|-----------------------------------|-----------|-----------|----------|-----------| | МОМТН | (CFS) | (CFS) | (CFS) | (CFS) | ATION | RUNOFF | TIVE
DAYS) | 2
50% | 5
20% | 10
10% | 20
5% | 50
2% | 100
1% | | OCTOBER | 526 | 5040 | 1664 | 1143 | .69 | 4.2 | 1 | 589 | 508 | 470 | 440 | 410 | | | NOVEMBER | 495 | 10330 | 4425 | 2784 | .63 | 11.2 | 3 | 595 | 513 | 475 | 446 | 415 | | | DECEMBER | 1482 | 9999 | 4829 | 2049 | .42 | 12.2 | 7 | 601 | 517 | 479 | 449 | 419 | | | JANUARY | 1029 | 11230 | 4873 | 2447 | .50 | 12.3 | 14 | 616 | 529 | 488 | 457 | 424 | | | FEBRUARY | 1884 | 11410 | 4986 | 2456 | .49 | 12.6 | 30 | 647 | 547 | 501 | 467 | 431 | | | MARCH | 1686 | 9465 | 4273 | 1458 | • 34 | 10.8 | 60 | 693 | 573 | 526 | 492 | 461 | | | APRIL | 1600 | 7559 | 4541 | 1449 | .32 | 11.5 | 90 | 774 | 622 | 559 | 514 | 470 | | | MAY | 1750 | 7949 | 4208 | 1631 | • 39 | 10.6 | 120 | 899 | 687 | 605 | 549 | 495 | | | JUNE | 852 | 7802 | 2830 | 1479 | .52 | 7.2 | 183 | 1450 | 1080 | 934 | 831 | 732 | | | JULY | 626 | 2259 | 1242 | 438 | . 35 |
3.1 | | | | | | | | | AUGUST | 507 | 1520 | 781 | 196 | .25 | 2.0 | | | | | | | | | SEPTEMBER | 508 | 1910 | 861 | 352 | .41 | 2.2 | | | | | | | | #### MAGNITUDE AND PROBABILITY OF INSTANTANEOUS PEAK FLOW BASED ON PERIOD OF RECORD 1906-52 702 .22 100 3251 ANNUAL 2061 4325 #### MAGNITUDE AND PROBABILITY OF ANNUAL HIGH FLOW BASED ON PERIOD OF RECORD 1906-52 | | | | | | CE INTER | | PERIOD
(CON- | DISC | INTER | /AL, ÎN ` | YEARS, AN | TED RECUI
D ANNUAL
IN PERCEI | | |-------------|--------------|----------|-------------------|----------|----------|---------------|------------------------|----------|----------|-----------|-----------|------------------------------------|-----------| | 1.25
80% | 2
50%
 | 5
20% | 10
10 % | 25
4% | 50
2% | 100
1%
 | SECU-
TIVE
DAYS) | 2
50% | 5
20% | 10
10% | 25
4% | 50
2% | 100
1% | | 23900 | 34200 | 48700 | 58300 | 70600 | 79800 | | | | | | | | | | | | | | | | | 1 | 27300 | 38400 | 45700 | 54900 | 61800 | | | WE I GHTE | D SKEW = | 069 | | | | | 3 | 20100 | 28300 | 34000 | 41300 | 46800 | | | | | | | | | | 7 | 15000 | 19900 | 22700 | 25800 | 27900 | | | | | | | | | | 15 | 10900 | 14300 | 16400 | 18900 | 20700 | | | | | | | | | | 30 | 8530 | 10700 | 11900 | 13200 | 14100 | | | | | | | | | | 60 | 6770 | 8180 | 8920 | 9710 | 10200 | | | | | | | | | | 90 | 6100 | 7170 | 7690 | 8200 | 8500 | | #### DURATION TABLE OF DAILY MEAN FLOW FOR PERIOD OF RECORD 1906-52 | | | DISC | HARGE, | IN CFS, | WHICH WAS | EQUALED | OR EXCE | EDED FOR | INDICATE | D PERCENT | OF TIM | 1E | | | |------|------|------|--------|---------|-----------|---------|---------|----------|----------|-----------|--------|-----|-----|-----| | 5% | 10% | 15% | 20% | 25% | 30% | 40% | 50% | 60% | 70% | 75% | 80% | 85% | 90% | 95% | | 8990 | 6660 | 5540 | 4790 | 4250 | 3780 | 2990 | 2350 | 1780 | 1240 | 1020 | 872 | 757 | 668 | 576 | ### 14183000 NORTH SANTIAM RIVER AT MEHAMA, OR--Continued ### STATISTICAL SUMMARIES (AFTER COMPLETION OF DETROIT AND BIG CLIFF DAMS) MONTHLY AND ANNUAL MEAN DISCHARGES 1954-82 MAGNITUDE AND PROBABILITY OF ANNUAL LOW FLOW BASED ON PERIOD OF RECORD 1955-82 | | Manadana | MAN VI MININA | MEAN | STAN-
DARD
DEVIA- | COEFFI- | F OF | PERIOD
(CON- | 0130 | INTERVA | L, IN YE | ARS, AND | ATED RECU
ANNUAL N
IN PERCE | ION- | |------------------------------|---------------------------------------|--|--|---|--|-------------------------|--|---|--|---|--|--|------------| | MONTH | MINIMUM
(CFS) | MAXIMUM
(CFS) | MEAN
(CFS) | TION
(CFS) | VARI-
ATION | ANNUAL
RUNOFF | SECU-
TIVE
DAYS) | 2
50% | 5
20% | 10
10% | 20
5% | 50
2 % | 100 | | OCTOBER | 1949 | 5109 | 2960 | 897 | •30 | 7.0 | 1 | 1050 | 934 | 872 | 821 | 765 | | | NOVEMBER | 2502 | 9857 | 5218 | 1987 | .38 | 12.4 | 3 | 1080 | 956 | 888 | 833 | 772 | | | DECEMBER | 1183 | 14300 | 6717 | 3195 | .48 | 15.9 | 7 | 1110 | 979 | 906 | 847 | 780 | | | JANUARY | 1212 | 11430 | 5745 | 2630 | . 46 | 13.6 | 14 | 1140 | 997 | 922 | 861 | 793 | | | EBRUARY | 1048 | 9197 | 4057 | 2136 | •53 | 9.6 | 30 | 1170 | 1030 | 959 | 903 | 842 | | | MARCH | 1579 | 10890 | 3280 | 1847 | .56 | 7.8 | 60 | 1260 | 1110 | 1050 | 994 | 940 | | | APRIL | 1624 | 5714 | 3287 | 1146 | .35 | 7.8 | 90 | 1420 | 1230 | 1140 | 1070 | 1000 | | | MAY | 1136 | 5897 | 3600 | 1248 | .35 | 8.5 | 120 | 1600 | 1380 | 1280 | 1200 | 1120 | | | JUNE | 1023 | 5521 | 2570 | 1186 | .46 | 6.1 | 183 | 2070 | 1750 | 1590 | 1480 | 1350 | | | JULY | 1032 | 2318 | 1412 | 309 | .22 | 3.3 | | | | | | | | | AUGUST | 918 | 1833 | 1335 | 245 | .18 | 3.2 | | | | | | | | | SEPTEMBER | 1485 | 2800 | 2001 | 339 | .17 | 4.7 | | | | | | | | | ANNUAL | 1743 | 5255 | 3513 | 774 | .22 | 100 | | | | | | | | | DISCHARGE, | BASE
IN CFS, | | OD OF RE | CORD

CURRENCE | INTERVAL | ., IN | | BASE | ED ON PER | RIOD OF F | RECORD 1 | AL HIGH F | | | Olscharge, | BASE
IN CFS, | D ON PERIO | OD OF RE | CORD

CURRENCE | INTERVAL | ., IN | PERIOD (CON-SECU- | BASE | HARGE, IN | RIOD OF F | RECORD 1 | 1954 - 82 |
RRENCE | |) SCHARGE,
YEARS, A | BASE
IN CFS, | FOR INDIC | OD OF RE | CORD
CURRENCE
ABILITY, | INTERVAL | ., IN
ENT | PERIOD
(CON- | BASE | HARGE, IN | RIOD OF F | RECORD 1 | 1954-82
TED RECU |
RRENCE | | OISCHARGE,
YEARS, A | BASE
IN CFS,
IND ANNUA | FOR INDIO | OD OF RE | CORD
CURRENCE
ABILITY, | INTERVAL
IN PERCE | ., IN
ENT | PERIOD
(CON-
SECU-
TIVE
DAYS) | DISCH | HARGE, IN
INTERV
EXCEEDAN
5
20% | N CFS, FC
/AL, IN N
NCE PROB/
10 | RECORD 1 | ATED RECU
(D ANNUAL
IN PERCE
50
2% | RRENCE | | 1.25
80% | BASE IN CFS, AND ANNUA 2 50% | FOR INDIO | OD OF RE | CORD
CURRENCE
ABILITY, | INTERVAL
IN PERCE | ., IN
ENT | PERIOD (CON- SECU- TIVE DAYS) | DISCH | HARGE, IN
INTERN
EXCEEDAN
5
20% | N CFS, FO
(AL, IN)
NCE PROB/
10% | DR INDICATE OF THE PROPERTY | 1954-82 ATED RECU ID ANNUAL IN PERCE 50 2% 24800 | RRENCE | | OISCHARGE,
YEARS, A | BASE IN CFS, AND ANNUA 2 50% | FOR INDIO | OD OF RE | CORD
CURRENCE
ABILITY, | INTERVAL
IN PERCE | ., IN
ENT | PERIOD (CON- SECU- TIVE DAYS) 1 | DISCH | HARGE, IN
INTERN
EXCEEDAN
5
20% | 10
OF F | OR INDICA YEARS, AN ABILITY, 25 4% 24100 17500 | 1954-82
ATED RECU
IND ANNUAL
IN PERCE
50
2%
24800
17600 | RRENCE | | YEARS, A | BASE IN CFS, AND ANNUA 2 50% | FOR INDIO | OD OF RE | CORD
CURRENCE
ABILITY, | INTERVAL
IN PERCE | ., IN
ENT | PERIOD (CON-SECU-TIVE DAYS) | DISCH | HARGE, IN
INTERN
EXCEEDAN
5
20%
21000
16600
15100 | 10 OF F | 25
4%
24100
17500
16200 | 1954-82
ATED RECU
ID ANNUAL
IN PERCE
50
2%
24800
17600
16400 | RRENCE | | YEARS, A | BASE IN CFS, AND ANNUA 2 50% | FOR INDIO | OD OF RE | CORD
CURRENCE
ABILITY, | INTERVAL
IN PERCE | ., IN
ENT | PERIOD (CON-
SECU-
TIVE DAYS) 1 3 7 15 | BASE
DISCH
2
50%
16700
14400
12800
11100 | ED ON PER
HARGE, IN
INTERN
EXCEEDAN
5
20%
21000
16600
15100
13400 | 10 OF F | 24100
17500
16200
14900 | 1954-82
ATED RECU
ANNUAL
IN PERCE
50
2%
24800
17600
16400
15100 | RRENCE | | ISCHARGE,
YEARS, A | BASE IN CFS, AND ANNUA 2 50% | FOR INDIO | OD OF RE | CORD
CURRENCE
ABILITY, | INTERVAL
IN PERCE | ., IN
ENT | PERIOD
(CON-
SECU-
TIVE
DAYS)
 | DISCH
2
50%
16700
14400
12800
11100
8880 | HARGE, IN INTERIECCEDAN 5 20% 21000 16600 15100 11200 | 10 10%
22700
17200
17300
17300 | 24100
17500
16200
13300 | 1954-82 INTED RECURD ANNUAL IN PERCE 50 2% 24800 17600 16400 15100 13900 | RRENCE | | ISCHARGE,
YEARS, A | BASE IN CFS, AND ANNUA 2 50% | FOR INDIO | OD OF RE | CORD
CURRENCE
ABILITY, | INTERVAL
IN PERCE | ., IN
ENT | PERIOD (CON-
SECU-
TIVE DAYS) 1 3 7 15 | BASE
DISCH
2
50%
16700
14400
12800
11100 | ED ON PER
HARGE, IN
INTERN
EXCEEDAN
5
20%
21000
16600
15100
13400 | 10 OF F | 24100
17500
16200
14900 | 1954-82
ATED RECU
ANNUAL
IN PERCE
50
2%
24800
17600
16400
15100 | RRENCE | | 1.25
80% | BASE IN CFS, AND ANNUA 2 50% | FOR INDIC | CATED RE NCE PROB | CORD CURRENCE ABILITY, 25 4% | INTERVAL
IN PERCE
50
2% | , IN
NT
100
1% | PERIOD
(CON-
SECU-
TIVE
DAYS)
 | DISCH 2 50% 16700 14400 11100 8880 7160 6510 OF RECC | HARGE, IN INTERN EXCEEDAN 16600 15100 11200 9240 8300 PRD 1954- | 22700
17500
10%
22700
17200
17300
12300
10300
9190 | 24100 17500 16200 11400 10100 | 24800
17600
16400
15100
12100 | RRENCE | | YEARS, A 1.25 80% WEIGHTED | BASE IN CFS, IND ANNUA 2 50% 3 SKEW = | FOR INDICATE OF THE PROPERTY O | DD OF RECEASED OF RECEASED RESIDENCE PROBE | CORD CURRENCE ABILITY, 25 4% N TABLE CFS, WHI | INTERVAL
IN PERCE
50
2%
OF DAILY | , IN ENT 100 1% | PERIOD (CON- SECU- TIVE DAYS) 1 3 7 15 30 60 90 FOR PERIOD | DISCH
2
50%
16700
14400
12800
7160
6510
OF RECC | 21000
15100
11200
2240
21000
16600
15100
11200
9240
8300
0RD 1954- | 22700
17200
17200
17200
17300
17300
17300
17300
17300
17300
17300
17300
17300
17300
17300
17300
17300 | 25 4 100 17500 16200 11400 10100 | 24800
17600
15100
15100
1290
17600
15100
15100
12100
10600 | 100
1% | | ISCHARGE,
YEARS, A | BASE IN CFS, AND ANNUA 2 50% | FOR INDIC | CATED RE NCE PROB | CORD CURRENCE ABILITY, 25 4% | INTERVAL
IN PERCE
50
2% | , IN
NT
100
1% | PERIOD (CON- SECU- TIVE DAYS) 1 3 7 15 30 60 90 FOR PERIOD | DISCH 2 50% 16700 14400 11100 8880 7160 6510 OF RECC | HARGE, IN INTERN EXCEEDAN 16600 15100 11200 9240 8300 PRD 1954- | 22700
17500
10%
22700
17200
17300
12300
10300
9190 | 24100 17500 16200 11400 10100 | 24800
17600
16400
15100
12100 | RRENCE | 87 ### 14185000 SOUTH SANTIAM RIVER BELOW CASCADIA, OR LOCATION.--44°23'35", long 122°30'35", in SE½ sec.36, T.13 S., R.2 E., Linn County, Hydrologic Unit 17090006, on left bank 100 ft downstream from bridge at Cascadia ranger station, 0.5 mi downstream from Mouse Creek, 0.5 mi upstream from Deer Creek, 1.5 mi southwest of Cascadia, and at mile 48.5. DRAINAGE AREA.--174 mi², at gaging cable 0.7 mi upstream. PERIOD OF RECORD.--September 1935 to September 1982. Monthly discharge only September 1935, published in WSP 1318. GAGE.--Water-stage recorder. Datum of gage is 759.88 ft National Geodetic Vertical Datum of 1929. Prior to Nov. 1, 1935, nonrecording gage. REMARKS.--No regulation or diversion above station. All records given herein are for measuring site. AVERAGE DISCHARGE.--47 years, 821 ft3/s, 64.08 in/yr, 594,800 acre-ft/yr. MONTHLY AND ANNUAL MEAN DISCHARGES 1936-82 EXTREMES FOR PERIOD OF RECORD.—Maximum discharge, 27,600 ft³/s Dec. 22, 1964, gage height, 19.68 ft, from rating curve extended above 14,000 ft³/s; minimum, 23 ft³/s Dec. 1, 2, 1936. #### STATISTICAL SUMMARIES MAGNITUDE AND PROBABILITY OF ANNUAL LOW FLOW 3130 2710 3390 2900 3640 3070 | | MINIMUM | MAXIMUM | MEAN | STAN-
DARD
DEVIA-
TION | COEFFI-
CIENT OF
VARI- | PERCENT
OF
ANNUAL | PERIOD
(CON-
SECU- | | INTERVAL | , IN YEA | R INDICAT
RS, AND A
BILITY, ! | NNUAL N | ON- | |-----------|---------|---------|-------|---------------------------------|------------------------------|-------------------------|--------------------------|----------|----------|-----------|-------------------------------------|----------|------------| | MONTH | (CFS) | (CFS) | (CFS) | (CFS) | ATION | RUNOFF | TIVE
DAYS) | 2
50% | 5
20% | 10
10% | 20
5% | 50
2% | 100
1% | | OCTOBER | 34 | 1296 | 312 | 297 | .95 | 3.2 | 1 | 48 | 39 | 34 | 31 | 27 | 25 | | NOVEMBER | 28 | 2442 | 1062 | 683 | .64 | 10.7 | 3 | 48 | 39 | 35 | 32 | 28 | 2 6 | | DECEMBER | 82 | 4319 | 1568 | 932 | .59 | 15.9 | 7 | 50 | 41 | 36 | 33 | 29 | 2 6 | | JANUARY | 107 | 3278 | 1464 | 823 | • 56 | 14.8 | 14 | 53 | 43 | 38 | 34 | . 30 | 28 | | FEBRUARY | 130 | 3260 | 1371 | 625 | .46 | 13.9 | 30 | 59 | 47 | 41 | 37 | 33 | 30 | | MARCH | 324 | 2913 | 1150 | 483 | .42 | 11.6 | 60 | 70 | 54 | 47 | 42 | 37 | 34 | | APRIL | 356 | 2053 | 1133 | 342 | .30 | 11.5 | 90 | 83 | 61 | 53 | 47 | 42 | 39 | | MAY | 296 | 1639 | 951 | 365 | . 38 | 9.6 | 120 | 114 | 79 | 65 | 56 | 47 | 42 | | JUNE | 104 | 1261 | 527 | 298 | •57 | 5.3 | 183 | 263 | 178 | 143 | 119 | 95 | 82 | | JULY | 54 | 407 | 170 | 79 | .4 6 | 1.7 | | | | | | | | | AUGUST | 39 | 222 | 81 | 30 | •37 | •8 | | | | | | | | | SEPTEMBER | 45 | 318 | 100 | 68 | •68 | 1.0 | | | | | | | | | ANNUAL | 359 | 1280 | 821 | 200 | .24 | 100 | | | | | | | | | DISCHARGE
YEARS, | | S, FOR IN | | | | | PERIOD
(CON- | DISC | | VAL, ÍN ' | OR INDICA
YEARS, AN | ND ANNUA | L | |---------------------|-----------------|------------------|-----------|----------|----------|-----------|------------------------|--------------|----------|-----------|------------------------|----------|-------| | 1.25
80% | 2
50% | 5
20 % | 10
10% | 25
4% | 50
2% | 100
1% | SECU-
TIVE
DAYS) |
2
50% | 5
20% | 10 | 25
4% | 50
2% | 100 | | 8020 | 11900 | 17300 | 21000 | 25700 | 29200 | 32800 | | | | | | | | | | | | | | | | 1 | 8940 | 12900 | 15400 | 18300 | 20400 | 22300 | | WEIGHTE | D SKEW : | 117 | | | | | 3 | 6530 | 9290 | 11000 | 13100 | 14600 | 16000 | | | | | | | | | 7 | 4610 | 6270 | 7240 | 8340 | 9070 | 9730 | | | | | | | | | 15 | 3190 | 4170 | 4720 | 5330 | 5720 | 6080 | | | | | | | | | 30 | 2460 | 3170 | 3580 | 4030 | 4320 | 4590 | 60 90 1920 1740 2440 2180 2760 2430 DURATION TABLE OF DAILY MEAN FLOW FOR PERIOD OF RECORD 1936-82 | | | DISC | HARGE, | IN CFS, | WHICH WAS | EQUALED | OR EXCE | EDED FOR | INDICATED | PERCENT | OF TIME | Ξ | | | |------|------|------|--------|---------|-----------|---------|---------|----------|-----------|---------|---------|-----|-----|-----| | 5% | 10% | 15% | 20% | 25% | 30% | 40% | 50% | 60% | 70% | 75% | 80% | 85% | 90% | 95% | | 2660 | 1840 | 1480 | 1260 | 1070 | 927 | 687 | 499 | 337 | 182 | 132 | 98 | 78 | 64 | 52 | #### 14185800 MIDDLE SANTIAM RIVER NEAR CASCADIA, OR LOCATION.--Lat 44°30'55", long 122°22'15", in NEt sec.19, T.12 S., R.4 E., Linn County, Hydrologic Unit 17090006, on right bank 5.6 mi downstream from Bear Creek, 10 mi northeast of Cascadia, and at mile 17.5. DRAINAGE AREA .-- 104 mi 2. 1970 1370 1120 945 807 701 534 406 272 157 122 96 76 51 PERIOD OF RECORD.--August 1963 to September 1981. GAGE.--Water-stage recorder. Altitude of gage is 1,040 ft, from topographic map. REMARKS.--No regulation or diversion above station. AVERAGE DISCHARGE.--18 years, 630 ft³/s, 82.26 in/yr, 456,400 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 22,900 ft³/s Dec. 22, 1964, gage height, 15.75 ft, from floodmark, from rating curve extended above 7,000 ft³/s on basis of slope-area measurement of peak flow; minimum, 28 ft³/s Oct. 17, 26, 27, 1974. #### STATISTICAL SUMMARIES | | ONTHLY AN | ID ANNUAL | MEAN DIS | SCHARGES | 1964-81 | | MA | | | | OF ANNUAL
RECORD 19 | |)W |
--|--|--|--|---|--|---------------------------|---|--|--|--|--|---|-----------| | | MINIMUM | MAX1MUM | MEAN | STAN-
DARD
DEVIA-
TION | COEFFI-
CIENT OF
VARI- | PERCENT
OF
ANNUAL | PERIOD
(CON-
SECU- | DISCH | INTERVAL | _, IN YE | OR INDICAT
ARS, AND A
ABILITY, I | ANNUAL NO |)N- | | MONTH | (CFS) | (CFS) | (CFS) | (CFS) | ATION | RUNOFF | TIVE
DAYS) | 2
50% | 5
20 % | 10
10% | 20
5 % | 50
2 % | 100
1% | | OCTOBER | 40 | 575 | 208 | 164 | .79 | 2.8 | 1 | 45 | 36
77 | 33 | 30 | | | | NOVEMBER | 167 | 1739 | 801 | 500 | .62 | 10.6 | 3 | 45 | 37 | 33 | 30 | | | | DECEMBER | 121 | 3356 | 1274 | 795 | •62 | 16.8 | 7 | 46 | 38 | 34 | 31 | | | | JANUARY | 169 | 2244 | 1260 | 599 | • 48 | 16.7 | 14 | 50 | 40 | 36 | 33 | | | | FEBRUARY | 178 | 1851 | 883 | 435 | .49 | 11.7 | 30 | 56 | 45 | 40 | 36 | | | | MARCH | 354 | 2218 | 796 | 431 | •54 | 10.5 | 60 | 67 | 52 | 46 | 42 | | | | APRIL | 409 | 1273 | 807 | 272 | .34 | 10.7 | 90 | 80 | 61 | 53 | 48 | | | | MAY | 342 | 1296 | 781 | 310 | -40 | 10.3 | 120 | 99 | 75 | 65 | 58 | | | | JUNE | 152 | 986 | 426 | 260 | .61 | 5.6 | 183 | 198 | 148 | 127 | 113 | | | | JULY | 79 | 242 | 141 | 54 | . 39 | 1.9 | | | | | | | | | AUGUST | 46 | 166 | 84 | 31 | •37 | 1.1 | | | | | | | | | SEPTEMBER | 43 | 218 | 102 | 63 | •61 | 1.3 | ANNUAL
 | 286

TUDE AND | 976

PROBABILI | 630
TY OF IN | 176
 | .28
 | 100

FLOW |
MA(|
SNITUDE | AND PROE | BABILITY | OF ANNUAL | | | | MAGNI
DISCHARGE,
YEARS, | TUDE AND
BASE
, IN CFS, | PROBABILI
D ON PERI | TY OF IN
OD OF RE
CATED RE
NCE PROE | NSTANTANE
CORD 196
CURRENCE
BABILITY, | OUS PEAK
4-81
INTERVAL
IN PERCE | FLOW
, IN | PERIOD
(CON- | BASE
DISCH | IARGE, IN | RIOD OF F | OF ANNUAL RECORD 19 OR INDICAT YEARS, AND | P64-81 ED RECUR ANNUAL | RENCE | | MAGNITO | TUDE AND
BASE
, IN CFS,
AND ANNUA | PROBABILI
D ON PERI
FOR INDI
L EXCEEDA | TY OF IN
OD OF RE
CATED RE
NCE PROE | NSTANTANE
CORD 196
CURRENCE
BABILITY, | OUS PEAK
4-81
INTERVAL
IN PERCE | FLOW
, IN
NT | PERIOD
(CON-
SECU- | BASE
DISCH | IARGE, INTERVENCE | CFS, FO | RECORD 19 OR INDICAT (FEARS, AND ABILITY, I | P64-81 ED RECUR ANNUAL N PERCEN | RENCE | | MAGNI
DISCHARGE
YEARS, | TUDE AND
BASE
, IN CFS, | PROBABILI
D ON PERI
FOR INDI
L EXCEEDA | TY OF IN
OD OF RE
CATED RE
NCE PROE | NSTANTANE
CORD 196
CURRENCE
BABILITY, | OUS PEAK
4-81
INTERVAL
IN PERCE | FLOW
, IN
NT
100 | PERIOD
(CON-
SECU-
TIVE | BASE
DISCH | ID ON PERILIPED | CE PROB | RECORD 19 OR INDICAT (FEARS, AND ABILITY, 1 | P64-81 FED RECUR ANNUAL N PERCEN | RENCE | | MAGNITO | TUDE AND
BASE
, IN CFS,
AND ANNUA | PROBABILI
D ON PERI
FOR INDI
L EXCEEDA | TY OF IN
OD OF RE
CATED RE
NCE PROE | NSTANTANE
CORD 196
CURRENCE
BABILITY, | OUS PEAK
4-81
INTERVAL
IN PERCE | FLOW
, IN
NT | PERIOD
(CON-
SECU- | BASE
DISCH | IARGE, INTERVENCE | CFS, FO | RECORD 19 OR INDICAT (FEARS, AND ABILITY, I |
P64-81 ED RECUR ANNUAL N PERCEN | RENCE | | MAGNITO | TUDE AND
BASE
, IN CFS,
AND ANNUA
2
50% | PROBABILI
D ON PERI
FOR INDI
L EXCEEDA | TY OF IN
OD OF RE
CATED RE
NCE PROE | NSTANTANE
CORD 196
CURRENCE
BABILITY, | OUS PEAK
4-81
INTERVAL
IN PERCE | FLOW
, IN
NT
100 | PERIOD (CON- SECU- TIVE DAYS) | DISCH | ID ON PER
INTERNEXCEEDAN
5
20% | I CFS, FC
VAL, IN N
ICE PROBA | RECORD 19 OR INDICAT FEARS, AND ABILITY, 1 25 4% | P64-81 FED RECUR ANNUAL N PERCEN | RENCE | | MAGNITUSCHARGE YEARS, 1.25 80% | TUDE AND BASE IN CFS, AND ANNUA 2 50% | PROBABILID ON PERI | TY OF IN
OD OF RE
CATED RE
NCE PROE | NSTANTANE
ECORD 196
CURRENCE
BABILITY,
25
4% | OUS PEAK
4-81
INTERVAL
IN PERCE | FLOW
, IN
NT
100 | PERIOD (CON-
SECU-
TIVE
DAYS) | DISCH | IARGE, IN INTERVEXCEEDAN | I CFS, FC
(AL, IN)
ICE PROBA
10
10
11100 | RECORD 19 OR INDICAT (FARS, AND (FARS, AND (FARS) (| ED RECUP
O ANNUAL
N PERCEN
50
2% | RENCE | | MAGNI | TUDE AND BASE IN CFS, AND ANNUA 2 50% | PROBABILI
D ON PERI
FOR INDI
L EXCEEDA | TY OF IN
OD OF RE
CATED RE
NCE PROE | NSTANTANE
ECORD 196
CURRENCE
BABILITY,
25
4% | OUS PEAK
4-81
INTERVAL
IN PERCE | FLOW
, IN
NT
100 | PERIOD
(CON-
SECU-
TIVE
DAYS) | DISCH | ID ON PER
INTERNEXCEEDAN
5
20% | 10 OF F | PRECORD 19 | P64-81 FED RECUR ANNUAL N PERCEN | RENCE | | MAGNITUSCHARGE YEARS, 1.25 80% | TUDE AND BASE IN CFS, AND ANNUA 2 50% | PROBABILID ON PERI | TY OF IN
OD OF RE
CATED RE
NCE PROE | NSTANTANE
ECORD 196
CURRENCE
BABILITY,
25
4% | OUS PEAK
4-81
INTERVAL
IN PERCE | FLOW
, IN
NT
100 | PERIOD (CON- SECU- TIVE DAYS) 1 3 7 | BASE DISCH 2 50% 6280 4750 3450 | D ON PER
IARGE, IN
INTERV
EXCEEDAN
5
20%
9360
7070
4870 | 10D OF FOR A CONTROL OF THE T | 13000
13000
6540 | P64-81 TED RECUF O ANNUAL N PERCEN 50 2% | RENCE | | MAGNITUSCHARGE YEARS, 1.25 80% | TUDE AND BASE IN CFS, AND ANNUA 2 50% | PROBABILID ON PERI | TY OF IN
OD OF RE
CATED RE
NCE PROE | NSTANTANE
ECORD 196
CURRENCE
BABILITY,
25
4% | OUS PEAK
4-81
INTERVAL
IN PERCE | FLOW
, IN
NT
100 | PERIOD (CON-
SECU-
TIVE DAYS) | D1SCH 2 50% 6280 4750 3450 2420 | D ON PER
IARGE, IN
INTERV
EXCEEDAN
5
20%
9360
7070
4870
3240 | 10 OF F | DR INDICAT
YEARS, AND
ABILITY, 1
25
4%
13000
10200
6540
4190 | P64-81 PED RECUF ANNUAL N PERCEN 50 2% | RENCE | | MAGNITURE TO THE MAGNIT | TUDE AND BASE IN CFS, AND ANNUA 2 50% | PROBABILID ON PERI | TY OF IN
OD OF RE
CATED RE
NCE PROE | NSTANTANE
ECORD 196
CURRENCE
BABILITY,
25
4% | OUS PEAK
4-81
INTERVAL
IN PERCE | FLOW
, IN
NT
100 | PERIOD (CON-
SECU-
TIVE DAYS) | DISCH 2 50% 6280 4750 3450 2420 1830 | 9360
7070
9360
7070
93240
2470 | 10 10%
10 10%
10 10%
1100 8500
5670 3700 2860 | 13000
10200
640
4190
3320 | P64-81 TED RECUF O ANNUAL N PERCEN 50 2% | RENCE | | MAGNITUSCHARGE YEARS, 1.25 80% | TUDE AND BASE IN CFS, AND ANNUA 2 50% | PROBABILID ON PERI | TY OF IN
OD OF RE
CATED RE
NCE PROE | NSTANTANE
ECORD 196
CURRENCE
BABILITY,
25
4% | OUS PEAK
4-81
INTERVAL
IN PERCE | FLOW
, IN
NT
100 | PERIOD (CON-
SECU-
TIVE DAYS) | D1SCH 2 50% 6280 4750 3450 2420 | D ON PER
IARGE, IN
INTERV
EXCEEDAN
5
20%
9360
7070
4870
3240 | 10 OF F | DR INDICAT
YEARS, AND
ABILITY, 1
25
4%
13000
10200
6540
4190 | P64-81 PED RECUF ANNUAL N PERCEN 50 2% | RENCE | | MAGNITOLISCHARGE YEARS, 1.25 80% | TUDE AND BASE IN CFS, AND ANNUA 2 50% | PROBABILID ON PERI | TY OF IN OD OF RE | ISTANTANE CCORD 196 CCURRENCE SABILITY, 25 4% | OUS PEAK
4-81
INTERVAL
IN PERCE | FLOW , IN NT 100 1% | PERIOD
(CON-
SECU-
TIVE
DAYS)
 | DISCH 2 50% 6280 4750 3450 2420 1830 1450 1280 | 9360
7070
4870
9360
7070
4870
2470
1930
1670 | 10 10%
1100 OF II
10 10%
10 10%
11100 8500 5670 2860 2240 1930 | 13000
10200
6540
4190
2630 | P64-81 PED RECUF ANNUAL N PERCEN 50 2% | RENCE | | MAGNITUSCHARGE YEARS, 1.25 80% | TUDE AND BASE IN CFS, AND ANNUA 2 50% | PROBABILI
D ON PERI
FOR INDI
L EXCEEDA
5
20%
11500 1 | TY OF IN OD OF RECATED RENCE PROE | STANTANE CORD 196 CURRENCE SABILITY, 25 4\$ 8000 | OUS PEAK 4-81 INTERVAL IN PERCE 50 2% OF DAILY | FLOW , IN NT 100 1% | PERIOD (CON-
SECU-
TIVE DAYS) | DISCH 2 50% 6280 4750 2420 1830 1450 1280 OF RECC | 10 ON PER
1 INTERN
EXCEEDAN
5 20%
9360
7070
4870
3240
2470
1930
1670 | 100 OF I | DR INDICAT
(EARS, AND
ABILITY, 1
25
4%
13000
10200
6540
4190
3320
2630
2260 | P64-81 PED RECUF ANNUAL N PERCEN 50 2% | RENCE | 14185900 OUARTZVILLE CREEK NEAR CASCADIA. OR LOCATION.--Lat 44°32'25", long 122°26'05", in NW± sec.10, T.12 S., R.3 E., Linn County, Hydrologic Unit 17090006, on Bureau of Land Management land, on right bank 80 ft downstream from Panther Creek, 10 mi north of Cascadia, and at mile 6.6. DRAINAGE AREA .-- 99.2 mi2. PERIOD OF RECORD.--August 1963 to November 1964 (destroyed by flood of December 1964); October 1965 to September 1982. GAGE.--Water-stage recorder and crest-stage gage. Altitude of gage is 1,050 ft, from topographic map. Aug. 13, 1963, to Dec. 22, 1964, water-stage recorder on left bank at present datum. REMARKS. -- No regulation or diversion above station. AVERAGE DISCHARGE.--18 years (water years 1964, 1966-82), 676 ft³/s, 92.54 in/yr, 489,800 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 22,400 ft³/s Jan. 20, 1972, gage height, 16.38 ft; minimum, 14 ft³/s Aug. 19-23, 1973. EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum discharge, 36,500 ft³/s Dec. 22, 1964, from slope-area measurement of peak flow. #### STATISTICAL SUMMARIES MONTHLY AND ANNUAL MEAN DISCHARGES 1964-82 MAGNITUDE AND PROBABILITY OF ANNUAL LOW FLOW BASED ON PERIOD OF RECORD 1967-82 | | MINIMUM | MAXIMUM | MEAN | STAN-
DARD
DEVIA-
TION | COEFFI-
CIENT OF
VARI- | PERCENT
OF
ANNUAL | PERIOD
(CON-
SECU- | | INTERVAL | CFS, FOF
, IN YEAF
CE PROBAE | RS, AND A | NNUAL N | ON- | |-----------|---------|---------|------------------|---------------------------------|------------------------------|-------------------------|--------------------------|----------|----------|------------------------------------|-----------|------------------|-----------| | MONTH | (CFS) | (CFS) | (CFS) | (CFS) | ATION | RUNOFF | TIVE
DAYS) | 2
50% | 5
20% | 10
10% | 20
5% | 50
2 % | 100
1% | | OCTOBER | 30 | 753 | 268 | 233 | .87 | 3.3 | 1 | 27 | 20 | 18 | 16 | | | | NOVEMBER | 155 | 2224 | 971 | 611 | .63 | 12.0 | 3 | 27 | 21 | 18 | 16 | | | | DECEMBER | 110 | 2897 | 1426 | 780 | .55 | 17.6 | 7 | 28 | 21 | 18 | 16 | | | | JANUARY | 157 | 2450 | 1381 | 662 | .48 | 17.0 | 14 | 30 | 22 | 19 | 17 | | | | FEBRUARY | 208 | 2441 | 1079 | 597 | .55 | 13.3 | 30 | 34 | 26 | 23 | 21 | | | | MARCH | 329 | 2018 | 901 | 422 | .47 | 11.1 | 60 | 46 | 33 | 29 | 26 | | | | APRIL | 382 | 1245 | 840 | 251 | .30 | 10.3 | 90 | 61 | 42 | 35 | 31 | | | | MAY | 243 | 1114 | 660 | 247 | •37 | 8.1 | 120 | 85 | 56 | 46 | 39 | | | | JUNE | 97 | 711 | 327 | 205 | .63 | 4.0 | 183 | 190 | 131 | 107 | 90 | | | | JULY | 54 | 187 | 97 | 41 | .42 | 1.2 | | | | | | | | | AUGUST | 26 | 240 | 65 | 49 | .76 | .8 | | | | | | | | | SEPTEMBER | 29 | 268 | 105 | 86 | .82 | 1.3 | | | | | | | | | ANNUAL | 311 | 1113 | 676 [′] | 197 | .29 | 100 | | | | | | | | MAGNITUDE AND PROBABILITY OF INSTANTANEOUS PEAK FLOW BASED ON PERIOD OF RECORD 1964-82 MAGNITUDE AND PROBABILITY OF ANNUAL HIGH FLOW BASED ON PERIOD OF RECORD 1964-82 RQ | | | | | RECURRENC
ROBABILITY | | | PERIOD
(CON- | DISC | INTER | VAL, IN | OR INDICAT
YEARS, AND
ABILITY, I | ANNUAL | | |--------------------|--------------|----------------------|-----------|-------------------------|------------------|-----------|------------------------|----------|------------------|-----------|--|----------|-----------| | 1.25
80% | 2
50%
 | 5
20 %
 | 10
10% | 25
4%
 | 50
2 % | 100
1% | SECU-
TIVE
DAYS) | 2
50% | 5
20 % | 10
10% | 25
4% | 50
2% | 100
1% | | 8270 | 11500 | 16700 | 20700 | 26500 | | | | | | | | | | | | | | | | | | 1 | 8220 | 11000 | 12500 | 14200 | | | | WE I GHTE I | SKEW = | 501 | | | | | 3 | 5990 | 7860 | 8850 | 9880 | | | | | | | | | | | 7 | 4350 | 5610 | 6230 | 6810 | | | | | | | | | | | 15 | 2890 | 3690 | 4100 | 4520 | | | | | | | | | | | 30 | 2130 | 2710 | 3020 | 3340 | | | | | | | | | | | 60 | 1670 | 2140 | 2430 | 2780 | | | | | | | | | | | 90 | 1480 | 1880 | 2140 | 2450 | | | DURATION TABLE OF DAILY MEAN FLOW FOR PERIOD OF RECORD 1964-82 | | | DISC | ARGE, | IN CFS, | WHICH WAS | EQUALED | OR EXC | EEDED FOR | INDICATED | PERCENT | OF TIME | | | | |------------|------|------|-------|---------|-----------|---------|--------|-----------|-------------|---------|---------|-----|-----|-----| | 5 % | 10% | 15% | 20% | 25% | 30% | 40% | 50% | 60% | 70 % | 75% | 80% | 85% | 90% | 95% | | 2420 | 1570 | 1200 | 975 | 820 | 700 | 521 | 373 | 239 | 134 | 96 | 71 | 54 | 42 | 33 | #### 14186000 MIDDLE SANTIAM RIVER NEAR FOSTER, OR LOCATION.--Lat 44°27'35", long 122°31'25", in SE½ sec.2, T.13 S., R.2 E., Linn County, Hydrologic Unit 17090006, 0.5 mi upstream from Green Peter Creek and 8 mi northeast of Foster. DRAINAGE AREA. -- 271 mi2. PERIOD OF RECORD. -- August 1931 to September 1947. GAGE.--Staff gage. Datum of gage is 733.44 ft National Geodetic Vertical Datum of 1929 (Northern Pacific Railway benchmark). Prior to Sept. 14, 1931, staff gage and
Sept. 14, 1931, to Dec. 17, 1946, water-stage recorder, at same site and datum. REMARKS.--No diversion or regulation above station. AVERAGE DISCHARGE.--16 years (water years 1932-47), 1,449 ft³/s. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 41,800 ft³/s Dec. 28, 1945, gage height, 21.6 ft, from rating curve extended above 24,000 ft³/s by logarithmic plotting; minimum, 54 ft³/s Dec. 1, 1936, gage height, 1.25 ft. #### STATISTICAL SUMMARIES | 07111 | _ | | | | | | |--------------------------------------|----------------|---------|------------|--------|--------------|---------| MSED ON | I FENTOD C | I NECO | יככיפו טאוי | -4/ | | | | ACED ON | PERIOD C | E DECA | DD 1033- | -47 | | MONTHLY AND ANNUAL MEAN DISCHARGES 1 | 1932-4/ MAGNII | JUE ANU | PROBABILI | IT OF | ANNUAL LO | JW FLOW | | MONTHLY AND ANNUAL MEAN DISCHARGES | OZO 47 MACULT | IDE AND | DDADADIII | TV OF | A MANUTAL TO | NA CLOW | | | MINIMUM | MAXIMUM | MEAN | STAN-
DARD
DEVIA-
TION | COEFFI-
CIENT OF
VARI- | PERCENT
OF
ANNUAL | PERIOD
(CON-
SECU- | | INTERVAL | , IN YEAR | R INDICAT
RS, AND A
BILITY, I | NNUAL N | ON- | |-----------|---------|---------|-------|---------------------------------|------------------------------|-------------------------|--------------------------|------------------|------------------|-----------|-------------------------------------|----------|-----------| | MONTH | (CFS) | (CFS) | (CFS) | (CFS) | ATION | RUNOFF | TIVE
DAYS) | 2
50 % | 5
2 0% | 10
10% | 2 0
5 % | 50
2% | 100
1% | | OCTOBER | 74 | 975 | 421 | 305 | •72 | 2.4 | 1 | 77 | 65 | 60 | 56 | | | | NOVEMBER | 65 | 5397 | 1988 | 1454 | .73 | 11.4 | 3 | 78 | 66 | 61 | 57 | | | | DECEMBER | 582 | 5741 | 2792 | 1650 | .59 | 16.0 | 7 | 80 | 67 | 62 | 58 | | | | JANUARY | 491 | 5351 | 2471 | 1196 | .48 | 14.2 | 14 | 84 | 69 | 63 | 59 | | | | FEBRUARY | 780 | 4041 | 2156 | 947 | .44 | 12.4 | 30 | 92 | 76 | 69 | 65 | | | | MARCH | 648 | 5998 | 2383 | 1168 | .49 | 13.7 | 60 | 107 | 85 | 76 | 70 | | | | APRIL | 547 | 4042 | 2140 | 909 | .42 | 12.3 | 90 | 124 | 97 | 88 | 83 | | | | MAY | 487 | 3059 | 1509 | 802 | .53 | 8.7 | 120 | 174 | 121 | 102 | 89 | | | | JUNE | 220 | 3530 | 984 | 830 | .84 | 5.6 | 183 | 420 | 282 | 230 | 194 | | | | JULY | 126 | 614 | 294 | 130 | .44 | 1.7 | | | | | | | | | AUGUST | 80 | 199 | 134 | 38 | .28 | .8 | | | | | | | | | SEPTEMBER | 83 | 581 | 163 | 133 | .82 | .9 | | | | | | | | | ANNUAL | 913 | 2178 | 1449 | 352 | .24 | 100 | | | | | | | | | MAGN I TUDE | AND PROBABILITY | OF | INSTANTANEOUS PEAK | FLOW | |-------------|-----------------|----|--------------------|------| | | BASED ON PERIOD | OF | RECORD 1932-47 | | #### MAGNITUDE AND PROBABILITY OF ANNUAL HIGH FLOW BASED ON PERIOD OF RECORD 1932-47 | | | | | RECURRENC
ROBABILITY | | | PERIOD
(CON- | DISCI | INTER | VAL, ÍN | OR INDICAT
YEARS, AND
ABILITY, I | ANNUAL | | |-------------|----------------------|------------------|-------------------|-------------------------|------------------|---------------|------------------------|----------|------------------|-----------|--|-----------------|-----| | 1.25
80% | 2
5 0%
 | 5
20 % | 10
10 % | 25
4 % | 50
2 % | 100
1%
 | SECU-
TIVE
DAYS) | 2
50% | 5
20 % | 10
10% | 25
4% | 50
2% | 100 | | 5500 | 20900 | 28400 | 33500 | 40000 | | | | | | | | | | | | | | | | | | 1 | 15500 | 22100 | 26800 | 33300 | | _ | | IE I GHTE | D SKEW = | 108 | | | | | 3 | 11200 | 16500 | 20400 | 25600 | | - | | | | | | | | | 7 | 8110 | 11400 | 13500 | 15800 | | - | | | | | | | | | 15 | 5760 | 7840 | 9110 | 10600 | | - | | | | | | | | | 30 | 4470 | 5870 | 6630 | 7430 | | _ | | | | | | | | | 60 | 3580 | 4570 | 5110 | 5690 | | - | | | | | | | | | 90 | 3160 | 3900 | 4290 | 4690 | | | DURATION TABLE OF DAILY MEAN FLOW FOR PERIOD OF RECORD 1932-47 | | | DISC | HARGE, I | IN CFS, | WHICH WAS | EQUALED | OR EXCE | EDED FOR | INDICATED | PERCENT | OF TIME | | | | |------|------|------|----------|---------|-----------|---------|-------------|----------|-----------|---------|---------|-----|-----|-----| | 5% | 10% | 15% | 20% | 25% | 30% | 40% | 50 % | 60% | 70% | 75% | 80% | 85% | 90% | 95% | | 4690 | 3350 | 2740 | 2280 | 1950 | 1640 | 1180 | 846 | 555 | 301 | 211 | 161 | 126 | 104 | 83 | 91 14186500 MIDDLE SANTIAM RIVER AT MOUTH, NEAR FOSTER, OR LOCATION.--Lat 44°25'25", long 122°37'25", in NE¦SE; sec.24, T.13 S., R.1 E., Linn County, Hydrologic Unit 17090006, on right bank 2.7 mi northeast of Foster, and at mile 0.7. DRAINAGE AREA .-- 287 m12. PERIOD OF RECORD. -- October 1950 to September 1966. Prior to January 1951 monthly discharge only, published in WSP 1738. GAGE.--Water-stage recorder. Datum of gage is 562.14 ft National Geodetic Vertical Datum of 1929 (Corps of Engineers bench mark). Prior to Oct. 25, 1952, staff gage at same site and datum. REMARKS. -- Slight regulation from construction of Green Peter Dam above station. MONTHLY AND ANNUAL MEAN DISCHARGES 1951-66 AVERAGE DISCHARGE. -- 16 years, 1,775 ft3/s, 1,285,000 acre-ft/yr. 19600 27500 38900 46900 57500 WEIGHTED SKEW = EXTREMES FOR PERIOD OF RECORD.—Maximum discharge, 67,800 ft 3 /s Dec. 22, 1964, gage height, 25.80 ft, from rating curve extended above 34,000 ft 3 /s on the basis of slope-area measurement of peak flow; minimum, 66 ft 3 /s Sept. 10, 1966. #### STATISTICAL SUMMARIES MAGNITUDE AND PROBABILITY OF ANNUAL LOW FLOW BASED ON PERIOD OF RECORD 1952-66 STAN-DISCHARGE, IN CFS, FOR INDICATED RECURRENCE INTERVAL, IN YEARS, AND ANNUAL NON-DARD COEFFI-PERCENT PERIOD EXCEEDANCE PROBABILITY, IN PERCENT DEVIA-CIENT OF (CON-MINIMUM MAXIMUM MEAN TION VARI-ANNUAL SECU-MONTH (CFS) (CFS) (CFS) (CFS) ATION RUNOFF TIVE 100 DAYS) 50% 20% 10% 5% 2% 1% **OCTOBER** 85 2590 899 802 .89 4.2 101 84 77 72 NOVEMBER 126 2524 .56 11.8 73 4660 1411 102 85 78 DECEMBER 1066 9077 3493 2221 .64 16.3 105 87 79 74 JANUARY 7270 77 7**5**8 3189 14.9 110 **FEBRUARY** 1290 6405 3017 1368 .45 30 100 124 90 83 __ MARCH 1039 4015 2360 865 .37 11.0 60 155 121 105 94 APRII 1520 3427 2473 559 . 23 11.6 90 178 138 122 111 3017 MAY 850 1822 694 .38 8.5 120 232 171 149 135 JUNE 365 2162 907 516 . 57 4.2 183 549 30/ 332 289 JULY 177 714 325 143 .44 1.5 **AUGUST** 106 235 168 42 . 25 .8 SEPTEMBER 96 749 203 162 .80 .9 ANNUAL 1257 1775 2445 265 . 15 100 MAGNITUDE AND PROBABILITY OF INSTANTANEOUS PEAK FLOW MAGNITUDE AND PROBABILITY OF ANNUAL HIGH FLOW BASED ON PERIOD OF RECORD 1951-66 BASED ON PERIOD OF RECORD 1951-66 DISCHARGE, IN CFS, FOR INDICATED RECURRENCE INTERVAL, IN DISCHARGE. IN CFS. FOR INDICATED RECURRENCE YEARS, AND ANNUAL EXCEEDANCE PROBABILITY, IN PERCENT INTERVAL, IN YEARS, AND ANNUAL PERIOD EXCEEDANCE PROBABILITY, IN PERCENT (CON-100 SECU-80% 50% 20% 10% 4% 2% 1% TIVE 5 100 DURATION TABLE OF DAILY MEAN FLOW FOR PERIOD OF RECORD 1951-66 DAYS) 15 30 60 90 50% 20200 14600 9470 6790 5160 4040 3660 20% 29500 21000 13300 9000 6970 5290 4620 10% 36100 26000 16400 10600 8280 6160 5270 4% 45100 33300 20900 12700 10100 7300 6130 2% 1% -- | | | DIS | CHARGE, | IN CFS, | WHICH WAS | EQUALED | OR EXCE | EDED FOR | INDICATED | PERCEN1 | OF TIME | :
: | | | |------|------|------|---------|---------|-----------|---------|---------|----------|-----------|-------------|---------|--------|-----|-----| | 5% | 10% | 15% | 20% | 25% | 30% | 40% | 50% | 60% | 70% | 7 5% | 80% | 85% | 90% | 95% | | 5540 | 3970 | 3150 | 2630 | 2220 | 1930 | 1470 | 1100 | 745 | 405 | 282 | 216 | 173 | 140 | 111 | #### 14187000 WILEY CREEK NEAR FOSTER, OR LOCATION.--Lat 44°22'20", long 122°37'20", in NE±NE± sec.12, T.14 S., R.1 E., Linn County, Hydrologic Unit 17090006, on right bank 0.5 mi downstream from Little Wiley Creek, 3.5 mi southeast of Foster, and at mile 4.4. DRAINAGE AREA. -- 51.8 mi2. PERIOD OF RECORD. -- October 1947 to July 1973. GAGE.--Water-stage recorder. Datum of gage is 716.08 ft National Geodetic Vertical Datum of 1929 (Corps of Engineers bench mark). Prior to Apr. 6, 1965, water-stage recorder at present site at datum 2.00 ft higher. Apr. 6 to Aug. 17, 1965, nonrecording gage at present site and datum. REMARKS.--No regulation or diversion above station. AVERAGE DISCHARGE.--25 years (water years 1948-72), $224 \text{ ft}^3/\text{s}$, 58.72 ln/yr, 162,300 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 9,640 ft³/s Jan. 21, 1972, gage height, 9.28 ft, from rating curve extended above 3,700 ft³/s; maximum gage height, 11.80 ft, present datum, Dec. 21, 1964 (backwater from debris); minimum discharge, 5.6 ft³/s Nov. 26, 1952. #### STATISTICAL SUMMARIES MONTHLY AND ANNUAL MEAN DISCHARGES 1948-72 MAGNITUDE AND PROBABILITY OF ANNUAL LOW FLOW BASED ON PERIOD OF RECORD 1949-72 | | MINIMUM | MAXIMUM | MEAN | STAN-
DARD
DEVIA-
TION | COEFFI-
CIENT OF
VARI- | PERCENT
OF
ANNUAL | PERIOD
(CON-
SECU- | 1 | NTERVAL, | CFS, FOR
IN YEARS
E PROBABI | , AND AN | INUAL NO | N- | |-----------|---------|---------|-------|---------------------------------|------------------------------|-------------------------|--------------------------|----------|----------|-----------------------------------|----------|------------------|-----------| | MONTH | (CFS) | (CFS) | (CFS) | (CFS) | ATION | RUNOFF | TIVE
DAYS) | 2
50% | 5
20% | 10
10% | 20
5% | 50
2 % | 100
1% | | OCTOBER | 9.7 | 397 | 103 | 97 | .94 | 3.8 | 1 | 9.8 | 7.9 | 7.0 | 6.5 | 5.9 | | | NOVEMBER | 16 | 620 | 286 | 154 | .54 | 10.6 | 3 | 10 | 8.1 | 7.2 | 6.6 | 6.0 | | | DECEMBER | 109 | 1107 | 431 | 250 | .58 | 16.0 | 7 | 10 | 8.5 | 7.6 | 7.0 | 6.4 | | | JANUARY | 82 | 842 | 482 | 246 | -51 | 17.8 | 14 | 11 | 9.0 | 8.1 | 7.4 | 6.7 | | | FEBRUARY | 195 | 944 | 416 | 177 | .43 | 15.4 | 30 | 13 | 10 | 9.0 | 8.2 | 7.5 | | | MARCH | 116 | 625 | 354 | 134 | .38
 13.1 | 60 | 16 | 12 | 11 | 9.6 | 8.6 | | | APRIL | 133 | 490 | 273 | 87 | .32 | 10.1 | 90 | 19 | 14 | 12 | 11 | 10.0 | | | MAY | 64 | 353 | 196 | 79 | .40 | 7.3 | 120 | 26 | 19 | 16 | 14 | 12 | | | JUNE | 28 | 165 | 86 | 38 | .45 | 3.2 | 183 | 60 | 43 | 35 | 30 | 24 | | | JULY | 17 | 76 | 35 | 18 | .52 | 1.3 | | | | | | | | | AUGUST | 9.3 | 53 | 19 | 9.0 | .48 | .7 | | | | | | | | | SEPTEMBER | 9.5 | 68 | 22 | 14 | .65 | .8 | | | | | | | | | ANNUAL | 170 | 318 | 224 | 39 | .17 | 100 | | | | | | | | MAGNITUDE AND PROBABILITY OF INSTANTANEOUS PEAK FLOW BASED ON PERIOD OF RECORD 1948-72 MAGNITUDE AND PROBABILITY OF ANNUAL HIGH FLOW BASED ON PERIOD OF RECORD 1948-72 | | | | | | ICE INTER | | PERIOD
(CON- | | INTERV | AL, IN Y | EARS, AN | TED RECUI
D ANNUAL
IN PERCEI | | |-------------|--------------|------------------|-----------|----------|-----------|-----------|------------------------|----------|----------|-----------|----------|------------------------------------|-----------| | 1.25
80% | 2
50%
 | 5
20 % | 10
10% | 25
4% | 50
2% | 100
1% | SECU-
TIVE
DAYS) | 2
50% | 5
20% | 10
10% | 25
4% | 50
2% | 100
1% | | 2380 | 3550 | 5380 | 6740 | 8620 | 10100 | | | | | | | | | | | | | | | | | 1 | 2550 | 3760 | 4680 | 5960 | 7020 | | | EIGHTED | SKEW = | - 158 | | | | | 3 | 1950 | 2720 | 3280 | 4040 | 4650 | | | | | | | | | | 7 | 1340 | 1840 | 2200 | 2670 | 3040 | | | | | | | | | | 15 | 944 | 1230 | 1410 | 1620 | 1780 | | | | | | | | | | 30 | 711 | 876 | 982 | 1110 | 1210 | | | | | | | | | | 60 | 558 | 691 | 784 | 906 | 1000 | _ | | | | | | | | | 90 | 492 | 596 | 665 | 755 | 823 | _ | DURATION TABLE OF DAILY MEAN FLOW FOR PERIOD OF RECORD 1948-72 | _ | | | DISC | HARGE, | IN CFS, | WHICH WAS | EQUALED | OR EXCE | EDED FOR | INDICATE | PERCE | NT OF TIM | 4E | | | |---|-----|-----|------|--------|---------|-----------|---------|---------|----------|----------|-------|-----------|-----|-----|-----| | _ | 5% | 10% | 15% | 20% | 25% | 30% | 40% | 50% | 60% | 70% | 75% | 80% | 85% | 90% | 95% | | | 767 | 520 | 409 | 337 | 285 | 242 | 180 | 128 | 80 | 45 | 33 | 24 | 19 | 15 | 12 | WILLAMETTE KIVER BASIN 14187500 SOUTH SANTIAM RIVER AT WATERLOO. OR LOCATION.--Lat 44°29'55", long 122°49'20", in SW‡NW‡ sec.28, T.12 S., R.1 W., Linn County, Hydrologic Unit 17090006, on left bank 0.1 mi downstream from highway bridge at Waterloo, 2.1 mi upstream from Hamilton Creek, and at mile 23.3. DRAINAGE AREA .-- 640 mi2. 9570 6650 5370 4510 3840 3300 2460 1770 PERIOD OF RECORD.--July 1905 to March 1907, October 1910 to December 1911 (gage heights only January to December 1911), July 1923 to September 1982. Monthly discharge only for some periods, published in WSP 1318. Published as "South Fork of Santiam River at Waterloo" 1905-07, 1910-11. GAGE.--Water-stage recorder. Datum of gage is 370.39 ft National Geodetic Vertical Datum of 1929. Prior to Dec. 31, 1911, nonrecording gage at site 0.5 mi downstream at datum about 5.0 ft lower. July 1, 1923, to Nov. 12, 1934, nonrecording gage, at present site and datum. REMARKS.--Flow regulated since October 1966 by Green Peter Lake and since December 1966 by Foster Lake. No diversion above station. AVERAGE DISCHARGE.--60 years (water years 1906, 1924-82), 2,935 ft³/s, 2,126,000 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 95,200 ft³/s Dec. 22, 1964, gage height, 24.50 ft; minimum, 61 ft³/s Oct. 12, 1966. #### STATISTICAL SUMMARIES (BEFORE THE CONSTRUCTION OF GREEN PETER AND FOSTER DAMS) MONTHLY AND ANNUAL MEAN DISCHARGES 1906-65 MAGNITUDE AND PROBABILITY OF ANNUAL LOW FLOW BASED ON PERIOD OF RECORD 1907-65 93 | 1.25
80%
26300 | 2
50%
37900
SKEW = | 20%
 | DURATIO | 0900 9 | | MEAN FLOW | DAYS) 1 3 7 15 30 60 90 FOR PERIOD | | 20% 42000 31400 21300 14600 11200 8670 7660 | 50700
38000
24900
16600
12600
9820
8590 | 62100
47000
29200
14300
11200
9700 | 70700
54000
32400
20500
15400
12200
10500 | 79600
61300
22000
1500
11200 | |----------------------|-----------------------------|----------------------|----------|---------------|--|-----------|--------------------------------------|--|--|---|--|---|---| | 1.25
80%
26300 | 50%

37900 | 20%
 | 66100 8 | 0900 9 | | | DAYS) 1 3 7 15 30 60 90 | 29400
22000
15700
11400
8730
6860
6150 | 20%
42000
31400
21300
14600
11200
8670
7660 | 50700
38000
24900
16600
12600
9820
8590 | 62100
47000
29200
18900
14300
11200 | 70700
54000
32400
20500
15400
12200 | 79600
61300
35600
22000
16500 | | 1.25
80%
26300 | 50%

37900 | 20%
 | | | 2200 1040 | 000 | DAYS) 1 3 7 15 30 60 | 50%
29400
22000
15700
11400
8730
6860 | 42000
31400
21300
14600
11200
8670 | 50700
38000
24900
16600
12600
9820 | 62100
47000
29200
18900
14300
11200 | 70700
54000
32400
20500
15400
12200 | 79600
61300
35600
22000
16500 | | 1.25
80%
26300 | 50%

37900 | 20%
 | | | 2200 1040 | 000 | DAYS) 1 3 7 15 30 60 | 50%
29400
22000
15700
11400
8730
6860 | 42000
31400
21300
14600
11200
8670 | 50700
38000
24900
16600
12600
9820 | 62100
47000
29200
18900
14300
11200 | 70700
54000
32400
20500
15400
12200 | 79600
61300
35600
22000
16500 | | 1.25
80%
26300 | 50%

37900 | 20%
 | | | 2200 1040 | 000 | DAYS) 1 3 7 15 | 50%
29400
22000
15700
11400 | 20%
42000
31400
21300
14600 | 10%
50700
38000
24900
16600 | 4%
62100
47000
29200
18900 | 2%
70700
54000
32400
20500 | 79600
61300
35600
22000 | | 1.25
80%
26300 | 50%

37900 | 20%
 | | | 2200 1040 | 000 | DAYS) 1 3 7 | 50%

29400
22000
15700 | 20%
42000
31400
21300 | 10%
50700
38000
24900 | 4%
62100
47000
29200 | 2%
70700
54000
32400 | 100
1%
79600
61300
35600 | | 1.25
80%
26300 | 50%

37900 | 20%
 | | | 2200 1040 | 000 | DAYS)

1
3 | 50%
 | 20%
42000
31400 | 10%

50700
38000 | 4%
62100
47000 | 2%
70700
54000 | 100
1%
79600
61300 | | 1.25
80%
26300 | 50%

37900 | 20%
 | | | 2200 1040 | 000 | DAYS)
 | 50%
 | 20%
 | 10 %

50700 | 4%
62100 | 2 %

70700 | 100
1%
79600 | | 1.25
80% | 50% | 20% | | | 2200 1040 | 000 | DAYS) | 50 % | 20% | 10% | 4% | 2% | 100 | | 1.25
80% | 50% | 20% | | | 2200 1040 | 000 | | | | | | | 100 | | 1.25 | _ | - | 10% | | | | | | | | | | 100 | | 1.25 | _ | - | 104 | | | 1,0 | | | | | 25 | 50 | | | | | 5 | 10 | 25
4% | 50 · · · · · · · · · · · · · · · · · · · | 100
1% | SECU-
TIVE | |
5 | 10 | | | ENT | | | | | | | | | (CON- | | EXCEEDAN | ICE PROBA | BILITY, | IN PERCE | | | | | | | | IN PERCE | | PER10D | 01301 | | | EARS, AN | | | | I SCHARGE . | IN CES. | FOR IND | CATED RE | CURRENCE | INTERVAL | IN | | DISCH | ARGE IN | CES EC | OR INDICA | TED RECL | IRRENCE | | MAGNIT | | PROBABIL
D ON PER | | | OUS PEAK F
6-65 | FLOW | MA | | | | OF ANNUA | | LOW | | NNUAL | 1704 | 4552
 | 2910 | 680 | .23 | 100 | | | | | | | | | EPTEMBER | 144 | 1118 | 321 | 235 | .73 | .9 | | | | | | | | | UGUST | 126 | 385 | 261 | 72 | .28 | •7 | | | | | | | | | ULY | 176 | 1214 | 550 | 250 | . 45 | 1.6 | | | | | | | | | UNE | 437 | 5906 | 1721 | 1111 | .65 | 4.9 | 183 | 850 | 579 | 474 | 402 | 334 | 295 | | ΙΑΥ | 862 | 5875 | 3002 | 1379 | . 46 | 8.5 | 120 | 372 | 249 | 204 | 174 | 146 | 131 | | PRIL | 1056 | 7935 | 4049 | 1419 | .35 | 11.4 | 90 | 268 | 196 | 168 | 148 | 129 | 118 | | ARCH | 1212 | 10530 | 4386 | 1815 | .41 | 12.4 | 60 | 225 | 171 | 148 | 131 | 114 | 104 | | EBRUARY | 1525 | 12070 | 5436 | 2526 | .46 | 15.3 | 30 | 184 | 146 | 130 | 118 | 107 | 100 | | ANUARY | 898 | 12220 | 5110 | 2729 | .53 | 14.4 | 14 | 164 | 132 | 118 | 109 | 99 | 94 | | ECEMBER | 1068 | 15470 | 5314 | 3088 | .58 | 15.0 | 7 | 156 | 126 | 114 | 105 | 96 | 90 | | OVEMBER | 111 | 10340 | 4081 | 2772 | .68 | 11.5 | 3 | 152 | 124 | 112 | 104 | - 96 | 90 | | CTOBER | 143 | 4898 | 1192 | 1146 | .96 | 3.4 | 1 | 150 | 123 | 111 | 103 | 95 | 90 | | | (0137 | (013) | (0/3) | (013) | ATTON | KONOTT | DAYS) | 50 % | 20% | 10% | 5 % | 2% | 1% | | 011111 | (CFS) | (CFS) | (CFS) | (CFS) | ATION | RUNOFF | TIVE | 2 | 5 | 10 | 20 | 50 | 100 | | IONTH | MINIMUM | MAXIMUM | MEAN | TION | VARI~ | ANNUAL | SECU- | | LACELDA | CE FROOF | | | | | | | | | DEVIA- | CIENT OF | OF | (CON- | | | | ABILITY, | | | | | | | | STAN-
DARD | COEFFI- | PERCENT | PERIOD | 01301 | HARGE, IN | | ARS, AND | | | ### 14187500 SOUTH SANTIAM RIVER AT WATERLOO, OR--Continued ### STATISTICAL SUMMARIES (AFTER THE COMPLETION OF GREEN PETER AND FOSTER DAMS) MONTHLY AND ANNUAL MEAN DISCHARGES 1967-82 MAGNITUDE AND PROBABILITY OF ANNUAL LOW FLOW BASED ON PERIOD OF RECORD 1968-82 | | MINIMUM | MAXIMUM | MEAN | STAN-
DARD
DEVIA-
TION | COEFFI-
CIENT OF
VARI- | PERCENT
OF
ANNUAL | PERIOD
(CON-
SECU- | DISC | INTERVAL | ., IN YE | OR INDICA
ARS, AND
ABILITY, | ANNUAL NO |)N- | |-------------------------|----------------------------------|-------------------------------------|-------------------|---------------------------------|------------------------------|-------------------------
--|--|---|---|--|--|-----------| | MONTH | (CFS) | (CFS) | (CFS) | (CFS) | ATION | RUNOFF | TIVE
DAYS) | 2
50% | 5
20% | 10
10% | 20
5% | 50
2% | 100
1% | | OCTOBER | 666 | 5530 | 2161 | 1103 | •51 | 5.9 | 1 | 574 | 478 | 435 | 401 | | | | NOVEMBER | 1807 | 9195 | 4431 | 2024 | .46 | 12.1 | 3 | 581 | 484 | 440 | 406 | | | | DECEMBER | 1126 | 12910 | 6963 | 3010 | .43 | 19.1 | 7 | 603 | 499 | 450 | 413 | | | | IANUARY | 713 | 9194 | 6216 | 2547 | .41 | 17.0 | 14 | 613 | 507 | 458 | 420 | | | | EBRUARY | 597 | 8078 | 3923 | 2115 | .54 | 10.7 | 30 | 641 | 537 | 488 | 450 | | | | MARCH | 1115 | 9649 | 3184 | 2245 | .71 | 8.7 | 60 | 711 | 602 | 555 | 522 | | | | PRIL | 1059 | 4850 | 2708 | 1197 | .44 | 7.4 | 90 | 847 | 689 | 615 | 559 | | | | 1AY | 852 | 3671 | 2375 | 1060 | .45 | 6.5 | 120 | 1000 | 799 | 701 | 625 | | | | IUNE | 678 | 3464 | 1507 | 873 | .58 | 4.1 | 183 | 1370 | 1080 | 948 | 843 | | | | JULY | 470 | 1234 | 742 | 178 | .24 | 2.0 | | 1270 | 1000 | 740 | ر40 | | | | NUGUST | 470
475 | 1234 | 742
855 | 218 | . 25 | 2.0 | | | | | | | | | SEPTEMBER | 473 | | | 583 | | 4.0 | | | | | | | | | DEFILMOER | 4/3 | 2769 | 1469 | 202 | .40 | 4.0 | | | | | | | | | ANNUAL | 1407 | 4666 | 3043 | 895 | .29 | 100 | | | | | | | | | | , IN CFS, | FOR INDIC | | CURRENCE | INTERVAL | | | | HARGE, IN | CFS, FO | RECORD 19 | TED RECUR | RENCE | | | , IN CFS, | FOR INDIC | CATED RE | CURRENCE | IN PERCEI | NT
 | PERIOD
(CON-
SECU- | | HARGE, IN | CFS, F(| | TED RECUR | | | YEARS, A | , IN CFS, | FOR INDIC | CATED RE | CURRENCE | IN PERCEI | | | | HARGE, IN | CFS, F(| OR INDICAT | TED RECUR | IT
100 | | YEARS, A | , IN CFS,
AND ANNUA | FOR INDIC
L EXCEEDAL | CATED RENCE PROB | CURRENCE
ABILITY, | IN PERCEI | NT
100 | (CON-
SECU-
TIVE
DAYS) | DISCH | HARGE, IN
INTERV
EXCEEDAN
5
20% | CFS, FC
AL, IN Y
ICE PROBA | OR INDICA
(EARS, AND
ABILITY,
25
4% | TED RECUR
D ANNUAL
IN PERCEN
50
2% | IT
100 | | YEARS, /
1.25
80% | IN CFS,
AND ANNUA
2
50% | FOR INDIC
L EXCEEDAL | CATED RENCE PROB | CURRENCE
ABILITY, | IN PERCEI | NT
100 | (CON-
SECU-
TIVE
DAYS) | DISCH
2
50% | HARGE, IN
INTERV
EXCEEDAN
5
20% | I CFS, FC
AL, IN N
ICE PROBA
10
10% | OR INDICATERS, AND BILITY, 25 | TED RECURD ANNUAL IN PERCEN | 100
1% | | YEARS, A | IN CFS,
AND ANNUA
2
50% | FOR INDIC
L EXCEEDAL | CATED RENCE PROB | CURRENCE
ABILITY, | IN PERCEI | NT
100 | (CON-
SECU-
TIVE
DAYS) | DISCH | HARGE, IN
INTERV
EXCEEDAN
5
20% | 10% | DR INDICA
(EARS, ANI
ABILITY,
25
4% | TED RECURD ANNUAL IN PERCEN | IT
100 | | YEARS, /
1.25
80% | IN CFS,
AND ANNUA
2
50% | FOR INDIC
L EXCEEDAL | CATED RENCE PROB | CURRENCE
ABILITY, | IN PERCEI | NT
100 | (CON-
SECU-
TIVE
DAYS) | DISCH
2
50%
15000
13900
12900 | HARGE, IN
INTERV
EXCEEDAN
5
20%
17100
15400
14300 | 10 10% | DR INDICA
(EARS, AND
MBILITY, 25
4%
18000
15800
14600 | TED RECURD ANNUAL IN PERCEN 50 2% | 100
1% | | YEARS, /
1.25
80% | IN CFS,
AND ANNUA
2
50% | FOR INDIC
L EXCEEDAL | CATED RENCE PROB | CURRENCE
ABILITY, | IN PERCEI | NT
100 | (CON-
SECU-
TIVE
DAYS)
 | DISCH
2
50%
15000
13900
12900
11000 | HARGE, IN
INTERV
EXCEEDAN
5
20%
17100
15400
14300
13000 | 10
10%
17700
15700
14500
13700 | DR INDICA' (EARS, ANI (BILITY, 25 4% 18000 15800 14600 14100 | TED RECUR
D ANNUAL
IN PERCEN
50
2% | 100
1% | | YEARS, /
1.25
80% | IN CFS,
AND ANNUA
2
50% | FOR INDIC
L EXCEEDAL | CATED RENCE PROB | CURRENCE
ABILITY, | IN PERCEI | NT
100 | (CON-
SECU-
TIVE
DAYS) | DISCH
2
50%
15000
13900
12900
11000
8900 | HARGE, IN
INTERV
EXCEEDAN
5
20%
17100
15400
14300
13000
11200 | 10 10% | DR INDICA
(EARS, AND
MBILITY, 25
4%
18000
15800
14600 | TED RECURD ANNUAL IN PERCEN 50 2% | 100
1% | | YEARS, /
1.25
80% | IN CFS,
AND ANNUA
2
50% | FOR INDIC
L EXCEEDAL | CATED RENCE PROB | CURRENCE
ABILITY, | IN PERCEI | NT
100 | (CON-
SECU-
TIVE
DAYS)
 | DISCH
2
50%
15000
13900
12900
11000 | HARGE, IN
INTERV
EXCEEDAN
5
20%
17100
15400
14300
13000 | 10
10%
17700
15700
14500
13700 | DR INDICA' (EARS, ANI (BILITY, 25 4% 18000 15800 14600 14100 | TED RECUR
D ANNUAL
IN PERCEN
50
2% | 100
1% | | 1.25
80% | IN CFS,
AND ANNUA
2
50% | FOR INDIC
L EXCEEDAL | CATED RENCE PROB | CURRENCE
ABILITY, | IN PERCEI | NT
100 | (CON-
SECU-
TIVE
DAYS) | DISCH
2
50%
15000
13900
12900
11000
8900 | HARGE, IN
INTERV
EXCEEDAN
5
20%
17100
15400
14300
13000
11200 | 10 10%
17700
15700
14500
12200 | DR INDICA
(EARS, AND
BILITY, 25
4%
18000
15800
14600
14100
13200 | TED RECUR
D ANNUAL
IN PERCEN
50
2% | 100
1% | | 1.25
80% | IN CFS,
AND ANNUA
2
50% | FOR INDIC
L EXCEEDAL | CATED RE NCE PROB | CURRENCE ABILITY, 25 4% | 50 2% | NT | (CON-
SECU-
TIVE
DAYS)
 | 2
50%
15000
13900
12900
11000
8900
7350
6600 | 17100
15400
17100
15400
14300
13000
11200
9360
8340 | 10 CFS, FC AL, IN N CE PROBA- 10 10% 17700 15700 14500 13700 12200 10300 9080 | DR INDICATER AND CARS, | TED RECUR
D ANNUAL
IN PERCEN
50
2% | 100
1% | | YEARS, /
1.25
80% | IN CFS,
AND ANNUA
2
50% | FOR INDIC
L EXCEEDAD
5
20% | DURATIO | CURRENCE ABILITY, 25 4% | IN PERCEI | 100
1%
 | (CON-
SECU-
TIVE
DAYS)
 | 2
50%
15000
13900
12900
11000
8900
7350
6600 | 17100
15400
17100
15400
14300
11200
11200
11200
11200
11200
11200
11200
11200
11200
11200 | 17700
15700
14500
13700
14500
13700
12200
9080 | 18000
15800
14100
14100
14100
14100
14100
14100
14100
14100
14100 | TED RECUR
D ANNUAL
IN PERCEN
50
2% | 100
1% | | YEARS, A | IN CFS,
AND ANNUA
2
50% | FOR INDIC
L EXCEEDAD
5
20% | DURATIO | CURRENCE ABILITY, 25 4% | IN PERCEI 50 2% OF DAILY I | NT 100 1% MEAN FLOW | (CON-
SECU-
TIVE
DAYS)
1
3
7
15
30
60
90
FOR PERIOD | 2
50%
15000
13900
12900
11000
8900
7350
6600 | 17100
15400
17100
15400
14300
11200
11200
11200
11200
11200
11200
11200
11200
11200
11200 | 17700
15700
14500
13700
14500
13700
12200
9080 | 18000
15800
14100
14100
14100
14100
14100
14100
14100
14100
14100 | TED RECUR
D ANNUAL
IN PERCEN
50
2% | 100
1% | 14188800 THOMAS CREEK NEAR SCIO, OR 95 LOCATION.--Lat 44°42'42", long 122°45'55", in SEtSEt sec.11, T.10 S., R.1 W., Linn County, Hydrologic Unit 17090006, on left bank 0.3 mi upstream from bridge on State Highway 226, 1.6 mi upstream from MIII Creek, 4.2 mi east of Scio, and at mile 14.6. DRAINAGE AREA .-- 109 mi2. PERIOD OF RECORD. -- October 1962 to September 1982. GAGE.--Water-stage recorder. Datum of gage is 380.84 ft National Geodetic Vertical Datum of 1929. REMARKS.--No regulation. Several small diversions for irrigation above station.
AVERAGE DISCHARGE.--20 years, 497 ft³/s, 61.92 in/yr, 360,100 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 27,400 ft³/s Dec. 22, 1964, gage height, 18.44 ft, from rating curve extended above 7,200 ft³/s, on basis of slope-area measurement of peak flow; maximum gage height, 19.58 ft Jan. 21, 1972, backwater from debris; minimum discharge, 7.8 ft³/s Aug. 20, 1967. #### STATISTICAL SUMMARIES MONTHLY AND ANNUAL MEAN DISCHARGES 1963-82 MAGNITUDE AND PROBABILITY OF ANNUAL LOW FLOW BASED ON PERIOD OF RECORD 1964-82 | | MINIMUM | MAXIMUM | MEAN | STAN-
DARD
DEVIA-
TION | COEFFI-
CIENT OF
VARI- | PERCENT
OF
ANNUAL | PERIOD
(CON-
SECU- | | INTERVAL | IN YEAR | R INDICATE
RS, AND AN
BILITY, IN | INUAL N | -AC | |-----------|---------|--------------|-------|---------------------------------|------------------------------|-------------------------|--------------------------|----------|----------|-----------|--|----------|-----------| | MONTH | (CFS) | (CFS) | (CFS) | (CFS) | ATION | RUNOFF | TIVE
DAYS) | 2
50% | 5
20% | 10
10% | 20
5% | 50
2% | 100
1% | | OCTOBER | 26 | 633 | 179 | 163 | .91 | 3.0 | 1 | 18 | 13 | 11 | 9.8 | | | | NOVEMBER | 128 | 1898 | 684 | 426 | .62 | 11.4 | 3 | 18 | 14 | 12 | 10 | | | | DECEMBER | 104 | 2310 | 1160 | 572 | .49 | 19.4 | 7 | 20 | 15 | 13 | 11 | | | | JANUARY | 144 | 1836 | 1136 | 5 2 7 | .46 | 19.0 | 14 | 21 | 15 | 13 | 12 | | | | FEBRUARY | 176 | 1532 | 812 | 367 | .45 | 13.6 | 30 | 25 | 18 | 15 | 13 - | | | | MARCH | 245 | 1504 | 698 | 306 | .44 | 11.7 | 60 | 32 | 22 | 19 | 16 | | | | APRIL | 298 | 888 | 568 | 172 | .30 | 9.5 | 90 | 41 | 27 | 23 | 19 | | | | MAY | 168 | 744 | 378 | 150 | .40 | 6.3 | 120 | 54 | 36 | 30 | 26 | | | | JUNE | 74 | 556 | 187 | 118 | .63 | 3.1 | 183 | 119 | 85 | 71 | 62 | | | | JULY | 30 | 1 5 5 | 66 | 33 | •51 | 1.1 | | | | | | | | | AUGUST | 14 | 203 | 43 | 41 | .96 | .7 | | | | | | | | | SEPTEMBER | 19 | 251 | 68 | 60 | .88 | 1.1 | | | | | | | | | ANNUAL | 229 | 760 | 497 | 126 | .25 | 100 | | | | | | | | MAGNITUDE AND PROBABILITY OF INSTANTANEOUS PEAK FLOW BASED ON PERIOD OF RECORD 1963-82 MAGNITUDE AND PROBABILITY OF ANNUAL HIGH FLOW BASED ON PERIOD OF RECORD 1963-82 | ISCHARGE,
YEARS, A | | | | RECURRENC
ROBABILIT | | | PERIOD
(CON- | | INTERV | AL, ÍN | OR INDICAT
YEARS, AND
ABILITY, I | ANNUAL | | |-----------------------|--------------|------------------|-----------|------------------------|------------------|-----------|------------------------|------------------|----------|-----------|--|----------|-----| | 1.25
80 % | 2
50%
 | 5
20 % | 10
10% | 25
4% | 50
2 % | 100
1% | SECU-
TIVE
DAYS) | 2
50 % | 5
20% | 10
10% | 25
4% | 50
2% | 100 | | 4920 | 7640 | 12100 | 15600 | 20600 | | | | | | | | | | | WE I GHTED | CKER | 105 | | | | | 1 | 5200 | 7320 | 8660 | 10300 | | | | WEIGHIED | SKEW = | .185 | | | | | 3 | 3840 | 5390 | 6470 | 7900 | | | | | | | | | | | | 3000 | 4010 | 4630 | 5370 | | | | | | | | | | | 15 | 2190 | 2760 | 3070 | 3410 | | | | | | | | | | | 30 | 1680 | 2070 | 2250 | 2440 | | | | | | | | | | | 60 | 1300 | 1640 | 1820 | 2030 | | | | | | | | | | | 90 | 1140 | 1440 | 1620 | 1820 | | | DURATION TABLE OF DAILY MEAN FLOW FOR PERIOD OF RECORD 1963-82 | | | DISC | HARGE, | IN CFS, | WHICH WAS | EQUALED | OR EXCE | EDED FOR | INDICATED | PERCENT | OF TIME | | | | |------------|------|------|--------|---------|-----------|---------|---------|----------|-----------|-------------|---------|-----|-----|-----| | 5 % | 10% | 15% | 20% | 25% | 30% | 40% | 50% | 60% | 70% | 75 % | 80% | 85% | 90% | 95% | | 1760 | 1180 | 908 | 744 | 618 | 531 | 390 | 277 | 170 | 92 | 69 | 51 | 38 | 29 | 21 | #### 14189000 SANTIAM RIVER AT JEFFERSON, OR LOCATION.--Lat 44°42'55", long 122°00'40", in SE½ sec.11, T.10 S., R.3 W., Marion County, Hydrologic Unit 17090005, on right bank 350 ft upstream from Southern Pacific railroad bridge at Jefferson, 2.1 mi downstream from confluence of North and South Santiam Rivers, and at mile 9.62. DRAINAGE AREA. -- 1,790 mi², approximately. PERIOD OF RECORD.--October 1905 to June 1906 (gage heights and discharge measurements only), October 1907 to September 1916, October 1939 to September 1982. Gage-height records collected at same site since 1907 are contained in reports of National Weather Service GAGE.--Water-stage recorder. Datum of gage is 199.63 ft National Geodetic Vertical Datum of 1929. Prior to Sept. 22, 1940, nonrecording gages at sites within 350 ft downstream et datum 3.00 ft higher. REMARKS.--Flow regulated since 1953 by Detroit Lake, since 1966 by Green Peter Lake and by Foster Lake. Salem Canal diverts from North Santiam River at Stayton for irrigation and power; most of this water reaches Willamette River by way of Mill Creek at Salem. Stayton Canal diverts from North Santiam River at Stayton for irrigation of lands near West Stayton; some return flow reaches North Santiam River above station. Albany power canal diverts from South Santiam River at Lebanon; return flow reaches Willamette River at Albany. AVERAGE DISCHARGE.--52 years (water years 1908-16, 1940-82), 7,789 ft^3/s , 5,643,000 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 197,000 ft³/s Dec. 22, 1964, gage height, 24.22 ft; minimum observed, 260 ft³/s Aug. 15-22, Aug. 24 to Sept. 2, 1940. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood stage of 25.0 ft was reached in December 1861, and 23.4 ft in February 1890 (information from Corps of Engineers). On Nov. 21, 1921, the stage reached 19.5 ft at gage on railroad bridge 350 ft downstream, corresponding gage height at present site and datum, 24.4 ft, from curve of relation, discharge, 202,000 ft³/s. #### STATISTICAL SUMMARIES (BEFORE THE CONSTRUCTION OF DETROIT, GREEN PETER, AND FOSTER DAMS) MONTHLY AND ANNUAL MEAN DISCHARGES 1908-53 MAGNITUDE AND PROBABILITY OF ANNUAL LOW FLOW BASED ON PERIOD OF RECORD 1909-53 | | MANIMA | MANTHIN | MEAN | STAN-
DARD
DEVIA-
TION | COEFFI-
CIENT OF
VARI- | PERCENT
OF | PERIOD
(CON-
SECU- | | INTERVAL | ., IN YEA | R INDICAT
RS, AND A
BILITY, I | ANNUAL NO | ON- | |-----------|------------------|------------------|---------------|---------------------------------|------------------------------|------------------|--------------------------|----------|------------------|-----------|-------------------------------------|------------------|-----------| | MONTH | MINIMUM
(CFS) | MAXIMUM
(CFS) | MEAN
(CFS) | (CFS) | ATION | ANNUAL
RUNOFF | TIVE
DAYS) | 2
50% | 5
20 % | 10
10% | 20
5 % | 50
2 % | 100
1% | | OCTOBER | 432 | 12290 | 3289 | 3364 | 1.02 | 3.6 | 1 | 500 | 369 | 316 | 278 | | | | NOVEMBER | 622 | 26620 | 11020 | 6637 | .60 | 12.0 | 3 | 503 | 371 | 318 | 281 | | | | DECEMBER | 2915 | 24450 | 12350 | 6450 | .52 | 13.5 | 7 | 508 | 376 | 323 | 285 | | | | JANUARY | 4048 | 30310 | 13590 | 6709 | .49 | 14.8 | 14 | 531 | 394 | 338 | 2 99 | | | | FEBRUARY | 4325 | 24980 | 14200 | 5656 | .40 | 15.5 | 30 | 563 | 416 | 360 | 322 | | | | MARCH | 3229 | 21640 | 10880 | 4464 | .41 | 11.9 | 60 | 645 | 481 | 425 | 390 | | | | APRIL | 2 956 | 16880 | 9345 | 3446 | •37 | 10.2 | 90 | 813 | 565 | 475 | 417 | | | | MAY | 2946 | 14720 | 8275 | 3248 | .39 | 9.0 | 120 | 1190 | 763 | 604 | 497 | | | | JUNE | 1033 | 9233 | 4789 | 2205 | .46 | 5.2 | 183 | 2580 | 1830 | 1520 | 1290 | | | | JULY | 482 | 7123 | 1989 | 1404 | .71 | 2.2 | | | | | | | | | AUGUST | 309 | 1842 | 811 | 373 | .46 | .9 | | | | | | | | | SEPTEMBER | 416 | 4086 | 1071 | 876 | .82 | 1.2 | | | | | | | | | ANNUAL | 4246 | 11630 | 7598 | 1858 | .24 | 100 | | | | | | | | #### MAGNITUDE AND PROBABILITY OF INSTANTANEOUS PEAK FLOW BASED ON PERIOD OF RECORD 1908-53 MAGNITUDE AND PROBABILITY OF ANNUAL HIGH FLOW BASED ON PERIOD OF RECORD 1908-53 | DISCHARGE
YEARS, | | | | RECURREN
ROBABILIT | | | PERIOD
(CON- | DISC | INTER | VAL, ÍN | OR INDICA
YEARS, AN | D ANNUAL | | |---------------------|----------|------------------|-----------|-----------------------|------------------|-----------|------------------------|------------------|----------------|-----------------|------------------------|----------|-----| | 1.25
80% | 2
50% | 5
20 % | 10
10% | 25
4% | 50
2 % | 100
1% | SECU-
TIVE
DAYS) | 2
50 % | 5
20% | 10
10% | 25
4% | 50
2% | 100 | | 50800 | 77600 | 120000 | 152000 | 195000 | | | | 66300 | 07400 | 140000 | 4.47000 | | | | WEIGHTE | D CKEM | = .101 | | | | | 7 | 66200
51100 | 97400
71900 | 118000
84900 | 143000
100000 | | | | WEIGHTE | U SKEW | 101 | | | | | <i>3</i>
7 | 40300 | 53900 | 60700 | 67400 | | | | | | | | | | | 15 | 29100 | 36800 | 40400 | 43700 | | | | | | | | | | | 30 | 22200 | 28400 | 31300 | 34100 | | | | | | | | | | | 60 | 17500 | 22000 | 24200 | 26400 | | | | | | | | | | | 90 | 15800 | 19200 | 20800 | 22300 | | | DURATION TABLE OF DAILY MEAN FLOW FOR PERIOD OF RECORD 1908-53 | | | DIS | CHARGE, | IN CFS, | WHICH WAS | EQUALED | OR EXCE | EDED FOR | INDICATE | D PERCEN | T OF TIME | | | | |-------|-------|-------|---------|---------|-----------|---------|---------|----------|----------|----------|-----------|-----|-----|-----| | 5% | 10% | 15% | 20% | 25% | 30% | 40% | 50% | 60% | 70% | 75% | 80% | 85% | 90% | 95% | | 25000 | 17000 | 13500 | 11400 | 9940 | 8690 | 6730 | 5160 | 3640 | 2010 | 1370 | 1020 | 776 | 626 | 483 | ### 14189000 SANTIAM RIVER AT JEFFERSON, OR--Continued ### STATISTICAL SUMMARIES (AFTER THE COMPLETION OF DETROIT, GREEN PETER, AND FOSTER DAMS) MONTHLY AND ANNUAL MEAN DISCHARGES 1967-82 MAGNITUDE AND PROBABILITY OF ANNUAL LOW FLOW BASED ON PERIOD OF RECORD 1968-82 | | MINIMUM | MAXIMUM | MEAN | STAN-
DARD
DEVIA-
TION
| COEFFI-
CIENT OF
VARI- | PERCENT
OF
ANNUAL | PERIOD
(CON-
SECU- | DISC | INTERVAL | ., IN YE | OR INDICA
ARS, AND
ABILITY, | ANNUAL N | 0N- | |---------------------------------------|------------------------------------|------------------------------------|--|--|---|-------------------------|--|--|--|--|--|--|---------------------------| | MONTH | (CFS) | (CFS) | (CFS) | (CFS) | ATION | RUNOFF | TIVE
DAYS) | 2
50% | 5
20% | 10
10% | 20
5% | 50
2 % | 100
1% | | OCTOBER | 2909 | 11890 | 5056 | 2170 | .43 | 5.4 | . 1 | 1300 | 1170 | 1110 | 1050 | | | | NOVEMBER | 4431 | 18390 | 10420 | 4351 | .42 | 11.1 | 3 | 1330 | 1190 | 1120 | 1060 | | | | DECEMBER | 2420 | 31700 | 17530 | 7463 | .43 | 18.7 | 7 | 1360 | 1220 | 1150 | 1090 | | | | JANUARY | 2178 | 24520 | 16070 | 6555 | .41 | 17.2 | 14 | 1410 | 1260 | 1180 | 1110 | | | | FEBRUARY | 1897 | 21250 | 10770 | 5308 | .49 | 11.5 | 30 | 1510 | 1330 | 1230 | 1150 | | | | MARCH | 3474 | 25700 | 8749 | 5487 | .63 | 9.4 | 60 | 1740 | 1460 | 1330 | 1230 | | | | APRIL | 3874 | 11930 | 7045 | 2626 | .37 | 7.5 | 90 | 2080 | 1700 | 1520 | 1370 | | | | MAY | 2115 | 10430 | 6523 | 2565 | . 39 | 7.0 | 120 | 2500 | 2020 | 1780 | 1600 | | | | JUNE | 1733 | 8558 | 4230 | 2233 | .53 | 4.5 | 183 | 3370 | 2760 | 2490 | 2290 | | | | JULY | 1197 | 2970 | 1853 | 470 | .25 | 2.0 | | | | | | | | | AUGUST | 1100 | 2883 | 1907 | 446 | .23 | 2.0 | | | | | | | | | SEPTEMBER | 1553 | 5325 | 3373 | 917 | .27 | 3.6 | | | | | | | | | JET TEMBER | 1000 | 7525 | 3313 | 917 | • 27 | J.0 | | | | | | | | | ANNUAL | 3512 | 11690 | 7788 | 2226 | . 29 | 100 | | | | | | | | | OISCHARGE, | BASE
IN CFS, | D ON PERI | OD OF RE | CORD | OUS PEAK I | , IN | | BASE | ED ON PER | CFS, FC | OF ANNUAL RECORD 19 DR INDICA | 967-82

TED RECU | | | OISCHARGE, | BASE
IN CFS,
ND ANNUA | D ON PERI | OD OF RE | CORD
CURRENCE
BABILITY, | INTERVAL
IN PERCEI | , IN | PERIOD
(CON-
SECU- | BASE | ED ON PER

HARGE, IN
INTERV | CFS, FO | RECORD 19 | 967-82

TED RECURD ANNUAL | RRENCE | | ISCHARGE,
YEARS, A | BASE
IN CFS, | FOR INDI | OD OF RE | CORD | INTERVAL
IN PERCEI | , IN
VT | PERIOD
(CON-
SECU-
TIVE | BASE
DISCH | HARGE, IN
INTERV
EXCEEDAN | CFS, FC | RECORD 19
DR INDICA
(EARS, ANI
ABILITY, | 967-82 TED RECUFD ANNUAL IN PERCEN | RRENCE | | ISCHARGE,
YEARS, A | BASE
IN CFS,
ND ANNUA | FOR INDI-
L EXCEEDA | OD OF RE | CORD
CURRENCE
BABILITY, | INTERVAL
IN PERCEI | , IN
NT | PERIOD
(CON-
SECU- | BASE
DISCH | ARGE, IN INTERV | CFS, FC | DR INDICA
EARS, ANI | 967-82
TED RECUI
D ANNUAL
IN PERCEI | RRENCE | | OISCHARGE,
YEARS, A | BASE
IN CFS,
ND ANNUA | FOR INDI-
L EXCEEDA | OD OF RE | CORD
CURRENCE
BABILITY, | INTERVAL
IN PERCEI | , IN
NT | PERIOD
(CON-
SECU-
TIVE
DAYS) | DISCH | HARGE, IN
INTERV
EXCEEDAN
5
20% | I CFS, FC
AL, IN Y
ICE PROBA | RECORD 19 OR INDICA PEARS, ANI ABILITY, 25 4% | 967-82 TED RECUID ANNUAL IN PERCEIT 50 2% | RRENCE
NT
100
1% | | 1.25
80% | BASE IN CFS, ND ANNUA 2 50% | FOR INDI-
L EXCEEDA | OD OF RE | CORD
CURRENCE
BABILITY, | INTERVAL
IN PERCEI | , IN
NT | PERIOD
(CON-
SECU-
TIVE
DAYS) | DISCH | HARGE, IN
INTERV
EXCEEDAN
5
20% | CFS, FC
AL, IN Y
ICE PROBA | RECORD 19 DR INDICA PEARS, ANI BILITY, 25 4% 63000 | 967-82 TED RECUID ANNUAL IN PERCEIT 50 2% | RRENCE | | DISCHARGE,
YEARS, A | BASE IN CFS, ND ANNUA 2 50% | FOR INDI-
L EXCEEDA | OD OF RE | CORD
CURRENCE
BABILITY, | INTERVAL
IN PERCEI | , IN
NT | PERIOD
(CON-
SECU-
TIVE
DAYS) | DISCH | HARGE, IN
INTERV
EXCEEDAN
5
20% | I CFS, FC
AL, IN Y
ICE PROBA
10% | RECORD 19 OR INDICA (EARS, ANI BILITY, 25 4% 63000 45500 | 967-82 TED RECUF D ANNUAL HN PERCET 50 2% | 100
1% | | DISCHARGE,
YEARS, A
1.25
80% | BASE IN CFS, ND ANNUA 2 50% | FOR INDI-
L EXCEEDA | OD OF RE | CORD
CURRENCE
BABILITY, | INTERVAL
IN PERCEI | , IN
NT | PERIOD
(CON-
SECU-
TIVE
DAYS) | DISCH
2
50%
44700
38200
33700 | HARGE, IN
INTERV
EXCEEDAN
5
20%
56200
43900
37600 | 10 OF F | RECORD 19 REINDICA: (EARS, ANI (BILITY, 25 4% 63000 45500 38300 | 967-82 TED RECUF D ANNUAL IN PERCEF 50 2% | 100
1% | | 1.25
80% | BASE IN CFS, ND ANNUA 2 50% | FOR INDI-
L EXCEEDA | OD OF RE | CORD
CURRENCE
BABILITY, | INTERVAL
IN PERCEI | , IN
NT | PERIOD
(CON-
SECU-
TIVE
DAYS) | DISCH 2 50% 44700 38200 33700 28500 | HARGE, IN INTERVEXCEEDAN 50% 56200 43900 37600 33200 | 10 OF F | RECORD 19 OR INDICA: (FEARS, ANI ABILITY, 25 4\$ 63000 45500 38300 34700 | 967-82 TED RECUF D ANNUAL HN PERCET 50 2% | 100
1% | | DISCHARGE,
YEARS, A
1.25
80% | BASE IN CFS, ND ANNUA 2 50% | FOR INDI-
L EXCEEDA | OD OF RE | CORD
CURRENCE
BABILITY, | INTERVAL
IN PERCEI | , IN
NT | PERIOD (CON-
SECU-
TIVE DAYS) | DISCH 2 50% 44700 38200 28500 23300 | HARGE, IN INTERVEXCEEDAN 5 20\$ 56200 43900 37600 33200 28600 | 10 CFS, FC AL, IN Y ICE PROBA-10% 60200 45000 38100 30500 | RECORD 19 RECORD 19 RE INDICA (EARS, ANI BILLITY, 25 4\$ 63000 45500 38300 34700 31800 | 967-82 TED RECUF D ANNUAL IN PERCEF 50 2% | 100
1% | | 1.25
80% | BASE IN CFS, ND ANNUA 2 50% | FOR INDI-
L EXCEEDA | OD OF RE | CORD
CURRENCE
BABILITY, | INTERVAL
IN PERCEI | , IN
NT | PERIOD
(CON-
SECU-
TIVE
DAYS) | DISCH 2 50% 44700 38200 33700 28500 | HARGE, IN INTERVEXCEEDAN 50% 56200 43900 37600 33200 | 10 OF F | RECORD 19 OR INDICA: (FEARS, ANI ABILITY, 25 4\$ 63000 45500 38300 34700 | 967-82 TED RECUF D ANNUAL IN PERCEF 50 2% | 100
1% | | 1.25
80% | BASE IN CFS, ND ANNUA 2 50% | FOR INDI-
L EXCEEDA | OD OF RE | CORD
CURRENCE
BABILITY, | INTERVAL
IN PERCEI | , IN
NT | PERIOD (CON-
SECU-
TIVE DAYS) | DISCH 2 50% 44700 38200 28500 23300 | HARGE, IN INTERVEXCEEDAN 5 20\$ 56200 43900 37600 33200 28600 | 10 CFS, FC AL, IN Y ICE PROBA-10% 60200 45000 38100 30500 | RECORD 19 RECORD 19 RE INDICA (EARS, ANI BILLITY, 25 4\$ 63000 45500 38300 34700 31800 | TED RECUED ANNUAL IN PERCENSES | 100
13 | | DISCHARGE,
YEARS, A
1.25
80% | BASE IN CFS, ND ANNUA 2 50% | FOR INDI-
L EXCEEDA | OD OF RECOME | CURRENCE SABILITY, 25 4% | INTERVAL
IN PERCEI
50
2% | , IN
NT
100
1% | PERIOD
(CON-
SECU-
TIVE
DAYS)
 | DISCH 2 50% 44700 38200 33700 28500 23300 19100 0F RECC | HARGE, IN INTERVEXCEEDAN 5020\$ 56200 43900 337600 33200 28600 23900 21000 DRD 1967- | 10 CFS, FC AL, IN Y 10 CE PROBA-10 10 10 10 10 10 10 10 10 10 10 10 10 1 | RECORD 19 OR INDICA FEARS, ANI BILITY, 25 4\$ 63000 45500 38300 34700 31800 27100 24000 | TED RECUED ANNUAL IN PERCENSES | 100
1% | | DISCHARGE,
YEARS, A
1.25
80% | BASE IN CFS, ND ANNUA 2 50% | FOR INDI-
L EXCEEDA
5
20% | OD OF RE CATED RE NCE PROE 10 10% DURATIO | CORD COURRENCE SABILITY, 25 4% IN TABLE CFS, WHI | INTERVAL
IN PERCEI
50
2%

OF DAILY I | JALED OR | PERIOD (CON- SECU- TIVE DAYS) 1 3 7 15 30 60 90 FOR PERIOD | BASE DISCH 2 50% 44700 38200 33700 28500 23300 19100 16800 OF RECC | 5 20% 56200 43900 337600 23900 21000 DRD 1967- | 10 10% 60200 45000 38100 334200 25700 22700 82 | RECORD 19 | TED RECUI
D ANNUAL
IN PERCEI | 100
1\$ | | 1.25
80%
WEIGHTED | BASE IN CFS,
ND ANNUA 2 50% SKEW = | FOR INDI-
L EXCEEDA | OD OF RECOME | CURRENCE SABILITY, 25 4% | INTERVAL
IN PERCEI
50
2%

OF DAILY I | JALED OR | PERIOD
(CON-
SECU-
TIVE
DAYS)
 | DISCH 2 50% 44700 38200 33700 28500 23300 19100 0F RECC | HARGE, IN INTERVEXCEEDAN 5020\$ 56200 43900 337600 33200 28600 23900 21000 DRD 1967- | 10 CFS, FC AL, IN Y 10 CE PROBA-10 10 10 10 10 10 10 10 10 10 10 10 10 1 | RECORD 19 OR INDICA FEARS, ANI BILITY, 25 4\$ 63000 45500 38300 34700 31800 27100 24000 | TED RECUED ANNUAL IN PERCENSES | 100
1% | #### 14189500 LUCKIAMUTE RIVER NEAR HOSKINS. OR LOCATION.--Lat 44°43'10", long 123°30'10", in NEL sec.11, T.10 S., R.7 W., Benton County, Hydrologic Unit 17090003, on right bank 0.2 mi downstream from Benton County Line, 3.5 mi northwest of Hoskins, and at mile 43.2. DRAINAGE AREA. -- 34.3 mi². PERIOD OF RECORD.--May 1934 to September 1978. GAGE.--Water-stage recorder. Datum of gage is 378.7 ft National Geodetic Vertical Datum of 1929 (river-profile survey). REMARKS.--Logponds upstream cause diurnal fluctuation at times. Minor diversion above station by pumping for irrigation. AVERAGE DISCHARGE.--44 years, 209 ft³/s, 82.75 in/yr, 151,400 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 5,560 ft³/s Dec. 14, 1946, Feb. 17, 1949; maximum gage height, 13.22 ft Dec. 14, 1946; minimum discharge, 4.0 ft³/s Sept. 5-8, 1962. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of Dec. 6, 1933, reached a stage of about 13.8 ft, from information by local residents. #### STATISTICAL SUMMARIES MONTHLY AND ANNUAL MEAN DISCHARGES 1935-78 MAGNITUDE AND PROBABILITY OF ANNUAL LOW FLOW | | MINIMUM | MAXIMUM | MEAN | STAN-
DARD
DEVIA-
TION | COEFFI-
CIENT OF
VARI- | PERCENT
OF
ANNUAL | PERIOD
(CON-
SECU- | 11 | NTERVAL, | CFS, FOR
IN YEARS
E PROBABI | , AND AN | INUAL NO | V - | |-------------|----------|------------------------|-----------|---------------------------------|------------------------------|-------------------------|--------------------------|--------------------|------------------|------------------------------------|------------------|------------------|------------| | MONTH | (CFS) | (CFS) | (CFS) | (CFS) | ATION | RUNOFF | TIVE
DAYS) | 2
50% | 5
20 % | 10
10% | 20
5 % | 50
2 % | 100
1% | | OCTOBER | 7.7 | 402 | 70 | 78 | 1.11 | 2.8 | 1 | 9.3 | 7.3 | 6.4 | 5.8 | 5.1 | 4.7 | | NOVEMBER | 10 | 811 | 294 | 203 | .69 | 11.7 | 3 | 9.5 | 7.6 | 6.7 | 6.1 | 5.4 | 5.0 | | DECEMBER | 46 | 980 | 475 | 222 | . 47 | 18.9 | 7 | 9.7 | 7.8 | 7.0 | 6.4 | 5.7 | 5.4 | | JANUARY | 65 | 1112 | 487 | 242 | • 50 | 19.4 | 14 | 10 | 8.3 | 7.4 | 6.8 | 6.1 | 5.8 | | FEBRUARY | 109 | 856 | 432 | 177 | -41 | 17.2 | 30 | 11 | 9.1 | 8.3 | 7.7 | 7.0 | 6.7 | | MARCH | 84 | 624 | 341 | 138 | •40 | 13.6 | 60 | 13 | 11 | 9.5 | 8.7 | 7.9 | 7.4 | | \PRIL | 67 | 492 | 200 | 93 | .47 | 7.9 | 90 | 15 | 12 | 11 | 9.7 | 8.7 | 8. | | MAY
JUNE | 33
27 | 220
168 | 107
51 | 49
25 | .46
.48 | 4.3
2.0 | 120
183 | 19
37 | 15
27 | 13
23 | 11
20 | 10
17 | 9.3
15 | | JULY | 15 | 56 | 25 | 8.1 | .33 | 1.0 | 100 | <i>)</i> / | Z/ | 23 | 20 | 17 | را | | AUGUST | 8.1 | 31 | 15 | 4.6 | .30 | •6 | | | | | | | | | SEPTEMBER | | 87 | 19 | 15 | .77 | •8 | | | | | | | | | ANNUAL | 80 | 334 | 209 | 50 | .24 | 100 | | | | | | | | | MAGNI | | PROBABILI
D ON PERI | | | | FLOW | MAG | NITUDE AI
BASED | | BILITY OF
OD OF REC | | |)W | |) I SCHARGE | | FOR INDI | | | | | PERIOD
(CON- | | INTERVA | CFS, FOR
L, IN YEA
E PROBABI | RS, AND | ANNUAL | | | | 2 | | 10 | | 50 | | SECU- | | | | | | | | YEARS, A | | | | OBABILIT | | RCENT | PERIOD
(CON- | | | | EARS, AN | ID ANNUAL | | |-------------|--------------|------------------|-------------------|----------|------------------|-----------|------------------------|----------|------------------|-----------|----------|-----------|------| | 1.25
80% | 2
50%
 | 5
20 % | 10
10 % | 25
4% | 50
2 % | 100
1% | SECU-
TIVE
DAYS) | 2
50% | 5
20 % | 10
10% | 25
4% | 50
2% | 100 | | 2260 | 3010 | 4000 | 4630 | 5410 | 5980 | 6540 | | | | | | | | | | | | | | | | 1 | 2280 | 2970 | 3420 | 3990 | 4410 | 4840 | | WEIGHTED | SKEW = | 038 | | | | | 3 | 1750 | 2230 | 2570 | 3010 | 3360 | 3710 | | | | | | | | | 7 | 1300 | 1630 | 1840 | 2090 | 2270 | 2450 | | | | | | | | | 15 | 967 | 1190 | 1320 | 1460 | 1560 | 1640 | | | | | | | | | 30 | 735 | 906 | 995 | 1090 | 1140 | 1190 | | | | | | | | | 60 | 581 | 717 | 789 | 862 | 908 | 948 | | | | | | | | | 90 | 526 | 645 | 701 | 753 | 783 | 807 | DURATION TABLE OF DAILY MEAN FLOW FOR PERIOD OF RECORD 1935-78 | | | DISC | HARGE, | IN CFS, | WHICH WAS | EQUALED | OR EXCE | EDED FOR | INDICATE | D PERCE | NT OF TI | ME | | | |-----|-----|------|--------|---------|-----------|---------|------------|----------|----------|---------|----------|-----|-----|-----| | 5% | 10% | 15% | 20% | 25% | 30% | 40% | 50% | 60% | 70% | 75% | 80% | 85% | 90% | 95% | | 816 | 542 | 407 | 323 | 260 | 214 | 144 | 8 9 | 54 | 31 | 25 | 20 | 16 | 13 | 11 | aa ### 14190000 LUCKIAMUTE RIVER AT PEDEE, OR LOCATION.--Lat 44°44'35", long 123°25'25", in SE¼ sec.33, T.9 S., R.6 W., Polk County, Hydrologic Unit 17090003, on left bank 0.5 mi downstream from Pedee Creek, 1.0 ml southwest of Pedee, and at mile 29.7. DRAINAGE AREA. -- 115 mi2. PERIOD OF RECORD. -- October 1940 to September 1970. GAGE.--Water-stage recorder. Datum of gage is 245.47 ft National Geodetic Vertical Datum of 1929. Prior to July 1, 1949, nonrecording gage at site 1,700 ft downstream at datum 1.85 ft lower. REMARKS.--Some diurnal fluctuation at low flow caused by logponds above station. Several small diversions for irrigation above station. AVERAGE DISCHARGE. -- 30 years, 458 ft³/s, 331,800 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 15,700 ft³/s Dec. 22, 1964, gage height, 20.09 ft, from rating curve extended above 8,000 ft³/s; minimum, 7.0 ft³/s Sept. 12, 1944, Aug. 25, 30, 1967. #### STATISTICAL SUMMARIES MONTHLY AND ANNUAL MEAN DISCHARGES 1941-70 MAGNITUDE AND PROBABILITY OF ANNUAL LOW FLOW BASED ON PERIOD OF RECORD 1942-70 | | MINIMUM | MAXIMUM | MEAN | STAN-
DARD
DEVIA-
TION | COEFFI-
CIENT OF
VARI- | PERCENT
OF
ANNUAL | PERIOD
(CON-
SECU- | | INTERVAL | CFS, FOR
, IN YEARS
CE PROBABI | , AND AN | NUAL NO | V - | |-----------|---------|---------|-------|---------------------------------|------------------------------|-------------------------|--------------------------|------------------|------------------|--------------------------------------|------------------|------------------|------------| | MONTH | (CFS) | (CFS) | (CFS) | (CFS) | ATION | RUNOFF | TIVE
DAYS) | 2
50 % | 5
20 % | 10
10% | 20
5 % | 50
2 % | 100
1% | | OCTOBER | 14 | 729 | 131 | 152 | 1.16 | 2.4 | 1 | 13 | 10 | 8.8 | 7.9 | 6.9 | | | NOVEMBER | 32 | 1332 | 571 | 388 | .68 | 10.3 | 3 | 14 | 11 | 9.7 | 8.7 | 7.6 | | | DECEMBER | 233 | 2415 | 1037 | 540 | .52 | 18.8 | 7 | 16 | 12 | 11 | 9.4. | 8.3 | | | JANUARY | 265 | 2280 | 1143 | 582 | .51 | 20.7 | 14 | 17 | 13 | 11 | 10 | 8.7 | | | FEBRUARY | 304 | 2397 | 1057 | 452 | .43 | 19.1 | 30 | 19 | 15 | 12 | 11 | 9.4 | | | MARCH | 189 | 1377 | 735 | 315 | .43 | 13.3 | 60 | 23 | 17 | 15 | 13 | 11 | | | APRIL | 162 | 1021 | 424 | 205 | .48 | 7.7 | 90 | 28 | 20 | 17 | 14 | 12 | | | MAY | 103 | 504 | 233 | 113 | .48 | 4.2 | 120 | 36 | 26 | 22 | 19 | 16 | | | JUNE | 50 | 191 | 100 | 34 | . 34 | 1.8 | 183 | 76 | 54 | 45 | 37 | 30 | | | JULY | 23 | 66 | 44 | 12 | . 27 | .8 | | | | | | | | | AUGUST | 11 | 43 | 25 | 8.4 | .34 | .5 | | | | | | | | | SEPTEMBER | 11 | 105 | 30 | 22 | .73 | •5 | | | | | | | | | ANNUAL | 238 | 714 | 458 | 103 | .22 | 100 | | | | | | | | MAGNITUDE AND PROBABILITY OF INSTANTANEOUS PEAK FLOW BASED ON PERIOD OF RECORD 1941-70 MAGNITUDE AND PROBABILITY OF ANNUAL HIGH FLOW BASED ON PERIOD OF RECORD 1941-70 | DISCHARGE,
YEARS, A | | | | | CE INTER | | PERIOD
(CON- | | INTERV | 'AL, ÎN Y | EARS, A | ATED RECUI
ND ANNUAL
IN PERCEI | | |------------------------|------------------|------------------|-----------|----------|------------------|-----------|------------------------|------------------|------------------|-----------|------------------|--------------------------------------|-----------| | 1.25
80% | 2
50 % | 5
20 % | 10
10% | 25
4% | 50
2 % | 100
1% | SECU-
TIVE
DAYS) | 2
50 % | 5
20 % | 10
10% | 25
4 % | 50
2 % | 100
1% | | 4780 | 6300 | 8640 | 10400 | 12700 | 14600 | | | | | | | | | | | | | | | | | 1 | 4770 | 6400 | 7740 | 9730 | 11500 | | | WEIGHTED | SKEW = | .462 | | | | | 3 | 3820 | 5040 | 6040 | 7520 | 8800 | | | | | | | | | | 7 | 2930 | 3830 | 4450 | 5280 | 5930 | | | | | | | | | | 15 | 2190 | 2830 | 3220 | 3670 | 3990 | | | | | | | | | | 30 | 1680 | 2130 | 2360 | 2590 | 2730 | | | | | | | | | | 60 | 1300 | 1660 | 1860 | 2080 | 2230 | | | | | | | | | | 90 | 1180 | 1490 | 1660 | 1830 | 1940 | | DURATION TABLE OF DAILY MEAN FLOW FOR PERIOD OF RECORD 1941-70 | | | DISCH | HARGE, | IN CFS, | WHICH WAS | EQUALED | OR EXCE | EDED FOR | INDICATED | PERCENT | OF TIME | | | | |------|------|-------|--------|---------|-----------|---------|-------------|-------------|-------------|---------|---------|-----|-------------|-----| | 5% | 10% | 15% | 20% | 25% | 30% | 40% | 50 % | 60 % | 70 % | 75% | 80% | 85% | 9 0% | 95% | | 1810 | 1220 | 885 | 692 | 557 | 451 | 306 | 192 | 112 | 62 | 46 | 34 | 27 | 22 | 17 | #### 14190500 LUCKIAMUTE RIVER NEAR SUVER, OR LOCATION.--Lat 44°47'00", long 123°14'00", in SW&SW& sec.18, T.9 S., R.4 W., Polk County, Hydrologic Unit 17090003, on right bank 10 ft upstream from highway bridge at Helmick State Park,
3.0 mi northwest of Suver, 4.7 mi downstream from Little Luckiamute River, and at mile 13.5. DRAINAGE AREA .-- 240 mi2. 3750 2460 1790 1380 1080 875 577 350 195 107 80 61 47 37 28 PERIOD OF RECORD.--August 1905 to October 1911, July 1940 to September 1982. GAGE.--Water-stage recorder. Datum of gage is 171.92 ft National Geodetic Vertical Datum of 1929. Aug. 18, 1905, to Oct. 31, 1911, nonrecording gage at present site at different datum, Aug. 20 to Oct. 15, 1940, nonrecording gage at present site and datum. REMARKS.--Some diurnal fluctuation during periods of low flow caused by millpond above station. A few small diversions for irrigation above station. AVERAGE DISCHARGE.--48 years, 910 ft³/s, 51.49 in/yr, 659,300 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 32,900 ft³/s Dec. 22, 1964, gage height, 34.52 ft; minimum, 0.65 ft³/s Aug. 13, 1966. #### STATISTICAL SUMMARIES | | | | | | | | | | | | 05 411111 | | OW | |--|--|---|---|--|--|---|---|--|---|---|--|--|---| | МС | ONTHLY AN | ID ANNUAL | MEAN DIS | SCHARGES | 1906-82 | | МА | | | | RECORD 1 | AL LOW FL
1907-82 | | | | MINIMUM | MAXIMUM | MC AN | STAN-
DARD
DEVIA- | COEFFI-
CIENT OF | PERCENT
OF
ANNUAL | PERIOD
(CON-
SECU- | DISC | INTERVAL | ., IN YE | OR INDICA
ARS, AND
ABILITY, | ANNUAL N | NON- | | MONTH | (CFS) | (CFS) | MEAN
(CFS) | TION
(CFS) | VARI-
ATION | RUNOFF | TIVE
DAYS) | 2
50 % | 5
20 % | 10
10% | 20
5% | 50
2% | 100
1% | | OCTOBER | 20 | 1241 | 197 | 218 | 1.11 | 1.8 | 1 | 26 | 16 | 11 | 7.5 | | | | NOVEMBER | 57 | 4574 | 1094 | 906 | .83 | 10.0 | 3 | 27 | 17 | 12 | 8.5 | | | | DECEMBER | 106 | 5112 | 2171 | 1148 | •53 | 19.8 | 7 | 28 | 18 | 13 | 9.8 | | | | JANUARY | 151 | 4727 | 2345 | 1156 | . 49 | 21.4 | 14 | 30 | 20 | 15 | 12 | 8.7 | | | FEBRUARY | 253 | 4769 | 2065 | 926 | • 45 | 18.8 | 30 | 33 | 22 | 17 | 14 | 10 | 8.0 | | MARCH | 391 | 3002 | 1458 | 684 | . 47 | 13.3 | 60 | 40 | 28 | 23 | 19 | 15 | 13 | | APRIL
MAY | 312
190 | 1847 | 858 | 414 | .48 | 7.8
3.8 | 90 | 47 | 34
43 | 28
36 | 24
31 | 20
26 | 17
23 | | JUNE | 79
 1026
492 | 421
190 | 191
83 | .45
.44 | 1.7 | 120
183 | 61
129 | 93 | 77 | 65 | 26
54 | 47 | | JULY | 30 | 184 | 77 | 31 | .40 | .7 | 100 | 129 | 9) | | | | 41 | | AUGUST | 9.5 | 85 | 42 | 18 | .42 | .4 | | | | | | | | | | | | 56 | 34 | .61 | .5 | | | | | | | | | SEPTEMBER | 17 | 191 | 70 | 74 | • • • • | | | | | | | | | | ANNUAL | 230
TUDE AND | 1464
PROBABIL | 910
ITY OF IN | 249
 | .27
EOUS PEAK | 100 |
MA | | | | OF ANNUA | | | | MAGNIT
DISCHARGE,
YEARS, | 230
FUDE AND
BASE
, IN CFS, | PROBABIL
D ON PER
FOR INDI | 910 ITY OF IN IOD OF RE | 249 NSTANTANE ECORD 190 ECURRENCE BABILITY | .27
EOUS PEAK
06-82
E INTERVAL | 100
FLOW
, IN | PERIOD
(CON- | BASE | ED ON PER
HARGE, IN | N CFS, FO | OF ANNUA
RECORD 1
OR INDICA
YEARS, AN | 1906-82
ATED RECUND ANNUAL | JRRENCE | | MAGNIT | 230 TUDE AND BASE | 1464
PROBABIL
D ON PER | 910
ITY OF IN
IOD OF RE | 249 NSTANTANE CORD 190 CURRENCE | .27
EOUS PEAK
06-82
E INTERVAL | 100

FLOW
, IN | PERIOD | BASE | ED ON PER
HARGE, IN | N CFS, FO | RECORD 1 | 1906-82
ATED RECUND ANNUAL | JRRENCE | | MAGNIT | 230 FUDE AND BASE , IN CFS, AND ANNUA | PROBABIL
D ON PER
FOR INDIAL EXCEED. | 910 ITY OF IN IOD OF RE | 249 NSTANTANE ECORD 190 ECURRENCE BABILITY | .27
EOUS PEAK 1
106-82
E INTERVAL
, IN PERCE | 100
FLOW
, IN
NT | PERIOD
(CON-
SECU- | BASE
DISCH | ED ON PER
HARGE, IN
INTER'
EXCEEDAN | N CFS, FO | RECORD 1 | 1906-82
ATED RECUND ANNUAL | JRRENCE
ENT | | MAGNIT | 230 FUDE AND BASE , IN CFS, AND ANNUA 2 50% | PROBABIL
D ON PER
FOR IND
AL EXCEED. | 910 ITY OF IN IOD OF RE ICATED RE ANCE PROI | 249 NSTANTANE ECORD 190 ECURRENCE BABILITY 25 4% | .27 EOUS PEAK 106-82 E INTERVAL , IN PERCE 50 2% | 100
FLOW
, IN
NT | PERIOD
(CON-
SECU-
TIVE
DAYS) | DISCH | HARGE, IN
INTER
EXCEEDAN
5
20% | N CFS, FO
VAL, IN
NCE PROB
10 | RECORD 1 OR INDICA YEARS, AN ABILITY, 25 4% | ATED RECUND ANNUAL IN PERCE | JRRENCE
ENT
100
1% | | MAGNITUDISCHARGE, YEARS, A | 230 FUDE AND BASE IN CFS, AND ANNUA 2 50% | PROBABIL
D ON PER
FOR IND
AL EXCEED.
5
20% | 910 ITY OF IN IOD OF RE ICATED RE ANCE PROI | 249 NSTANTANE ECORD 190 ECURRENCE BABILITY 25 4% | .27 EOUS PEAK 106-82 E INTERVAL , IN PERCE 50 2% | 100
FLOW
, IN
NT
100 | PERIOD
(CON-
SECU-
TIVE
DAYS) | DISCH | HARGE, IN
INTER
EXCEEDAN
5
20% | N CFS, FOVAL, IN NCE PROB. | RECORD 1 OR INDICA YEARS, AN ABILITY, 25 4% 21900 | ATED RECUND ANNUAL IN PERCENTED SO 2% | URRENCE
ENT
100
1%
27700 | | MAGNITUDISCHARGE, YEARS, 7 | 230 FUDE AND BASE IN CFS, AND ANNUA 2 50% | PROBABIL
D ON PER
FOR IND
AL EXCEED. | 910 ITY OF IN IOD OF RE ICATED RE ANCE PROI | 249 NSTANTANE ECORD 190 ECURRENCE BABILITY 25 4% | .27 EOUS PEAK 106-82 E INTERVAL , IN PERCE 50 2% | 100
FLOW
, IN
NT
100 | PERIOD (CON- SECU- TIVE DAYS) 1 3 | DISCH | HARGE, IN
INTERN
EXCEEDAN
5
20% | N CFS, FO
VAL, IN
NCE PROB.
10,
10% | RECORD 1 OR INDICA YEARS, AN ABILITY, 25 4% 21900 16500 | 1906-82
ATED RECU
IN PERCU
50
2%
24800
18500 | JRRENCE
ENT
100
1%
27700
20600 | | MAGNITUDISCHARGE, YEARS, A | 230 FUDE AND BASE IN CFS, AND ANNUA 2 50% | PROBABIL
D ON PER
FOR IND
AL EXCEED.
5
20% | 910 ITY OF IN IOD OF RE ICATED RE ANCE PROI | 249 NSTANTANE ECORD 190 ECURRENCE BABILITY 25 4% | .27 EOUS PEAK 106-82 E INTERVAL , IN PERCE 50 2% | 100
FLOW
, IN
NT
100 | PERIOD (CON-
SECU-
TIVE
DAYS) | DISCH | HARGE, IN INTERNEXCEEDAN 5 20% 15000 11600 8560 | N CFS, FG
VAL, IN
NCE PROB
10
10%
18000
13700
9770 | RECORD 1 OR INDICA YEARS, AN ABILITY, 25 4% 21900 16500 11100 | 1906-82
ATED RECUND ANNUAL
IN PERCU
50
2%
24800
18500
12000 | JRRENCE
 | | MAGNITUDISCHARGE, YEARS, A | 230 FUDE AND BASE IN CFS, AND ANNUA 2 50% | PROBABIL
D ON PER
FOR IND
AL EXCEED.
5
20% | 910 ITY OF IN IOD OF RE ICATED RE ANCE PROI | 249 NSTANTANE ECORD 190 ECURRENCE BABILITY 25 4% | .27 EOUS PEAK 106-82 E INTERVAL , IN PERCE 50 2% | 100
FLOW
, IN
NT
100 | PERIOD (CON-
SECU-
TIVE DAYS) 1 3 7 7 15 | DISCH
2
50%
10400
8360
6470
4690 | HARGE, IN INTER EXCEEDAN 5 20% 11600 8560 5990 | N CFS, FF
VAL, IN
NCE PROB
10
10%
18000
13700
9770
6680 | PRECORD 1 PRECOR | ATED RECUND ANNUAL IN PERCENT SO 2% 24800 18500 12000 7850 | 27700
20600
12900
8240 | | MAGNITUMA | 230 FUDE AND BASE IN CFS, AND ANNUA 2 50% | PROBABIL
D ON PER
FOR IND
AL EXCEED.
5
20% | 910 ITY OF IN IOD OF RE ICATED RE ANCE PROI | 249 NSTANTANE ECORD 190 ECURRENCE BABILITY 25 4% | .27 EOUS PEAK 106-82 E INTERVAL , IN PERCE 50 2% | 100
FLOW
, IN
NT
100 | PERIOD (CON-
SECU-
TIVE DAYS) 1 3 7 7 15 30 | DISCH
2
50%
10400
8360
6470
4690
3500 | HARGE, IN INTER EXCEEDAN 5 20% 15000 11600 8560 5990 4410 | N CFS, FI
VAL, IN
NCE PROB
10
10%
18000
13700
9770
6680
4850 | OR INDICA
YEARS, AN
ABILITY,
25
4%
21900
16500
11100
7400
5280 | 1906-82 ATED RECU ND ANNUAL IN PERCE 50 2% 24800 18500 12000 7850 5530 | URRENCE 100 1,5 27700 20600 12900 12900 8240 5730 | | MAGNITUDISCHARGE, YEARS, A | 230 FUDE AND BASE IN CFS, AND ANNUA 2 50% | PROBABIL
D ON PER
FOR IND
AL EXCEED.
5
20% | 910 ITY OF IN IOD OF RE ICATED RE ANCE PROI | 249 NSTANTANE ECORD 190 ECURRENCE BABILITY 25 4% | .27 EOUS PEAK 106-82 E INTERVAL , IN PERCE 50 2% | 100
FLOW
, IN
NT
100 | PERIOD (CON-
SECU-
TIVE DAYS) 1 3 7 7 15 | DISCH
2
50%
10400
8360
6470
4690 | HARGE, IN INTER EXCEEDAN 5 20% 11600 8560 5990 | N CFS, FF
VAL, IN
NCE PROB
10
10%
18000
13700
9770
6680 | PRECORD 1 PRECOR | ATED RECUND ANNUAL IN PERCENT SO 2% 24800 18500 12000 7850 | 27700
20600
12900
8240 | | MAGNITUDISCHARGE, YEARS, A | 230 FUDE AND BASE IN CFS, AND ANNUA 2 50% | PROBABIL
D ON PER
FOR IND
AL EXCEED.
5
20% | 910 ITY OF IN IOD OF RE ICATED RE ANCE PROI 10 10 21600 2 | 249 ISTANTANE CORD 190 ECURRENCE BABILITY 25 4% | .27 EOUS PEAK 106-82 E INTERVAL , IN PERCE 50 2% | 100
FLOW
, IN
NT
100
1% | PERIOD (CON-
SECU-
TIVE DAYS) 1 3 7 15 30 60 | DISCH
2
50%
10400
8360
6470
4690
3500
2760
2460 | 15000
11600
85990
4410
3070 | 18000 13700 9770 6680 4850 33330 | 25 4% 21900 16500 11100 7400 5280 4150 | 1906-82 ATED RECUND ANNUAL IN PERCUMPANNUAL 1N PERCUMPANNUAL 2% 24800 18500 12000 7850 5530 4340 | 27700
20600
12900
8240
5730
4490 | |
MAGNITUMA | 230 FUDE AND BASE IN CFS, AND ANNUA 2 50% | PROBABIL
D ON PER
FOR IND
L EXCEED.
5
20% | 910 ITY OF IN IOD OF RE ICATED RE ANCE PROI 10 10 21600 2 | 249 ISTANTANE CORD 190 CCURRENCE 3ABILITY 25 4% 27000 3 | .27 EOUS PEAK 106-82 E INTERVAL 1 IN PERCE 50 2% S1300 35 | 100
FLOW
, IN
NT
100
1%
700 | PERIOD (CON-
SECU-
TIVE DAYS) 1 3 7 7 15 30 60 90 | DISCH
2 50%
10400 8360 6470 4690 3500 2760 2460 | 15000
15000
15000
15000
15000
1600
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
1 | N CFS, FIVAL, IN NCE PROB. 10 10% 18000 13700 9770 6680 4850 3830 33330 822 | 21900 11100 7400 5280 4150 3550 | 1906-82 ATED RECUND ANNUAL IN PERCUMPANNUAL 1N PERCUMPANNUAL 2% 24800 18500 12000 7850 5530 4340 | 27700
20600
12900
8240
5730
4490 | #### 14190700 RICKREALL CREEK NEAR DALLAS, OR LOCATION.--Lat 44°54'55", long 123°23'02", in SW\set sec.35, T.7 S., R.6 W., Polk County, Hydrologic Unit 17090007, on left bank 1.8 mi downstream from Canyon Creek, 3.5 mi west of Dallas, 5.1 mi downstream from Aaron Mercer Reservoir, and at mile 19.1. DRAINAGE AREA .-- 27.4 mi2. 622 392 286 214 165 138 88 47 23 PERIOD OF RECORD. -- August 1957 to September 1978. GAGE.--Water-stage recorder and concrete control. Altitude of gage is 460 ft, from topographic map. REMARKS.--Low flow regulated since June 1960 by Aaron Mercer Reservoir, usable capacity, 2,010 acre-ft. Diversion for city of Dallas municipal supply from four tributaries and Rickreall Creek above station. COOPERATION. -- Records of diversion, monthend elevations of reservoir, and reservoir capacity curve furnished by city of Dallas. AVERAGE DISCHARGE.--21 years (water years 1958-78), 148 ft³/s, 73.35 in/yr, 107,200 acre-ft/yr, adjusted for diversion and storage. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 7,160 ft³/s Dec. 22, 1964, gage height, 8.78 ft; no flow at times. #### STATISTICAL SUMMARIES | | MINIMUM | MAX I MUM |
MEAN | STAN-
DARD
DEVIA-
TION | COEFFI-
CIENT OF
VARI- | PERCENT
OF
ANNUAL | PERIOD
(CON-
SECU- | | INTERVAL, | IN YEA | R INDICAT
RS, AND A
BILITY, I | NNUAL NO |)N- | |--------------------------------------|------------------------------|------------------------|--|---|----------------------------------|--|---|---|---|---
--|--|-----------| | МОМТН | (CFS) | (CFS) | (CFS) | (CFS) | ATION | RUNOFF | TIVE
DAYS) | 2
50 % | 5
20 % | 10
10% | 20
5% | 50
2% | 100
1% | | OCTOBER | 3.2 | 81 | 29 | 26 | .90 | 1.6 | 1 | 1.9 | .6 | .2 | .1 | | | | IOVEMBER | 20 | 638 | 210 | 155 | .74 | 12.0 | 3 | 2.2 | .9 | .5 | .3 | | | | ECEMBER | 9.6 | 773 | 378 | 190 | .50 | 21.5 | 7 | 2.4 | 1.4 | 1.0 | .8 | | | | ANUARY | 13 | 685 | 397 | 197 | .50 | 22.6 | 14 | 2.7 | 1.6 | 1.2 | •9 | | | | EBRUARY | 60 | 590 | 273 | 150 | .55 | 15.5 | 30 | 3.2 | 2.0 | 1.5 | | | | | ARCH | 72 | 432 | 249 | 121 | . 49 | 14.2 | 60 | 4.2 | 2.6 | 2.0 | | | | | PRIL | 52 | 252 | 119 | 60 | .50 | 6.8 | 90 | 4.9 | 3.3 | 2.6 | | | | | AY | 25 | 139 | 61 | 32 | .53 | 3.5 | 120 | 6.4 | 4.4 | 3.5 | | | | | UNE | 8.5 | 64 | 22 | 12 | .54 | 1.2 | 183 | 16 | 11 | 8.6 | 7.3 | | | | ULY | 3.5 | 15 | 7.5 | 2.9 | .39 | .4 | | | | 0.0 | ,.,
 | | | | UGUST | 1.0 | 11 | 4.8 | 2.6 | .54 | .3 | | | | | | | | | EPTEMBER | 1.8 | 15 | 6.6 | 3.9 | .59 | .4 | | | | | | | | | EFICMOER | 1.0 | כו | 0.0 | 3.9 | • 29 | •4 | | | | | | | | | NNUAL | 39 | 255 | 146 | 43 | .30 | 100 | | | | | | | | | MAGNIT | | PROBABILI
D ON PERI | TY OF INS | STANTANE | OUS PEAK I | |
MAC | | | | OF ANNUAL
ECORD 19 | |
.ow | | ISCHARGE, | BASE
IN CFS, | | TY OF INS | STANTANE(
CORD
CURRENCE | INTERVAL | FLOW | MAC | BASEI
DISCH/ | O ON PERI | OD OF RI | | 61-78
ED RECUR
ANNUAL | RENCE | | ISCHARGE,
YEARS, A | BASE
IN CFS,
AND ANNUA | FOR INDI | TY OF INS | STANTANEC
CORD
CURRENCE
ABILITY, | INTERVAL
IN PERCE | FLOW | PERIOD
(CON-
SECU- | BASEI
DISCHA | O ON PERI
ARGE, IN
INTERVA | OD OF RI | ECORD 19 R INDICAT EARS, AND BILITY, I | 61-78 ED RECUF ANNUAL N PERCEN | RENCE | | ISCHARGE,
YEARS, A | BASE
IN CFS, | FOR INDI | TY OF INS
OD OF REC
CATED REC
NCE PROBA | STANTANE
CORD
CURRENCE
ABILITY, | INTERVAL
IN PERCE | FLOW
, 1N
NT | PERIOD
(CON-
SECU-
TIVE | BASEI
DISCHA | O ON PERI
ARGE, IN
INTERVA
EXCEEDANC | CFS, FOILL, IN Y | ECORD 19 R INDICAT EARS, AND BILITY, I | 61-78 ED RECUF ANNUAL N PERCEN | RENCE | | ISCHARGE,
YEARS, A | BASE
IN CFS,
AND ANNUA | FOR INDI | TY OF INS | STANTANEC
CORD
CURRENCE
ABILITY, | INTERVAL
IN PERCE | FLOW | PERIOD
(CON-
SECU- | BASEI
DISCHA | O ON PERI
ARGE, IN
INTERVA | OD OF RI | ECORD 19 R INDICAT EARS, AND BILITY, I | 61-78 ED RECUF ANNUAL N PERCEN | RENCE | | ISCHARGE,
YEARS, A | BASE
IN CFS,
AND ANNUA | FOR INDI | TY OF INS | STANTANEC
CORD
CURRENCE
ABILITY, | INTERVAL
IN PERCE | FLOW | PERIOD
(CON-
SECU-
TIVE | BASEI
DISCHA | O ON PERI
ARGE, IN
INTERVA
EXCEEDANC | CFS, FOILL, IN Y | ECORD 19 R INDICAT EARS, AND BILITY, I | 61-78 ED RECUF ANNUAL N PERCEN | RENCE | | ISCHARGE,
YEARS, A | BASE
IN CFS,
AND ANNUA | FOR INDI | TY OF INS | STANTANEC
CORD
CURRENCE
ABILITY, | INTERVAL
IN PERCE | FLOW | PERIOD
(CON-
SECU-
TIVE | BASEI
DISCHA | O ON PERI
ARGE, IN
INTERVA
EXCEEDANC | CFS, FOILL, IN Y | ECORD 19 R INDICAT EARS, AND BILITY, I | 61-78 ED RECUF ANNUAL N PERCEN | RENCE | | ISCHARGE,
YEARS, A | BASE IN CFS, AND ANNUA 2 50% | FOR INDI | TY OF INS | STANTANEC
CORD
CURRENCE
ABILITY, | INTERVAL
IN PERCE | FLOW | PERIOD (CON- SECU- TIVE DAYS) | DISCH/ | O ON PERI
ARGE, IN
INTERVA
EXCEEDANC | CFS, FOIL, IN YE PROBAL | ECORD 19 R INDICAT EARS, AND BILITY, 1 | 61-78 ED RECUF ANNUAL N PERCEN 50 2% | RENCE | | ISCHARGE,
YEARS, A
1.25
80% | BASE IN CFS, AND ANNUA 2 50% | FOR INDI | TY OF INS | STANTANEC
CORD
CURRENCE
ABILITY, | INTERVAL
IN PERCE | FLOW | PERIOD
(CON-
SECU-
TIVE
DAYS) | DISCH/ | O ON PERI
ARGE, IN
INTERVA
EXCEEDANC
5
20% | OD OF RICES, FOILL, IN YE PROBAL | ECORD 19 R INDICAT EARS, AND BILITY, I 25 4% 4760 | 61-78 ED RECUF ANNUAL N PERCEN 50 2% | RENCE | | ISCHARGE,
YEARS, A
1.25
80% | BASE IN CFS, AND ANNUA 2 50% | FOR INDI | TY OF INS | STANTANEC
CORD
CURRENCE
ABILITY, | INTERVAL
IN PERCE | FLOW | PERIOD
(CON-
SECU-
TIVE
DAYS) | DISCH/
2
50%
2380
1690 | O ON PERI
ARGE, IN
INTERVA
EXCEEDANC
5
20% | OD OF RI
CFS, FOI
L, IN Y
E PROBAI
10%
4040
2750 | ECORD 19 R INDICAT EARS, AND BILITY, 1 25 4% 4760 3230 | ED RECUF
ANNUAL
N PERCEN
50
2% | RENCE | | ISCHARGE,
YEARS, A
1.25
80% | BASE IN CFS, AND ANNUA 2 50% | FOR INDI | TY OF INS | STANTANEC
CORD
CURRENCE
ABILITY, | INTERVAL
IN PERCE | FLOW | PERIOD (CON- SECU- TIVE DAYS) 1 3 7 | DISCH/
2
50%
2380
1690
1180 | 5
20%
3420
2340
1020 | OD OF RI
CFS, FOI
LL, IN Y
E PROBAI
10
10%
4040
2750
1770
1120 | ECORD 19 R INDICAT EARS, AND BILITY, 1 25 4% 4760 3230 2000 1220 | 61-78 ED RECUF ANNUAL N PERCEN 50 2% | RENCE | | 1scharge,
YEARS, A
1.25
80% | BASE IN CFS, AND ANNUA 2 50% | FOR INDI | TY OF INS | STANTANEC
CORD
CURRENCE
ABILITY, | INTERVAL
IN PERCE | FLOW | PERIOD (CON-
SECU-
TIVE DAYS) | DISCH/
2
50%
2380
1690
1180
822
605 | 3420
2340
1560
1020
717 | OD OF RICES, FOILL, IN Y E PROBAL 10 10% 4040 2750 1770 1120 759 | R INDICAT
EARS, AND
BILITY, I
25
4%
4760
3230
2000
1220
792 | 61-78 ED RECUF ANNUAL N PERCEN 50 2% | RENCE | | SCHARGE,
YEARS, A
1.25
80% | BASE IN CFS, AND ANNUA 2 50% | FOR INDI | TY OF INS | STANTANEC
CORD
CURRENCE
ABILITY, | INTERVAL
IN PERCE | FLOW | PERIOD (CON-
SECU-
TIVE DAYS) | DISCH/
2
50%
2380
1690
1180
822 | 5
20%
3420
2340
1020 | OD OF RI
CFS, FOI
LL, IN Y
E PROBAI
10
10%
4040
2750
1770
1120 | ECORD 19 R INDICAT EARS, AND BILITY, 1 25 4% 4760 3230 2000 1220 | 61-78 ED RECUF ANNUAL N PERCEN 50 2% | RENCE | | 1scharge,
YEARS, A
1.25
80% | BASE IN CFS, AND ANNUA 2 50% | FOR INDI | TY OF INS | STANTANEC
CORD
CURRENCE
ABILITY,
25
4% | INTERVAL
IN PERCE
50
2% | FLOW , IN NT 100 1% | PERIOD
(CON-
SECU-
TIVE
DAYS)
 | DI SCH/
E
2
50%
2380
1690
1180
822
605
475
411 | 3420
2340
1020
717
575
499 | OD OF RICES, FOILL, IN YE PROBAL 10 10 2750 1770 1120 759 610 528 | ECORD 19 R INDICAT EARS, AND BILITY, 1 25 4% 4760 3230 2000 1220 792 635 | 61-78 ED RECUF ANNUAL N PERCEN 50 2% | RENCE | | 1scharge,
YEARS, A
1.25
80% | BASE IN CFS, AND ANNUA 2 50% | FOR INDIVIDUAL EXCEEDA | TY OF INSOD OF REC | STANTANEC
CORD
CURRENCE
ABILITY,
25
4% | INTERVAL
IN PERCE
50
2% | FLOW TOO THE STATE OF STA | PERIOD (CON-
SECU-
TIVE DAYS) | DISCH/
100 SCH/
2 50%
2380
1690
1180
822
605
475
411 | 3420
2340
1560
1020
717
575
499 | OD OF RICES, FOILL, IN YEE PROBAL 10 10 2750 1770 1120 759 610 528 | ### ATT PROPERTY P | 61-78 ED RECUF ANNUAL N PERCEN 50 2% | RENCE | 12 8.7 6.7 5.3 4.0 2.6 ### 14191000 WILLAMETTE RIVER AT SALEM. OR LOCATION.--Lat 44°56'40", long 123°02'30", in SE±SW± sec. 22, T.7 S., R.3 W., Marion County, Hydrologic Unit 17090007, on right bank 300 ft upstream from Center Street Bridge in Salem, and at mile 84.16. DRAINAGE AREA.--7,280 mi², approximatley. PERIOD OF RECORD.--October 1909 to December 1916, January 1923 to September 1982. Monthly discharge only January 1923 to September 1927, published in WSP 1318. Gage-height records collected at about the same site since 1892 are contained in reports of National Weather Service. GAGE.--Water-stage recorder. Datum of gage is 106.14 ft National Geodetic Vertical Datum of 1929. Oct. 1, 1909, to Dec. 31, 1916, nonrecording gage at site 0.5 mi upstream at datum 8.00 ft higher. Jan. 1, 1923,
to Nov. 26, 1934, nonrecording gage at center Street Bridge at datum 8.00 ft higher. Nov. 27, 1934, to Sept. 30, 1962, water-stage recorder at present site at datum 8.00 ft REMARKS.---Flow regulated by 12 reservoirs above station. Many small diversions for irrigation above station; part of flow of Salem Canal, which diverts water from North Santiam River, returns to Willamette River below station, through Mill Creek at Salem. AVERAGE DISCHARGE.--66 years, 23,560 ft^3/s , 43.95 in/yr, 17,070,000 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 348,000 ft3/s Jan. 8, 1923, gage height, 38.3 ft, present datum; minimum, 2,470 ft³/s Aug. 27, 1940, gage height, 3.55 ft, present datum. EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum discharge, 500,000 ft³/s Dec. 4, 1861, gage height, about 47 ft present datum, from rating curve extended above 250,000 ft³/s in 1916. Floods of Jan. 16, 1881, and Feb. 5, 1890, reached stages of 44.3 ft, discharge, 428,000 ft³/s, and 45.1 ft, discharge, 448,000 ft³/s, respectively, from floodmerks and information by Corps of Engineers. #### STATISTICAL SUMMARIES (BEFORE THE CONSTRUCTION OF 12 UPSTREAM DAMS) MONTHLY AND ANNUAL MEAN DISCHARGES 1910-41 MAGNITUDE AND PROBABILITY OF ANNUAL LOW FLOW BASED ON PERIOD OF RECORD 1911-41 | | | | | STAN-
DARD
DEVIA- | COEFFI-
CIENT OF | 0F | PERIOD
(CON- | | INTERVAL | , IN YEA | RS, AND | TED RECUI
ANNUAL NO
IN PERCEI | -AC | |--------------|----------------------|------------------|---------------|-------------------------|---|------------------|------------------------|-------------------|-----------------|-------------------|----------|-------------------------------------|---------------------------------------| | МОМТН | MINIMUM
(CFS) | MAXIMUM
(CFS) | MEAN
(CFS) | TION
(CFS) | VARI-
ATION | ANNUAL
RUNOFF | SECU-
TIVE
DAYS) | 2
50% | 5
20% | 10
10% | 20
5% | 50
2% | 100 | | CTOBER | 3214 | 14650 | 6236 | 3025 | .49 | 2.4 | 1 | 3260 | 2870 | 2700 | 2560 | 2420 | | | IOVEMBER | 3140 | 68550 | 24280 | 18580 | .77 | 9.4 | 3 | 3280 | 2900 | 2720 | 2580 | 2430 | | | DECEMBER | 10020 | 63550 | 31580 | 14790 | .47 | 12.2 | 7 | 3310 | 2920 | 2740 | 2600 | 2460 | | | JANUARY | 10820 | 97720 | 43070 | 21480 | .50 | 16.7 | 14 | 3360 | 2950 | 2770 | 2630 | 2480 | | | EBRUARY | 14580 | 87540 | 40860 | 20150 | . 49 | 15.8 | 30 | 3460 | 3010 | 2820 | 2680 | 2530 | | | MARCH | 11110 | 71490 | 33840 | 15600 | .46 | 13.1 | 60 | 3630 | 3080 | 2880 | 2760 | 2640 | | | APRIL | 107 9 0 | 63410 | 28360 | 13040 | . 4 6 | 11.0 | 90 | 3 9 80 | 3280 | 3010 | 2820 | 2650 | | | YAY | 9 708 | 33460 | 20280 | 7259 | •36 | 7.9 | 120 | 4410 | 3530 | 3210 | 2990 | 2790 | | | IUNE | 5065 | 37360 | 13990 | 7655 | •55 | 5.4 | 183 | 6920 | 5250 | 4620 | 4190 | 37 9 0 | | | JULY | 3286 | 19870 | 6985 | 3745 | .54 | 2.7 | | | | | | | | | AUGUST | 2 653 | 7766 | 4131 | 1116 | .27 | 1.6 | | | | | | | | | SEPTEMBER | 2 68 2 | 9371 | 4455 | 1613 | .36 | 1.7 | | | | | | | | | ANNUAL | 13670 | 35220 | 21290 | 5668 | .27 | 100 | | | | | | | | | OI SCHARGE , | BASE
, IN CFS, | D ON PERI | OD OF RE | CORD 191 | OUS PEAK I
0-41
INTERVAL
IN PERCEI | , IN | PERIOD
(CON- | BASE
DISCH | D ON PER | CFS, FO | ECORD 1 | TED RECU | RRENCE | | | | | 10 | 25 | 50 | 100 | SECU- | | | | | IN PERCEI | · · · · · · · · · · · · · · · · · · · | | 1.25 | 2 | 5 | 10 | | | | | | | | | | | | | 2
50% | 20% | 10% | 4% | 2% | 1% | TIVE
DAYS) | 2
50% | 5
20% | 10
10 % | 25
4% | 50
2% | 100 | | DISCHARGE
YEARS, | • | S, FOR I | | | | | PERIOD
(CON- | DISC | INTER | VAL, IN | YEARS, A | ATED RECU
ND ANNUAL
IN PERCE | | |---------------------|------------------|------------------|-----------|----------|------------------|-----------|------------------------|----------|----------|-----------|----------|------------------------------------|-----------| | 1.25
80% | 2
50 % | 5
20 % | 10
10% | 25
4% | 50
2 % | 100
1% | SECU-
TIVE
DAYS) | 2
50% | 5
20% | 10
10% | 25
4% | 50
2% | 100
1% | | 109000 | 153000 | 216000 | 258000 | 314000 | 356000 | | | | | | | | | | | | | | | | | 1 | 145000 | 202000 | 239000 | 286000 | 320000 | | | WE I GHT | ED SKEW | = .038 | | | | | 3 | 135000 | 182000 | 211000 | 247000 | 272000 | | | | | | | | | | 7 | 110000 | 143000 | 161000 | 182000 | 197000 | | | | | | | | | | 15 | 81700 | 104000 | 117000 | 132000 | 142000 | | | | | | | | | | 30 | 62600 | 77300 | 85200 | 93500 | 98800 | | | | | | | | | | 60 | 49100 | 60400 | 67000 | 74700 | 79900 | | | | | | | | | | 90 | 43500 | 52700 | 57900 | 63600 | 67400 | | DURATION TABLE OF DAILY MEAN FLOW FOR PERIOD OF RECORD 1910-41 | | | DIS | CHARGE, | IN CFS, | WHICH WAS | EQUALED | OR EXC | EEDED FOR | INDICATE | D PERCEN | T OF TI | ME | | | |-------|-------|-------|---------|---------|-----------|---------|--------|-----------|----------|----------|---------|------|------|------| | 5% | 10% | 15% | 20% | 25% | 30% | 40% | 50% | 60% | 70% | 75% | 80% | 85% | 90% | 95% | | 67500 | 47800 | 37400 | 31800 | 27700 | 24400 | 19300 | 14300 | 9580 | 6160 | 5110 | 4360 | 3850 | 3500 | 3140 | ### 14191000 WILLAMETTE RIVER AT SALEM, OR--Continued #### STATISTICAL SUMMARIES (AFTER THE COMPLETION OF 12 UPSTREAM DAMS) MONTHLY AND ANNUAL MEAN DISCHARGES 1969-82 MAGNITUDE AND PROBABILITY OF ANNUAL LOW FLOW BASED ON PERIOD OF RECORD 1970-82 | | MINIMUM | MAXIMUM | MEAN | STAN-
DARD
DEVIA-
TION | COEFFI-
CIENT OF
VARI- | PERCENT
OF
ANNUAL | PERIOD
(CON-
SECU- | DISC | INTERVA | L, IN YE | OR INDICATION OF THE STATE T | | ON- | |---------------------------------------|------------------------------|------------------------------|--|---------------------------------|-------------------------------------|-----------------------------|--|--|---|--
--|--|--------------| | MONTH | (CFS) | (CFS) | (CFS) | (CFS) | ATION | RUNOFF | TIVE
DAYS) | 2
50% | 5
20% | 10
10 % | 20
5 % | 50
2% | 100
1% | | OCTOBER | 10950 | 24390 | 14470 | 3464 | ,24 | 4.9 | 1 | 6280 | 5490 | 5000 | 4580 | | | | NOVEMBER | 12240 | 70400 | 29040 | 16440 | .57 | 9.8 | 3 | 6340 | 5540 | 5050 | 4620 | | | | DECEMBER | 6780 | 91810 | 55450 | 24340 | .44 | 18.7 | 7 | 6430 | 5630 | 5160 | 4740 | | | | JANUARY | 6377 | 78420 | 52460 | 22620 | .43 | 17.7 | 14 | 6530 | 5730 | 5260 | 4850 | | | | FEBRUARY | 5313 | 60290 | 34660 | 16320 | .47 | 11.7 | 30 | 6650 | 5890 | 5470 | 5120 | | | | MARCH | 11550 | 73670 | 29940 | 17330 | .58 | 10.1 | 60 | 7060 | 6260 | 5910 | 5660 | | | | APRIL | 10260 | 38740 | 23250 | 8934 | .38 | 7.8 | 90 | 7770 | 6750 | 6290 | 5940 | | | | MAY | 7701 | 25220 | 18240 | 5390 | .30 | 6.2 | 120 | 8800 | 7620 | 7080 | 6670 | | | | JUNE | 6539 | 21990 | 13100 | 5048 | .39 | 4.4 | 183 | 10800 | 9230 | 8490 | 7930 | | | | JULY | 6018 | 10610 | 7619 | 1423 | . 19 | 2.6 | | | | | | | | | AUGUST | 6445 | 9540 | 7630 | 944 | .12 | 2.6 | | | | | | | | | SEPTEMBER | | 13340 | 10670 | 1523 | .14 | 3.6 | | | | | | | | | ANNUAL | 9792 | 37960 | 24690 | 7669 | .31 | 100 | | | | | | | | | DISCHARGE, | BASE
IN CFS, | D ON PERI | OD OF RE | CORD | OUS PEAK I | , IN | * | BAS | ED ON PE | RIOD OF
N CFS, F | OF ANNUA RECORD 1 OR INDICA | 969-82
TED RECU | | | OISCHARGE,
YEARS, A | BASE
IN CFS, | D ON PERI | OD OF RE | CORD
CURRENCE | INTERVAL
IN PERCEI | , IN
NT | PERIOD
(CON-
SECU- | BAS | HARGE, I | RIOD OF

N CFS, F
VAL, IN | RECORD 1 | 969-82
TED RECUID ANNUAL | RRENCE | | OISCHARGE, | BASE
IN CFS, | D ON PERI FOR INDI L EXCEEDA | OD OF RE | CORD | INTERVAL
IN PERCEI | , IN | PERIOD
(CON- | BAS | HARGE, I | RIOD OF

N CFS, F
VAL, IN | RECORD 1

OR INDICA
YEARS, AN | 969-82
TED RECUID ANNUAL | RRENCE | | DISCHARGE,
YEARS, A | BASE
IN CFS,
AND ANNUA | D ON PERI FOR INDI L EXCEEDA | OD OF RE | CORD
CURRENCE
BABILITY, | INTERVAL
IN PERCEI | , IN
NT | PERIOD
(CON-
SECU-
TIVE | DISC | HARGE, III INTER EXCEEDA | N CFS, F
VAL, IN
NCE PROB | RECORD 1 OR INDICA YEARS, AN ABILITY, 25 4% | 969-82
TED RECUID ANNUAL
IN PERCE | RRENCE
NT | | DISCHARGE,
YEARS, A
1.25
80% | BASE IN CFS, AND ANNUA 2 50% | D ON PERI FOR INDI L EXCEEDA | OD OF RE | CORD
CURRENCE
BABILITY, | INTERVAL
IN PERCEI | , IN
NT | PERIOD
(CON-
SECU-
TIVE
DAYS) | DISC
2
50% | HARGE, II INTER EXCEEDA | N CFS, F
VAL, IN
NCE PROB
10
10% | RECORD 1 OR INDICA YEARS, AN ABILITY, 25 4% 182000 | 969-82 TED RECUID ANNUAL IN PERCEI 50 2% | 100
1% | | DISCHARGE,
YEARS, A | BASE IN CFS, AND ANNUA 2 50% | D ON PERI FOR INDI L EXCEEDA | OD OF RE | CORD
CURRENCE
BABILITY, | INTERVAL
IN PERCEI | , IN
NT | PERIOD
(CON-
SECU-
TIVE
DAYS) | DISC
2
50%
123000
118000 | HARGE, II INTER EXCEEDAL 5 20% 159000 148000 | N CFS, F
VAL, IN
NCE PROB
10
10% | RECORD 1 OR INDICA YEARS, AN ABILITY, 25 4% 182000 163000 | 969-82 TED RECU ID ANNUAL IN PERCE 50 2% | RRENCE
NT | | 1.25
80% | BASE IN CFS, AND ANNUA 2 50% | D ON PERI FOR INDI L EXCEEDA | OD OF RE | CORD
CURRENCE
BABILITY, | INTERVAL
IN PERCEI | , IN
NT | PERIOD
(CON-
SECU-
TIVE
DAYS) | DISC 2 50% 123000 118000 107000 | ED ON PE
HARGE, II
INTER
EXCEEDAL
5
20%
159000
148000
128000 | N CFS, F
VAL, IN
NCE PROB
10
10% | RECORD 1 | 969-82 TED RECUID ANNUAL IN PERCE | 100
1# | | 1.25
80% | BASE IN CFS, AND ANNUA 2 50% | D ON PERI FOR INDI L EXCEEDA | OD OF RE | CORD
CURRENCE
BABILITY, | INTERVAL
IN PERCEI | , IN
NT | PERIOD
(CON-
SECU-
TIVE
DAYS) | DISC 2 50% 123000 118000 107000 91500 | ED ON PEI HARGE, II INTER EXCEEDAI 5 20% 159000 148000 128000 108000 | N CFS, F
VAL, IN
NCE PROB
10
172000
157000
132000
112000 | RECORD 1 | 969-82 TED RECUID ANNUAL IN PERCE 50 2% | 100
1% | | 1.25
80% | BASE IN CFS, AND ANNUA 2 50% | D ON PERI FOR INDI L EXCEEDA | OD OF RE | CORD
CURRENCE
BABILITY, | INTERVAL
IN PERCEI | , IN
NT | PERIOD
(CON-
SECU-
TIVE
DAYS) | DISC 2 50% 123000 118000 107000 91500 76300 | HARGE, II
INTER
EXCEEDAI
5
20%
159000
148000
128000
108000
89800 | N CFS, F VAL, IN NCE PROB 10 10 157000 132000 112000 92400 | RECORD 1 | 969-82 TED RECUID ANNUAL IN PERCE | 100
1# | | PISCHARGE,
YEARS, A
1.25
80% | BASE IN CFS, AND ANNUA 2 50% | D ON PERI FOR INDI L EXCEEDA | OD OF RE | CORD
CURRENCE
BABILITY, | INTERVAL
IN PERCEI | , IN
NT | PERIOD
(CON-
SECU-
TIVE
DAYS)
 | DISC
2
50%
123000
118000
107000
91500
76300
62000 | HARGE, II
INTER
EXCEDAI
5
20%
159000
148000
128000
108000
89800
77700 | N CFS, F
VAL, IN
NCE PROB
10
10
157000
132000
112000
82200 | RECORD 1 OR INDICA YEARS, AN ABILITY, 25 4\$ 182000 163000 134000 113000 93500 84800 | 969-82 TED RECUID ANNUAL IN PERCE 50 2% | 100
1% | | 1.25
80% | BASE IN CFS, AND ANNUA 2 50% | D ON PERI FOR INDI L EXCEEDA | OD OF RE | CORD
CURRENCE
BABILITY, | INTERVAL
IN PERCEI | , IN
NT | PERIOD
(CON-
SECU-
TIVE
DAYS) | DISC 2 50% 123000 118000 107000 91500 76300 | HARGE, II
INTER
EXCEEDAI
5
20%
159000
148000
128000
108000
89800 | N CFS, F VAL, IN NCE PROB 10 10 157000 132000 112000 92400 | RECORD 1 | 969-82 TED RECUID ANNUAL IN PERCE | 100
1% | | 1.25
80% | BASE IN CFS, AND ANNUA 2 50% | D ON PERI FOR INDI L EXCEEDA | OD OF RE | CURRENCE ABILITY, 25 4% | INTERVAL
IN PERCEI | , IN
NT
100
1% | PERIOD
(CON-
SECU-
TIVE
DAYS)
 | DISC 2 50% 123000 118000 107000 91500 76300 62000 53000 | HARGE, II INTER EXCEEDAI 159000 148000 128000 89800 77700 68800 | N CFS, F VAL, IN NCE PROB 10 10% | RECORD 1 OR INDICA YEARS, AN ABILITY, 25 4\$ 182000 163000 134000 113000 93500 84800 | 969-82 TED RECUID ANNUAL IN PERCE | 100
13 | | PISCHARGE,
YEARS, A
1.25
80% | BASE IN CFS, AND ANNUA 2 50% | FOR INDI
L EXCEEDA | OD OF RECOME THE OTAL OF THE OF RECOME OF THE OF THE OTAL OF THE OTAL OF THE OTAL O | CORD CURRENCE SABILITY, 25 4% | INTERVAL
IN PERCEI
50
2% | , IN
NT
100
1%
 | PERIOD (CON- SECU- TIVE DAYS) 1 3 7 15 30 60 90 FOR PERIOD | DISC
2
50%
123000
118000
107000
91500
76300
62000
53000
0 OF REC | HARGE, II INTER EXCEEDAI 159000 148000 128000 108000 89800 77700 68800 0RD 1969 | N CFS, F
VAL, IN
NCE PROB
10
10%
172000
157000
132000
112000
92400
82200
74900
-82 | RECORD 1 OR INDICA YEARS, AN ABILITY, 25 4% 182000 163000 113000 93500 84800 79500 | 969-82 TED RECUID ANNUAL IN PERCE | 100
1# | | 1.25
80% | BASE IN CFS, AND ANNUA 2 50% | FOR INDI
L EXCEEDA | OD OF RECOME THE OTAL OF THE OF RECOME OF THE OF THE OTAL OF THE OTAL OF THE OTAL O | CORD CURRENCE SABILITY, 25 4% | INTERVAL IN PERCEI 50 2% OF DAILY I | , IN
NT
100
1%
 | PERIOD (CON- SECU- TIVE DAYS) 1 3 7 15 30 60 90 FOR PERIOD | DISC
2
50%
123000
118000
107000
91500
76300
62000
53000
0 OF REC | HARGE, II INTER EXCEEDAI 159000 148000 128000 108000 89800 77700 68800 0RD 1969 | N CFS, F
VAL, IN
NCE PROB
10
10%
172000
157000
132000
112000
92400
82200
74900
-82 | RECORD 1 OR INDICA YEARS, AN ABILITY, 25 4% 182000 163000 113000 93500 84800 79500 | 969-82 TED RECUID ANNUAL IN PERCE | 100
1% | #### 14192500 SOUTH YAMHILL RIVER NEAR WILLAMINA, OR LOCATION.--Lat 45°02'50", long 123°30'10", in NE±SE± sec.14, T.6 S., R.7 W., Polk County, Hydrologic Unit 17090008, on left bank 2.3 mi
southwest of Willamina, 2.8 mi upstream from Willamina Creek, and at mile 45.5. DRAINAGE AREA .-- 133 mi2. PERIOD OF RECORD. -- May 1934 to September 1982. GAGE.--Water-stage recorder. Datum of gage is 235.55 ft National Geodetic Vertical Datum of 1929. REMARKS.--Slight regulation occasionally at low flows by millpond upstream. No diversion above station. AVERAGE DISCHARGE.--48 years, 623 ft³/s, 63.61 in/yr, 451,400 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 19,600 ft³/s Dec. 22, 1964, gage height, 17.07 ft; minimum, 2.6 ft³/s Oct. 11, 1952. #### STATISTICAL SUMMARIES MONTHLY AND ANNUAL MEAN DISCHARGES 1935-82 MAGNITUDE AND PROBABILITY OF ANNUAL LOW FLOW BASED ON PERIOD OF RECORD 1936-82 | | MINIMON | MANIMUM | MEAN | STAN-
DARD
DEVIA- | COEFFI-
CIENT OF | 0F | PERIOD
(CON- | | ARGE, IN I
INTERVAL,
EXCEEDANCI | IN YEARS | , AND AN | INUAL NO | 4- | |-----------|------------------|------------------|---------------|-------------------------|---------------------|------------------|------------------------|------------------|---------------------------------------|-----------|----------|----------|-----------| | MONTH | MINIMUM
(CFS) | MAXIMUM
(CFS) | MEAN
(CFS) | TION
(CFS) | VARI-
ATION | ANNUAL
RUNOFF | SECU-
TIVE
DAYS) | 2
50 % | 5
20% | 10
10% | 20
5% | 50
2% | 100
1% | | OCTOBER | 12 | 846 | 188 | 184 | .98 | 2.5 | 1 | 12 | 8.4 | 6.8 | 5.6 | 4.5 | 3.9 | | NOVEMBER | 22 | 2650 | 873 | 602 | .69 | 11.6 | 3 | 13 | 9.0 | 7.3 | 6.1 | 5.0 | 4.3 | | DECEMBER | 104 | 2917 | 1501 | 679 | .45 | 20.0 | 7 | 14 | 9.7 | 7.9 | 6.7 | 5.4 | 4. | | JANUARY | 132 | 3172 | 1509 | 743 | . 49 | 20.1 | 14 | 15 | 11 | 8.8 | 7.4 | 6.1 | 5.3 | | EBRUARY | 278 | 2869 | 1344 | 554 | .41 | 17.9 | 30 | 18 | 12 | 10 | 8.7 | 7.2 | 6.3 | | 1ARCH | 270 | 1981 | 998 | 415 | .42 | 13.3 | 60 | 23 | 16 | 13 | 11 - | 9.1 | 8.0 | | \PRIL | 180 | 1365 | 58 6 | 276 | . 47 | 7.8 | 90 | 28 | 19 | 16 | 13 | 11 | 9.7 | | MAY | 69 | 613 | 276 | 131 | .47 | 3.7 | 120 | 39 | 26 | 21 | 18 | 15 | 13 | | IUNE | 55 | 405 | 125 | 75 | •60 | 1.7 | 183 | 91 | 62 | 50 | 41 | 33 | 29 | | IULY | 19 | 85 | 48 | 20 | .42 | • 6 | | | | | | | | | AUGUST | 6.7 | 82 | 25 | 13 | .52 | .3 | | | | | | | | | SEPTEMBER | 9.7 | 282 | 42 | 4 6 | 1.08 | •6 | | | | | | | | | ANNUAL | 215 | 1028 | 623 | 152 | .24 | 100 | | | | | | | | | MAGNI | | PROBABILI | | | OUS PEAK I | LOW | MAG | | AND PROBAI | | | |)W | | YEARS, | | | | RECURREN
ROBABILIT | | | PERIOD
(CON- | | INTER | N CFS, FO | YEARS, A | AUNNA DA | Ļ | |-------------|----------|----------|-----------|-----------------------|----------|-----------|------------------------|----------|------------------|-----------|----------|-----------------|-------| | 1.25
80% | 2
50% | 5
20% | 10
10% | 25
4% | 50
2% | 100
1% | SECU-
TIVE
DAYS) | 2
50% | 5
20 % | 10
10% | 25
4% | 50
2% | 100 | | 7320 | 9570 | 12400 | 14100 | 16200 | 17600 | 19000 | | | | | | | | | | | | | | | | 1 | 7420 | 9460 | 10700 | 12000 | 12900 | 13800 | | WE I GHTED |) SKEW = | 136 | | | | | 3 | 5710 | 7230 | 8180 | 9310 | 10100 | 10900 | | | | | | | | | 7 | 4250 | 5230 | 5760 | 6320 | 6690 | 7010 | | | | | | | | | 15 | 3120 | 3810 | 4150 | 4500 | 4710 | 4890 | | | | | | | | | 30 | 2360 | 2800 | 2980 | 3140 | 32 2 0 | 3280 | | | | | | | | | 60 | 1820 | 2220 | 2420 | 2610 | 2730 | 2830 | | | | | | | | | 90 | 1630 | 1980 | 2150 | 2300 | 2380 | 2450 | DURATION TABLE OF DAILY MEAN FLOW FOR PERIOD OF RECORD 1935-82 | | | | DISCHA | RGE, IN | CFS, WH | CH WAS | QUALED O | R EXCEED | ED FOR I | NDICATED | PERCENT | OF TIME | | | | |------|------|-----|--------|---------|---------|--------|----------|----------|----------|----------|---------|---------|-----|-----|-----| | 5 | 5% | 10% | 15% | 20% | 25% | 30% | 40% | 50% | 60% | 70% | 75% | 80% | 85% | 90% | 95% | | 2500 |) 17 | 10 | 1250 | 960 | 761 | 609 | 400 | 248 | 136 | 70 | 50 | 36 | 27 | 21 | 16 | #### 14193000 WILLAMINA CREEK NEAR WILLAMINA, OR LOCATION.--Lat 45°08'35", long 123°29'35", in NELNWL sec.13, T.5 S., R.7 W., Yamhill County, Hydrologic Unit 17090008, on right bank 4.5 mi north of Willamina and at mile 6.2. DRAINAGE AREA .-- 64.7 mi2. М PERIOD OF RECORD. -- June 1934 to September 1982. GAGE.--Water-stage recorder. Datum of gage is 315 ft National Geodetic Vertical Datum of 1929 (plane-table survey). Prior to Oct. 1, 1939, water-stage recorder at site on left bank at datum 1.00 ft higher. Oct. 1, 1939, to Aug. 5, 1968, water-stage recorder at site on left bank at present datum. REMARKS. -- No regulation or diversion above station. AVERAGE DISCHARGE.--48 years, 261 ft³/s, 54.78 in/yr, 189,100 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.—Maximum discharge, 10,800 ft 3 /s Dec. 22, 1964, gage height, 13.54 ft, from rating curve extended above 3,400 ft 3 /s on basis of slope-area measurement at gage height 11.65 ft; minimum, 5.4 ft 3 /s July 15, 1967. EXTREMES OUTSIDE PERIOD OF RECORD.—Flood of Mar. 31, 1931, reached a stage of about 12 ft from information by local resident, discharge, 8,200 ft³/s from rating curve extended above 3,400 ft³/s on basis of slope-area measurement at gage height 11.65 ft. #### STATISTICAL SUMMARIES | MONTHLY | AND ANNUA | L MEAN DISCHARGES | 1935-82 | MAGNITUDE AND PROBABILITY OF ANNUAL LOW FLOW | |---------|-----------|-------------------|---------|--| | | | | | BASED ON PERIOD OF RECORD 1936-82 | | | MINIMUM | MAXIMUM | MEAN | STAN-
DARD
DEVIA-
TION | COEFFI-
CIENT OF
VARI- | PERCENT
OF
ANNUAL | PERIOD
(CON-
SECU- | | INTERVAL | CFS, FOR
, IN YEARS
CE PROBABI | , AND AN | NUAL NO | N- | |-----------|---------|---------|-------|---------------------------------|------------------------------|-------------------------|--------------------------|----------|----------|--------------------------------------|----------|----------|-----------| | MONTH | (CFS) | (CFS) | (CFS) | (CFS) | ATION | RUNOFF | TIVE
DAYS) | 2
50% | 5
20% | 10
10% | 20
5% | 50
2% | 100
1% | | OCTOBER | 12 | 276 | 64 | 59 | .93 | 2.0 | 1 | 12 | 10 | 9.5 | 8.9 | 8.4 | 8.1 | | NOVEMBER | 15 | 1084 | 310 | 238 | .77 | 9.8 | 3 | 12 | 11 | 9.8 | 9.3 | 8.7 | 8.4 | | DECEMBER | 35 | 1220 | 597 | 303 | .51 | 19.0 | 7 | 13 | 11 | 10 | 9.5 | 8.9 | 8.5 | | JANUARY | 43 | 1216 | 617 | 319 | .52 | 19.6 | 14 | 14 | 12 | 11 | 10 | 9.5 | 9.1 | | FEBRUARY | 86 | 1121 | 564 | 228 | .40 | 17.9 | 30 | 15 | 13 | 12 | 11 | 10 | 10 | | MARCH | 105 | 929 | 449 | 186 | .41 | 14.3 | 60 | 17 | 14 | 13 | 12 | 11 | 11 | | APRIL | 95 | 544 | 272 | 112 | .41 | 8.6 | 90 | 20 | 16 | 15 | 13 | 12 | 12 | | MAY | 54 | 296 | 135 | 52 | .38 | 4.3 | 120 | 25 | 19 | 17 | 16 | 14 | 13 | | JUNE | 39 | 160 | 66 | 25 | .38 | 2.1 | 183 | 46 | 34 | 29 | 25 | 21 | 19 | | JULY | 20 | 54 | 32 | 7.9 | .25 | 1.0 | | | | | | | | | AUGUST | 12 | 38 | 20 | 5.3 | .27 | .6 | | | | | | | | | SEPTEMBER | 11 | 69 | 22 | 11 | .51 | .7 | | | | | | | | | ANNUAL | 83 | 461 | 261 | 69 | .27 | 100 | | | | | | | | | MAGNITUDE | AND PROBABILITY | 0F | INSTANTANEOUS PEAK FL | OW | |-----------|-----------------|----|-----------------------|----| | | BASED ON PERIOD | 0F | RECORD 1935-82 | | #### MAGNITUDE AND PROBABILITY OF ANNUAL HIGH FLOW BASED ON PERIOD OF RECORD 1935-82 | DISCHARGE,
YEARS, AI | | PERIOD
(CON- | DISCHARGE, IN CFS, FOR INDICATED RECURRENCE INTERVAL, IN YEARS, AND ANNUAL EXCEEDANCE PROBABILITY. IN PERCENT | | | | | | | | | | | |-------------------------|--------------|-----------------|---|----------|----------|-----------|------------------------|----------|----------|------|----------|----------|------| | 1.25
80% | 2
50%
 | 5
20%
 | 10
10% | 25
4% | 50
2% | 100
1% | SECU-
TIVE
DAYS) | 2
50% | 5
20% | 10 | 25
4% | 50
2% | 100 | | 2850 | 3710 | 5020 | 5960 | 7250 | 8270 | 9360 | | | | | | | | | | | | | | | | 1 | 2870 | 3830 | 4460 | 5230 | 5800 | 6370 | | WEIGHTED | SKEW = | .447 | | | | | 3 | 2200 | 2860 | 3300 | 3880 | 4310 | 4750 | | | | | | | | | 7 | 1670 | 2100 | 2350 | 2630 | 2810 | 2990 | | | | | | | | | 15 | 1270 | 1550 | 1690 | 1820 | 1890 | 1950 | | | | | | | | | 30 | 957 | 1150 | 1230 | 1290 | 1330 | 1350 | | | | | | | | | 60 | 741 | 923 | 1010 | 1110 | 1160 | 1210 | | | | | | | | | 90 | 661 | 820 | 895 | 966 | 1010 | 1040 | DURATION TABLE OF DAILY MEAN FLOW FOR PERIOD OF RECORD 1935-82 | | | DISC | HARGE, | IN CFS, | WHICH WAS | EQUALED | OR EXCE | EDED FOR | INDICATED | PERCENT | OF TIME | | | | |-----|-----|------|--------|---------|-----------|---------|---------|----------|-----------|---------|-------------|-----|-----|-------------| | 5% | 10% | 15% | 20% | 25% | 30% | 40% | 50% | 60% | 70% | 75% | 80 % | 85% | 90% | 95 % | | 986 | 666 | 513 | 407 | 332 | 274 | 183 | 114 | 67 | 39 | 30 | 24 | 21 | 17 | 14 | ## 14193300 MILL CREEK NEAR WILLAMINA, OR LOCATION.--Lat 44°58'15", long 123°26'55", in NE‡NW‡ sec.17, T.7 S., R.6 W., Polk County, Hydrologic Unit 17090008, on left bank 0.2 mi upstream from bridge, 0.7 mi downstream from South Branch, 7.5 mi south of Willamina, and at mile 11.5. DRAINAGE AREA. -- 27.4 mi2. 566 252 PERIOD OF RECORD. -- July 1958 to September 1973. GAGE.--Water-stage recorder. Datum of gage is 562.02 ft National Geodetic Vertical Datum of 1929 (levels by Bureau of Reclamation). REMARKS.--No regulation or diversion above station. AVERAGE DISCHARGE.--15 years (water years 1959-73), 140 ft^3/s , 69.39 in/yr, 101,400 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 6,170 ft^3/s Dec. 22, 1964, gage height, 11.47 ft; minimum, 2.6 ft^3/s Sept. 8, 1958. ## STATISTICAL SUMMARIES | | MINIMUM | MAXIMUM | MEAN | STAN-
DARD
DEVIA-
TION | COEFFI-
CIENT OF
VARI- |
PERCENT
OF
ANNUAL | PERIOD
(CON-
SECU- | 1 | NTERVAL, | IN YEAR | R INDICATE
RS, AND AI
BILITY, II | NNUAL NO | N- | |-------------------------------------|-----------------------------------|-------------------------|-----------------------------------|----------------------------------|--|-------------------------|---|--|--|--|---|--|--------------------------| | MONTH | (CFS) | (CFS) | (CFS) | (CFS) | ATION | RUNOFF | TIVE
DAYS) | 2
50% | 5
20 % | 10
10% | 20
5% | 50
2% | 100
1% | | OCTOBER | 6.7 | 94 | 40 | 30 | .76 | 2.4 | 1 | 3.9 | 3.4 | 3.1 | 2.9 | | | | NOVEMBER | 80 | 385 | 194 | 103 | .53 | 11.6 | 3 | 4.0 | 3.4 | 3.1 | 2.9 | | | | DECEMBER | 139 | 658 | 330 | 155 | .47 | 19.7 | 7 | 4.1 | 3.5 | 3.3 | 3.1 | | | | JANUARY | 76 | 631 | 376 | 179 | .48 | 22.4 | 14 | 4.3 | 3.7 | 3.4 | 3.2 | | | | EBRUARY | 83 | 572 | 269 | 145 | .54 | 16.0 | 30 | 4.7 | 3.8 | 3.5 | 3.2. | | | | MARCH | 67 | 418 | 241 | 104 | .43 | 14.4 | 60 | 5.4 | 4.2 | 3.8 | 3.5 | | | | APRIL | 55 | 250 | 120 | 61 | .51 | 7.2 | 90 | 6.6 | 4.9 | 4.3 | 4.0 | | | | YAM | 24 | 129 | 58 | 31 | .52 | 3.5 | 120 | 8.6 | 6.3 | 5.4 | 4.9 | | | | JUNE | 12 | 69 | 24 | 14 | .58 | 1.4 | 183 | 21 | 15 | 12 | 10 | | | | JULY | 6.6 | 13 | 9.3 | 2.1 | .22 | •6 | | | | | | | | | AUGUST | 3.9 | 17 | 6.2 | 3.3 | | .4 | | | | | | | | | SEPTEMBER | 3.4 | 43 | 11 | 10 | .95 | •7 | | | | | | | | | ANNUAL | 90 | 183 | 140 | 23 | .16 | 100 | | | | | | | | | MA GN I | | PROBABILI
D ON PERIO | | | | FLOW | MAC | | | | OF ANNUAL
ECORD 195 | | .OW | | OISCHARGE, | BASE
IN CFS, | FOR INDIC | OD OF REC | ORD 195 | 9-73

INTERVAL | , IN | PERIOD
(CON- | BASED
DISCHA | ON PERI | OD OF RECEIVED | | 59-73
ED RECUF
ANNUAL | RENCE | | DISCHARGE, | BASE
IN CFS, | D ON PERIO | OD OF REC | ORD 195 | 9-73
INTERVAL
IN PERCE | , IN | PERIOD
(CON-
SECU-
TIVE | BASED
DISCHA | RGE, IN INTERVA | OD OF RECEIVED | ECORD 195 R INDICATE EARS, AND BILITY, IN | 59-73 ED RECUF ANNUAL N PERCEN 50 | RRENCE | | 1.25 | BASE IN CFS, AND ANNUA 2 50% | D ON PERIO | CATED REC
NCE PROBA | CORD 1950
CURRENCE
BILITY, | 9-73
INTERVAL
IN PERCE | , IN
NT
 | PERIOD
(CON-
SECU- | BASED
DISCHA | ON PERI | OD OF RECEIVED | ECORD 195 R INDICATE EARS, AND BILITY, IN | 59-73 ED RECUF ANNUAL N PERCEN | RRENCE | | OISCHARGE,
YEARS, / | BASE
IN CFS,
AND ANNUA | D ON PERIO | CATED REC
NCE PROBA | URRENCE
BILITY, | 9-73
INTERVAL
IN PERCE | , IN
NT
 | PERIOD
(CON-
SECU-
TIVE
DAYS) | DISCHA E2 50% | ON PERI | OD OF RECEIVED | ECORD 19! R INDICATE EARS, AND BILITY, II | 59-73 ED RECUF ANNUAL N PERCEN 50 | RRENCE | | 1.25
80% | BASE IN CFS, AND ANNUA 2 50% 3060 | FOR INDII
L EXCEEDA | CATED REC
NCE PROBA | CORD 1950
CURRENCE
BILITY, | 9-73
INTERVAL
IN PERCE | , IN
NT
 | PERIOD
(CON-
SECU-
TIVE
DAYS) | DISCHA E 2 50% | ON PERI | OD OF RECEIVED | R INDICATE EARS, AND BILITY, II 25 4% | 59-73 ED RECUF ANNUAL N PERCEN 50 2% | 100 | | YEARS, /
YEARS, /
1.25
80% | BASE IN CFS, AND ANNUA 2 50% 3060 | D ON PERIO | CATED REC
NCE PROBA | CORD 1950
CURRENCE
BILITY, | 9-73
INTERVAL
IN PERCE | , IN
NT
 | PERIOD (CON- SECU- TIVE DAYS) | DISCHA E 2 50% 2130 1540 | ON PERI | OD OF RECOMMENDED RECOMMEND OF RECOMMENDED RECOMMEND OF RECOMMENDED RECOMMEND OF RECOMMENDED OF RECOMMEND | 25
4310
2920 | ED RECUF
ANNUAL
N PERCEN
50
2% | 100
13 | | 1.25
80% | BASE IN CFS, AND ANNUA 2 50% 3060 | FOR INDII
L EXCEEDA | CATED REC
NCE PROBA | CORD 1950
CURRENCE
BILITY, | 9-73
INTERVAL
IN PERCE | , IN
NT
 | PERIOD (CON- SECU- TIVE DAYS) 1 3 7 | DISCHA 2 50% 2130 1540 1060 | ON PERI | OD OF RECEIVED | 25 A 310 2920 1790 | ED RECUF
ANNUAL
N PERCEN
50
2% | 100
13 | | 1.25
80% | BASE IN CFS, AND ANNUA 2 50% 3060 | FOR INDII
L EXCEEDA | CATED REC
NCE PROBA | CORD 1950
CURRENCE
BILITY, | 9-73
INTERVAL
IN PERCE | , IN
NT
 | PERIOD (CON- SECU- TIVE DAYS) | DISCHA E 2 50% 2130 1540 | ON PERI | OD OF RECOMMENDED RECOMMEND OF RECOMMENDED RECOMMEND OF RECOMMENDED RECOMMEND OF RECOMMENDED OF RECOMMEND | 25
4310
2920 | 59-73 ED RECUP ANNUAL N PERCEN 50 2% | 100
13 | | 1.25
80% | BASE IN CFS, AND ANNUA 2 50% 3060 | FOR INDII
L EXCEEDA | CATED REC
NCE PROBA | CORD 1950
CURRENCE
BILITY, | 9-73
INTERVAL
IN PERCE | , IN
NT
 | PERIOD (CON-
SECU-
TIVE DAYS) | DISCHA E 2 50\$ 2130 1060 774 561 | ON PERI
INTERVA
EXCEEDANC
5
20%
2920
2010
1320
933
640 | OD OF RECOMPANY | R INDICATE EARS, AND BILITY, IF 4% 4310 2920 1790 1130 714 | ED RECUF
ANNUAL
N PERCEN
50
2% | 100
13 | | 1.25
80% | BASE IN CFS, AND ANNUA 2 50% 3060 | FOR INDII
L EXCEEDA | CATED REC
NCE PROBA | CORD 1950
CURRENCE
BILITY, | 9-73
INTERVAL
IN PERCE | , IN
NT
 | PERIOD (CON-
SECU-
TIVE DAYS) | DISCHA E 2 50% 2130 1540 1060 774 | ON PERI
IRGE, IN
INTERVA
EXCEEDANC
5
20%
2920
2010
1320
933 | OD OF RECEIVED | R INDICATE EARS, AND BILITY, II 25 4310 2920 1790 1130 | 59-73 ED RECUF ANNUAL N PERCEN 50 2% | IT | | 1.25
80% | BASE IN CFS, AND ANNUA 2 50% 3060 | FOR INDII
L EXCEEDA | CATED RECONCE PROBA | URRENCE
BILITY, | 9-73
INTERVAL
IN PERCE
50
2% | , IN
NT
100
1% | PERIOD
(CON-
SECU-
TIVE
DAYS)
 | DISCHA E 2 50\$ 2130 1540 1060 774 561 429 369 | 2920
2010
2013
2033
2040
2010
2010
2010
2010
2010
2010
2010 | OD OF RECOME A STATE OF THE PROBABLE PR | 25 4% 4310 2920 1790 1130 714 590 | 59-73 ED RECUF ANNUAL N PERCEN 50 2% | RENCE
IT
100
1% | | 1.25
80% | BASE IN CFS, AND ANNUA 2 50% 3060 | FOR INDIG | CATED RECONCE PROBA 10 10 4790 5 | URRENCE
BILITY,
25
4% | 9-73 INTERVAL IN PERCE 50 2% | , IN NT 1% | PERIOD (CON-
SECU-
TIVE DAYS) | DISCHA E 2 50% 2130 1060 774 561 429 369 OF RECOR | 2920
2010
1320
933
640
500
1959-7 | OD OF RECEIVED | R INDICATE EARS, AND BILLITY, II 25 43 4310 2920 1790 1130 714 590 482 | 59-73 ED RECUF ANNUAL N PERCEN 50 2% | RENCE | 195 155 125 80 50 29 16 11 8.0 6.3 5.2 4.3 107 ## 14194000 SOUTH YAMHILL RIVER NEAR WHITESON, OR LOCATION.--Lat 45°10'08", long 123°12'25", in NEtNWt sec.5, T.5 S., R.4 W., Yamhill County, Hydrologic Unit 17090008, near left bank on downstream side of Whiteson Bridge on State Highway 99W, 1.3 mi northwest of Whiteson, 1.4 mi downstream from Salt Creek, and at mile 16.71. DRAINAGE AREA. -- 502 mi2. 7620 4960 3580 2710 2080 1650 1050 617 321 77 30 PERIOD OF RECORD. -- July 1940 to September 1982. GAGE.--Water-stage recorder. Datum of gage is 82.30 ft National Geodetic Vertical Datum of 1929. Prior to Sept. 20, 1940, nonrecording gage at present site and datum. REMARKS.--Slight regulation during low-water periods by logpond upstream. Many small diversions for irrigation above station. AVERAGE DISCHARGE.--42 years, 1,768 ft³/s, 47.83 in/yr, 1,281,000 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 47,200 ft³/s Dec. 23, 1964, gage height, 47.20 ft; minimum, 3.2 ft³/s Aug. 24, EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of December 1937 reached a stage of 46.9 ft, from Oregon State Highway Department bridge plans. | | ONTHLY AN | ID ANNUAL | MEAN DIS | SCHARGES | 1941-82 | | МА | | AND PROB
ED ON PER | | OF ANNUA
RECORD 1 | L LOW FL
942-82 | OW | |----------------------|-------------------|-----------------------------
---------------------|-------------------------|---------------------|----------------------|-------------------------------------|---|---|--|---|---|--| | | | | | STAN-
DARD
DEVIA- | COEFFI-
CIENT OF | | PERIOD
(CON- | DISC | INTERVAL | ., IN YE | OR INDICA
ARS, AND
ABILITY, | ANNUAL N | ON- | | MONTH | (CFS) | MAXIMUM
(CFS) | MEAN
(CFS) | TION
(CFS) | VARI-
ATION | ANNUAL
RUNOFF | SECU-
TIVE
DAYS) | 2
50% | 5
20 % | 10
10% | 20
5% | 50
2% | 100
1% | | OCTOBER | 23 | 1819 | 383 | 392 | 1.02 | 1.8 | 1 | 24 | 15 | 10 | 7.7 | | | | NOVEMBER | 105 | 8085 | 2073 | 1639 | •79 | 9.7 | 3 | 25 | 16 | 12 | 8.8 | 6.2 | 4.9 | | DECEMBER | 188 | 8493 | 4346 | 2183 | .50 | 20.4 | 7 | 28 | 17 | 13 | 9.9 | 7.1 | 5.6 | | JANUARY | 242 | 8884 | 4621 | 2462 | .53 | 21.7 | 14 | 31 | 20 | 15 | 12 | 8.4 | 6.6 | | FEBRUARY | 423 | 8890 | 4035 | 1854 | .46 | 18.9 | 30 | 36 | 24 | 18 | 15 | 11 | 9.4 | | MARCH | 699 | 6238 | 2921 | 1401 | .48 | 13.7 | 60 | 46 | 31 | 25 | 20 | 16 | 14 | | APRIL | 545 | 3623 | 1681 | 860 | .51 | 7.9 | 90 | 60 | 39 | 31 | 26 | 21 | 18 | | MAY | 269 | 1736 | 727 | 374 | .51 | 3.4 | 120 | 85 | 56 | 45 | 38 | 31 | 27 | | JUNE | 121 | 910 | 295 | 159 | .54 | 1.4 | 183 | 215 | 145 | 116 | 95 | 75 | 6 4 | | JULY | 38 | 200 | 104 | 43 | .41 | .5 | כסו | 215 | 145 | 110 | 97 | , , | | | AUGUST | 9.7 | | | | | | | | | | | | | | SEPTEMBER | | 153
450 | 50
85 | 26 | .51
.95 | .2 | | | | | | | | | SEPTEMBER | 18 | 450 | 85 | 81 | .95 | .4 | | | | | | | | | ANNUAL | 461 | 3119 | 1768 | 519 | •29 | 100 | | | | | | | | | DI SCHARGE
YEARS | , IN CFS, | | | | INTERVAL | | | | | | RECORD 1 | J41 0L | | | | | | | | IN PERCE | NT
 | PERIOD
(CON- | DISC | INTER | /AL, ÍN Y | OR INDICA
(EARS, AN
ABILITY, | ID ANNUAL | | | 1.25 | <u>-</u> | 5 | 10 | 25 | 50 | 100 | (CON-
SECU- | | INTER\
EXCEEDAN | AL, ÍN Y | YEARS, AN
ABILITY, | ID ANNUAL | NT
 | | | | | | | | | (CON- | DISCI

2
50% | INTER | /AL, ÍN Y | YEARS, AN | ID ANNUAL | | | 1.25 | 2
50 % | 5
20% | 10
10% | 25
4% | 50
2% | 100 | (CON-
SECU-
TIVE | 2 | INTERN
EXCEEDAN
5 | /AL, ÎN Y
NCE PROB <i>A</i>
10 | YEARS, AN
ABILITY,

25 | ID ANNUAL
IN PERCE
50 | NT
 | | 1.25
80%
16800 | 2
50%
22400 | 5
20 %
29200 3 | 10
10% | 25
4% | 50
2% | 100 | (CON-
SECU-
TIVE
DAYS) | 2 | INTERVEXCEEDAN
5
20%
26300 | /AL, ÎN Y
NCE PROB <i>A</i>
10 | YEARS, AN
ABILITY,

25 | ID ANNUAL
IN PERCE
50 | NT
 | | 1.25
80%
16800 | 2
50 % | 5
20 %
29200 3 | 10
10% | 25
4% | 50
2% | 100 | (CON-
SECU-
TIVE
DAYS) | 2
50% | INTERV
EXCEEDAN
5
20% | /AL, ÍN)
NCE PROBA
10
10% | YEARS, AN
ABILITY,
25
4% | ID ANNUAL
IN PERCE
50
2% | 100
1% | | 1.25
80%
16800 | 2
50%
22400 | 5
20 %
29200 3 | 10
10% | 25
4% | 50
2% | 100 | (CON-
SECU-
TIVE
DAYS) | 2
50%
20100 | INTERVEXCEEDAN
5
20%
26300 | 10
10%
29600 | ZEARS, AN ABILITY, 25 4% 33200 | ID ANNUAL
IN PERCE
50
2% | 100
1%
37300 | | 1.25
80%
16800 | 2
50%
22400 | 5
20 %
29200 3 | 10
10% | 25
4% | 50
2% | 100 | (CON-
SECU-
TIVE
DAYS) | 2
50%
20100
16900 | 1NTER\ EXCEEDAN 5 20% 26300 21200 | 10
10%
29600
23400 | 7EARS, AN
ABILITY,
25
4%
33200
25600 | 1D ANNUAL
1N PERCE
50
2%
35400
26900 | 100
1%
37300
28000 | | 1.25
80%
16800 | 2
50%
22400 | 5
20 %
29200 3 | 10
10% | 25
4% | 50
2% | 100 | (CON-
SECU-
TIVE
DAYS)
 | 2
50%
20100
16900
12900
9480 | 5
20%
26300
21200
16200
11800 | 10
10%
29600
23400
17800
12800 | 7EARS, ANABILITY, 25 4% 33200 25600 19300 13700 | 35400
26900
2000
14200 | 100
1%
37300
28000
20900
14500 | | 1.25
80%
16800 | 2
50%
22400 | 5
20 %
29200 3 | 10
10% | 25
4% | 50
2% | 100 | (CON-
SECU-
TIVE
DAYS) | 20100
16900
12900
9480
7070 | 5
20%
26300
21200
16200
11800
8690 | 10
10%
29600
23400
17800
12800
9360 | 7EARS, ANABILITY, 25 4% 33200 25600 19300 13700 9920 | 50
2%
35400
26900
20200
14200
10200 | 100
1%
37300
28000
20900
14500
10400 | | 1.25
80%
16800 | 2
50%
22400 | 5
20 %
29200 3 | 10
10% | 25
4% | 50
2% | 100 | (CON-
SECU-
TIVE
DAYS)
 | 2
50%
20100
16900
12900
9480 | 5
20%
26300
21200
16200
11800 | 10
10%
29600
23400
17800
12800 | 7EARS, ANABILITY, 25 4% 33200 25600 19300 13700 | 35400
26900
2000
14200 | 100
1%
37300
28000
20900
14500 | | 1.25
80%
16800 | 2
50%
22400 | 5
20 %
29200 3 | 10
10%
3300 3 | 25
4%
58100 4 | 50
2%
1300 44 | 100 1% | (CON-
SECU-
TIVE
DAYS)
 | 20100
16900
12900
9480
7070
5450
4820 | 5
20%
26300
21200
16200
11800
8690
6940
6100 | 10
10%
29600
23400
17800
12800
9360
7640
6660 | 33200
25600
19300
13700
9920
8310 | 35400
26900
2000
14200
10200
8680 | 37300
28000
20900
14500
10400
8980 | | 1.25
80%
16800 | 2
50%
22400 | 5
20%
29200 3
287 | 10
10%
3300 3 | 25
4%
58100 4 | 50
2%
1300 44 | 100
1%
400
 | (CON-
SECU-
TIVE
DAYS)
 | 2
50%
20100
16900
12900
9480
7070
5450
4820 | 1NTER\ EXCEEDAN 5 20% 26300 21200 16200 11800 8690 6940 6100 ORD 1941- | 29600
23400
17800
29600
23400
17800
9360
7640
6660 | 33200
25600
19300
19300
19700
9920
8310
7140 | 35400
26900
2000
14200
10200
8680 | 37300
28000
20900
14500
10400
8980 | ### 14194300 NORTH YAMHILL RIVER NEAR FAIRDALE, OR LOCATION.--Lat 45°21'55", long 123°22'40", in SW\ sec.25, T.2 S., R.6 W., Yamhill County, Hydrologic Unit 17090008, on right bank 0.4 mi downstream from small tributary, 1.3 mi upstream from Kutch Creek, 2.1 mi west of Fairdale, 9.5 mi west of Yamhill and at mile 28.4. DRAINAGE AREA. -- 9.03 mi². PERIOD OF RECORD. -- October 1958 to March 1966, October 1967 to September 1982. GAGE. -- Water-stage recorder. Altitude of gage is 560 ft, from topographic map. REMARKS.--No regulation or diversion above station. AVERAGE DISCHARGE.--22 years (water years 1959-65, 1968-82), 48.1 ft^3/s , 72.34 in/yr, 34,850 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 2,330 ft³/s Dec. 22, 1964, gage height, 6.88 ft, from rating curve extended above 1,000 ft³/s; maximum gage height, 9.7 ft Dec. 23, 1964 (backwater from debris); minimum discharge, 2.3 ft³/s Sept. 23-26, 1965. ### STATISTICAL SUMMARIES MONTHLY AND ANNUAL MEAN DISCHARGES 1959-82 MAGNITUDE AND PROBABILITY OF ANNUAL LOW FLOW BASED ON PERIOD OF RECORD 1960-82 | | MINIMUM | MAXIMUM | MEAN | STAN-
DARD
DEVIA-
TION | COEFFI-
CIENT OF
VARI- | PERCENT
OF
ANNUAL | PERIOD
(CON-
SECU- | 11 | NTERVAL, | CFS, FOR
IN YEARS
E PROBABI | , AND AN | INUAL N | ON- | |-----------|---------|---------|-------|---------------------------------|------------------------------|-------------------------|--------------------------|----------|----------|-----------------------------------|----------|----------|-----------| | монтн | (CFS) | (CFS) | (CFS) | (CFS) | ATION | RUNOFF | TIVE
DAYS) | 2
50% | 5
20% | 10
10% | 20
5% | 50
2% | 100
1% | | OCTOBER | 3.5 | 32 | 13 | 8.2 | •65 | 2.2 | 1 | 3.1 | 2.7 | 2.5 | 2.4 | | | | NOVEMBER | 5.7 | 177 | 59 | 37 | .62 | 10.3 | 3 | 3.2 | 2.7 | 2.6 | 2.4 | | | | DECEMBER | 7.8 | 202 | 106 | 52 | .49 | 18.4 | 7 | 3.3 | 2.8 | 2.6 | 2.5 | | | | JANUARY | 10 | 228 | 110 | 59 | .54 | 19.1 | 14 | 3.5 | 3.0 | 2.8 | 2.6 | | | | FEBRUARY | 20 | 179 | 92 | 36 | .40 | 15.9 | 30 | 3.8 | 3.2 | 3.0 | 2.8 | | | | MARCH | 36 | 151 | 81 | 32 | .40 | 14.0 | 60 | 4.5 | 3.7 | 3.4 | 3.1 | | | | APRIL | 25 | 91 | 54 | 19 | •36 | 9.4 | 90 | 5.0 | 4.1 | 3.7 | 3.4 | | | | MAY | 16 | 46 | 29 | 8.3 | . 28 | 5.1 | 120 | 5.9 | 4.8 | 4.3 | 4.1 | | | | JUNE | 9.3 | 35 | 15 | 6.1 | .40 | 2.6 | 183 | 11 | 8.2 | 7.2 | 6.5 | | | | JULY | 5.3 | 12 | 7.4 | 1.6 | .21 | 1.3 | | | | | | | | | AUGUST | 3.5 | 7.5 | 4.9 | 1.0 | .21 | .8 | | | | | | | | | SEPTEMBER | 2.7 | 16 | 5.8 | 3.1 | .53 | 1.0 | | | | | | | | | ANNUAL | 17 | 81 | 48 | 14 | .28 | 100 | | | | | | | | MAGNITUDE AND PROBABILITY OF INSTANTANEOUS PEAK FLOW BASED ON PERIOD OF RECORD 1959-82 MAGNITUDE AND PROBABILITY OF ANNUAL HIGH FLOW BASED ON PERIOD OF RECORD 1959-82 | DISCHARGE,
YEARS, AI | | | | RECURRENC
ROBABILITY | | | PERIOD
(CON- | | INTERV | AL, ÍN Y | R INDICAT
EARS, AND
BILITY. | ANNUAL | | |-------------------------|----------|--------------|-----------|-------------------------|--------------|---------------|------------------------|----------|----------|-----------|-----------------------------------|----------|-----------| | 1.25
80% | 2
50% | 5
20%
 | 10
10% | 25
4% | 50
2%
 | 100
1%
 | SECU-
TIVE
DAYS) | 2
50% | 5
20% | 10
10% | 25
4% | 50
2% | 100
1% | | 398 | 612 | 993 | 1310 | 1790 | | | | | | | 4070 | | | | | CKEM | | | | | | 1 | 461 | 718 | 923 | 1230 | | | | WE I GHTED | SKEW =
 •418 | | | | | 2 | 363 | 521 | 637 | 797 | | | | | | | | | | | 7 | 277 | 363 | 413 | 471 | | | | | | | | | | | 15 | 209 | 267 | 301 | 341 | | | | | | | | | | | 30 | 164 | 197 | 212 | 226 | | | | | | | | | | | 60 | 129 | 163 | 181 | 200 | | | | | | | | | | | 90 | 113 | 144 | 160 | 175 | | | DURATION TABLE OF DAILY MEAN FLOW FOR PERIOD OF RECORD 1959-82 | | | DISC | HARGE, | IN CFS, | WHICH WAS | EQUALED | OR EXCE | EDED FOR | INDICATE | D PERCEN | IT OF TIM |
1E | | | |-----|-----|------|--------|---------|-----------|---------|-------------|----------|----------|----------|-----------|--------|-----|-----| | 5% | 10% | 15% | 20% | 25% | 30% | 40% | 50 % | 60% | 70% | 75% | 80% | 85% | 90% | 95% | | 172 | 119 | 94 | 75 | 61 | 52 | 38 | 25 | 16 | 8.9 | 7.1 | 5.9 | 5.1 | 4.3 | 3.6 | 109 ### 14195000 HASKINS CREEK NEAR MCMINNVILLE, OR LOCATION.--Lat 45°18'50", long 123°21'55", in NE‡ sec.13, T.3 S., R.6 W., Yamhill County, Hydrologic Unit 17090008, on left bank 150 ft downstream from Idlewild Creek, 0.5 mi upstream from Haskins Creek Dam, and 11 mi northwest of McMinnville. DRAINAGE AREA .-- 6.48 mi2. 98 70 53 42 34 29 18 11 6.5 3.9 3.1 2.5 2.1 1.7 1.1 PERIOD OF RECORD. -- October 1928 to September 1951. GAGE.--Water-stage recorder. Wooden control since September 1936. Altitude of gage is 815 ft, by barometer. Prior to Oct. 1, 1930, at datum 1.00 ft higher. REMARKS.--No regulation. Since Sept. 2, 1937, a small amount of water (average, 1.4 ft³/s) has been diverted at a point 800 ft upstream for municipal supply of McMinneville. AVERAGE DISCHARGE.--23 years (water years 1929-51), 26.4 ft³/s, 19,110 acre-ft/yr, adjusted for diversion. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 610 ft³/s Mar. 31, 1931, gage height, 4.00 ft (before control was built); minimum prior to diversion above station, 1.0 ft³/s Oct. 8, 1932. | M | | | | | | | | | | | | | | |--|--|---|--|--|--|------------------------------------|--|---|--|--|--|--------------------------------------|--------------| | | | | uran | STAN-
DARD
DEVIA- | COEFFI-
CIENT OF | | PERIOD
(CON- | - 1 | NTERVAL, | IN YEAR | INDICATI
S, AND AI
ILITY, II | NNUAL N | DN− | | MONTH | MINIMUM
(CFS) | MAXIMUM
(CFS) | MEAN
(CFS) | TION
(CFS) | VARI-
ATION | ANNUAL
RUNOFF | SECU-
TIVE
DAYS) | 2
50% | 5
20% | 10
10% | 20
5% | 50
2% | 100
1% | | OCTOBER NOVEMBER DECEMBER JANUARY FEBRUARY MARCH APRIL | 1.4
1.6
11
13
22
12 | 26
80
141
118
108
92
70 | 5.6
27
53
55
58
49
31 | 5.7
22
33
28
25
22 | 1.02
.81
.63
.50
.42
.45 | 1.8
8.7
17.1
17.8
18.8 | 1
3
7
14
30
60
90 | .9
1.0
1.1
1.2
1.4
1.8
2.0 | .4
.5
.6
.7
1.0 | .3
.4
.4
.5
.7 | .2
.2
.2
.3 | | | | MAY
JUNE
JULY
AUGUST | 4.9
2.8
.8
.3 | 38
20
6.8
3.8 | 15
7.2
3.3
2.0 | 7.5
3.5
1.5 | .50
.49
.44
.47 | 10.1
4.9
2.3
1.1 | 120
183 | 2.4
4.6 | 1.6
3.2 | 1.2
2.6 | .6
1.0
2.2 | | | | SEPTEMBER | .3 | 4.2 | 2.0 | 1.0 | -51 | .7 | | | | | | | | | ANNUAL

MAGNIT | | 38
PROBABILI
D ON PERI | | | | 100

FLOW |
MAG | NITUDE A | | | F ANNUAL | | .OW | | MAGNIT
DISCHARGE,
YEARS, A | TUDE AND
BASE
, IN CFS, | PROBABILI
D ON PERIO
FOR INDI-
L EXCEEDA | TY OF INS | STANTANEC
CORD 1929
CURRENCE
ABILITY, | OUS PEAK
9-51
INTERVAL
IN PERCE | FLOW
, IN | PERIOD
(CON- | BASED
DISCHA | ON PERIORS RGE, IN O | OD OF REC | | 29-51
ED RECUR
ANNUAL | RRENCE | | MAGNIT | FUDE AND
BASE | PROBABILI
D ON PERI | TY OF INS | STANTANE
CORD 1929
CURRENCE | OUS PEAK
9-51
INTERVAL
IN PERCE | FLOW | PERIOD | BASED
DISCHA | ON PERIORS RGE, IN O | OD OF REC | CORD 192
INDICATI
ARS, AND | 29-51
ED RECUR
ANNUAL | RRENCE | | MAGNIT
DISCHARGE,
YEARS, / | TUDE AND
BASE
IN CFS,
AND ANNUA | PROBABILI
D ON PERIO
FOR INDI-
L EXCEEDA | TY OF IN:
OD OF REC
CATED REC
NCE PROB/ | STANTANEC
CORD 1929
CURRENCE
ABILITY, | OUS PEAK
9-51
INTERVAL
IN PERCE | FLOW
, IN
NT | PERIOD
(CON-
SECU-
TIVE
DAYS) | DISCHA E: 2 50% | ON PERIO | OD OF REC
CFS, FOR
L, IN YE.
E PROBAB | INDICATI
ARS, AND
ILITY, II | 29-51 ED RECUF ANNUAL N PERCEN 50 2% | RRENCE
IT | | MAGNIT
DISCHARGE,
YEARS, /
1.25
80% | FUDE AND BASE IN CFS, AND ANNUA 2 50% | PROBABILI
D ON PERI
FOR INDI
L EXCEEDA | TY OF IN:
OD OF REC
CATED REC
NCE PROB | STANTANEC
CORD 1929
CURRENCE
ABILITY, | OUS PEAK
9-51
INTERVAL
IN PERCE | FLOW
, IN
NT | PERIOD
(CON-
SECU-
TIVE | BASED DISCHA E: | ON PERIOR PER | OD OF REC | INDICATI
ARS, AND
ILITY, II | 29-51 ED RECUF ANNUAL N PERCEN | RRENCE
IT | | MAGNITO DISCHARGE, YEARS, / 1.25 80% | FUDE AND BASE IN CFS, AND ANNUA 2 50% | PROBABILI
D ON PERIO
FOR INDI-
L EXCEEDA
5
20% | TY OF IN:
OD OF REC
CATED REC
NCE PROB/
10 # | STANTANECORD 1929 CURRENCE ABILITY, 25 4% | OUS PEAK
9-51
INTERVAL
IN PERCE
50
2% | FLOW | PERIOD (CON-
SECU-
TIVE DAYS) | DISCHA E. 2 50% 234 188 146 114 89 70 64 | ON PERIOD PER | CFS, FOR L, IN YELE PROBAB | 192
INDICATI
ARS, AND
ILITY, II
25
4%
466
368
277
195
146
110 | 29-51 ED RECUF ANNUAL N PERCEN 50 2% | RRENCE
IT | | MAGNIT
DISCHARGE,
YEARS, /
1.25
80% | FUDE AND BASE IN CFS, AND ANNUA 2 50% | PROBABILI
D ON PERIO
FOR INDI
L EXCEEDA
5
20%
396
.244 | TY OF IN: OD OF REC CATED REC NCE PROB 10 10 474 | STANTANECCORD 1929 CURRENCE ABILITY, 25 4% 578 | DUS PEAK 9-51 INTERVAL IN PERCE 50 2% | FLOW , IN NT 100 1% | PERIOD (CON-
SECU-
TIVE DAYS) 1 3 7 7 15 30 60 90 | DISCHA E. 2 50% 234 188 146 114 89 70 64 OF RECOR | ON PERIOD RGE, IN C INTERVAL XCEEDANCI 5 20 320 253 197 150 115 89 80 D 1929-5 | OD OF REG | 192 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 29-51 ED RECUF ANNUAL N PERCEN 50 2% | RRENCE
IT | ### 14196500 NORTH YAMHILL RIVER NEAR PIKE, OR LOCATION.--Lat 45°22'15", long 123°17'10", in NE‡ sec.27, T.2 S., R.5 W., Yamhill County, Hydrologic Unit 17090008, on left bank 1.3 mi west of Pike, 2.3 mi downstream from Haskins Creek, and 5.2 mi northwest of Yamhill. DRAINAGE AREA .-- 47.8 mi2. PERIOD OF RECORD. -- October 1940 to September 1951. GAGE.--Water-stage recorder. Datum of gage is 249.22 ft National Geodetic Vertical Datum of 1929 (Corps of Engineers bench mark). Prior to Oct. 23, 1940, staff gage at same site and datum. REMARKS.--Occasional diurnal fluctuations caused by small dams upstream; no seasonal regulation. Water supply for city of McMinnville is diverted from Haskins Creek above station. AVERAGE DISCHARGE.--11 years (water years 1941-51), $184 \text{ ft}^3/\text{s}$, 133,200 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 4,780 ft³/s Feb. 10, 1949, gage height, 9.28 ft, from rating curve extended above 2,500 ft³/s by logarithmic plotting; minimum, 4.2 ft³/s Sept. 11, 1944; minimum dally, 6.0 ft³/s Sept. 10, 1944. ## STATISTICAL SUMMARIES MONTHLY AND ANNUAL MEAN DISCHARGES 1941-51 MAGNITUDE AND PROBABILITY OF ANNUAL LOW FLOW BASED ON PERIOD OF RECORD 1942-51 | | | | |
STAN-
DARD
DEVIA- | COEFFI-
CIENT OF | PERCENT
OF | PERIOD
(CON- | 11 | NTERVAL, | CFS, FOR
IN YEARS
E PROBABI | , AND AN | NUAL N | ON- | |--------------|------------------|------------------|---------------|-------------------------|---------------------|------------------|------------------------|----------|----------|-----------------------------------|----------|----------|-----------| | MONTH | MINIMUM
(CFS) | MAXIMUM
(CFS) | MEAN
(CFS) | TION
(CFS) | VARI-
ATION | ANNUAL
RUNOFF | SECU-
TIVE
DAYS) | 2
50% | 5
20% | 10
10% | 20
5% | 50
2% | 100
1% | | OCTOBER | 13 | 206 | 54 | 59 | 1.10 | 2.4 | 1 | 8.4 | 7.2 | 6.6 | 6.1 | | | | NOVEMBER | 81 | 474 | 245 | 138 | . 56 | 11.0 | 3 | 8.6 | 7.4 | 6.8 | 6.4 | | | | DECEMBER | 93 | 729 | 418 | 204 | .49 | 18.7 | 7 | 9.1 | 7.8 | 7.1 | 6.6 | | | | JANUARY | 132 | 765 | 384 | 177 | .46 | 17.2 | 14 | 9.4 | 8.1 | 7.6 | 7.1 | | | | EBRUARY | 162 | 850 | 477 | 201 | .42 | 21.4 | 30 | 10 | 8.9 | 8.4 | 8.0 | | | | MARCH | 92 | 609 | 297 | 153 | .52 | 13.3 | 60 | 12 | 11 | 9.9 | 9.5 | | | | \PRIL | 69 | 287 | 172 | 73 | .43 | 7.7 | 90 | 14 | 12 | 11 | 11 | | | | 4AY | 48 | 227 | 92 | 51 | - 55 | 4.1 | 120 | 17 | 15 | 14 | 13 | | | | JUNE | 30 | 65 | 45 | 11 | .26 | 2.0 | 183 | 33 | 29 | 26 | 25 | | | | JULY | 15 | 29 | 21 | 4.5 | .21 | 1.0 | | | | | | | | | AUGUST | 11 | 18 | 13 | 2.2 | . 17 | .6 | | | | | | | | | SEPTEMBER | 9.3 | 28 | 14 | 5.9 | .43 | .6 | | | | | | | | | ANNUAL | 104 | 239 | 184 | 50 | •27 | 100 | | | | | | | | |)ISCHARGE,
YEARS, AI | | | | | | | PERIOD
(CON- | | INTERV | CFS, FOF | EARS, AND | ANNUAL | | |-------------------------|----------|----------------------|-----------|----------|----------------------|-----------|------------------------|----------------------|----------------------|----------------------|-----------|----------|-----------| | 1.25
80% | 2
50% | 5
20 %
 | 10
10% | 25
4% | 50
2 %
 | 100
1% | SECU-
TIVE
DAYS) | 2
50% | 5
20% | 10
10% | 25
4% | 50
2% | 100
1% | | 2190 | 2780 | 3560 | 4060 | | | | | 2010 | 2400 | 27.40 | | | | | WEIGHTED | SKEW = | •107 | | | | | 1
3
7 | 2010
1490
1110 | 2480
1770
1390 | 2740
1920
1550 | | | | | | | | | | | | 15
30 | 865
649 | 1090
830 | 1200
913 | | | | | | | | | | | | 60
90 | 521
474 | 652
602 | 712
665 | | | | DURATION TABLE OF DAILY MEAN FLOW FOR PERIOD OF RECORD 1941-51 | | | DISC | HARGE, | IN CFS, | WHICH WAS | EQUALED | OR EXCE | EDED FOR | INDICATED | PERCENT | OF TIME | | | | |-----|-----|------|--------|---------|-----------|---------|---------|----------|-----------|---------|---------|-----|-----|-----| | 5% | 10% | 15% | 20% | 25% | 30% | 40% | 50% | 60% | 70% | 75% | 80% | 85% | 90% | 95% | | 717 | 495 | 369 | 287 | 231 | 187 | 121 | 75 | 49 | 29 | 22 | 18 | 14 | 12 | 9.9 | 111 ### 14197000 NORTH YAMHILL RIVER AT PIKE, OR LOCATION.--Lat 45°22'10", long 123°15'15", in NWL sec.25, T.2 S., R.5 W., Yamhill County, Hydrologic Unit 17090008, on right bank 500 ft downstream from Turner Creek, 0.5 mi southeast of Pike, 4.0 mi northwest of Yamhill, and at mile 20.5. DRAINAGE AREA. -- 66.8 mi². 938 638 479 384 313 256 166 97 53 28 20 16 13 11 8.4 PERIOD OF RECORD. -- October 1948 to September 1973. GAGE.--Water-stage recorder. Datum of gage is 192.66 ft National Geodetic Vertical Datum of 1929 (Corps of Engineers bench mark). Prior to Aug. 21, 1950, water-stage recorder at datum 1.02 ft higher. REMARKS.--Seasonal regulation by Haskins Creek Reservoir; occasional diurnal fluctuation caused by Haskins Creek Dam and smaller dams upstream. Water supply for city of McMinnville is diverted from Haskins Creek above station and that for city of Yamhill is diverted from Turner Creek above station. Small diversions above station for irrigation. AVERAGE DISCHARGE.--25 years, 242 ft3/s, 49.20 in/yr, 175,300 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.—Maximum discharge, 9,530 ft^3/s Dec. 21, 1955, gage height, 12.42 ft, from rating curve extended above 2,600 ft^3/s , on basis of slope-area measurement of peak flow; mlnimum, 1.7 ft^3/s Sept. 3, 1972. | | | DISCHA | | | | | FOR PERIOD EXCEEDED FOR | | | | IME | | | |---------------|-----------|------------------------|----------|-----------|-----------|-----------|--------------------------|--------------|----------------------|-----------|----------|-----------------------|-------| | | | | DURATIO | N TABLE | OF DAILY | MEAN FLOW | FOR PERIOD | OF RECO | RD 1949-7 | 3 | 90 | 638
 | 762
 | 822 | 882 | 919 | | | | | | | | | | 60 | 724 | 880 | 963 | 1050 | 1110 | | | | | | | | | | 30 | 936 | 1110 | 1200 | 1280 | 1330 | | | | | | | | | | 15 | 1250 | 1510 | 1630 | 1750 | 1820 | | | | | | | | | | 7 | 1570 | 1940 | 2170 | 2450 | 2640 | | | WEIGHTE | D SKEW = | .472 | | | | | 3 | 2030 | 2620 | 3080 | 3740 | 4280 | | | METAUTE | | 470 | | | | | 1 - | 2700 | 3680 | 4410 | 5420 | 6250 | | | 2970 | 3990 | 5590 | 6790 | 8460 | 9830 | | | | 7.00 | DAYS) | 50% | 20% | 10% | 4% | 2% | 19 | | 80% | 50% | 20% | 10% | 4% | 2% | 1% | TIVE | 2 | 5 | 10 | 25 | 50 | 100 | | 1.25 | 2 | 5 | 10 | 25 | 50 | 100 | SECU- | | | | | | | | YEARS, | AND ANNUA | L EXCEEDA | NCE PROE | BABILITY, | IN PERCE | NT
 | PERIOD
(CON- | 1 | | | | D ANNUAL
IN PERCEN | IT | | | | FOR INDI | | | | | | DISCH | | | | TED RECUR | RENCE | | MAGNI | | PROBABILI
D ON PERI | | | | FLOW | MA: | | AND PROBA | | | L HIGH FL
949-73 | .OW | | NNUAL | 159
 | 366 | 242 | 47 | .19
 | 100 | | | | | | | | | SEPTEMBER | 6.9 | 39 | 14 | 6.8 | .50 | .5 | | | | | | | | | AUGUST | 5.6 | 21 | 12 | 3.6 | .30 | • 4 | | | | | | | | | JULY | 10 | 34 | 20 | 5.9 | | .7 | | | | | | | | | JUNE | 26 | 85 | 48 | 17 | .35 | 1.7 | 183 | 34 | 25 | 21 | 18 | 15 | | | MAY | 58 | 214 | 111 | 46 | .41 | 3.8 | 120 | 16 | 12 | 11 | 9.2 | 8.0 | | | APRIL | 78 | 411 | 227 | 87 | .38 | 7.8 | 90 | 13 | 9.8 | 8.6 | 7.7 | | | | MARCH | 144 | 807 | 441 | 180 | .41 | 15.1 | 60 | 11 | 8.3 | 7.2 | 6.4 | | | | FEBRUARY | 171 | 1163 | 556 | 257 | .46 | 19.1 | 30 | 9.3 | | 6.3 | 5.7 | | | | JANUARY | 162 | 1122 | 636 | 312 | . 49 | 21.8 | 14 | 8.6 | 6.5 | 5.4 | 4.6 | 3.7 | | | DECEMBER | 187 | 1023 | 545 | 242 | .44 | 18.7 | 7 | 8.2 | 6.1 | 4.8 | 3.9 | 2.9 | | | NOVEMBER | 17 | 683 | 260 | 166 | .64 | 8.9 | 3 | 7.9 | 5.8 | 4.6 | 3.6 | | | | OCTOBER | 8.5 | 162 | 48 | 43 | .89 | 1.6 | 1 | 7.7 | 5.6 | 4.3 | 3.4 | 2.4 | | | 10N TH | (CFS) | (CFS) | (CFS) | (CFS) | ATION
 | RUNOFF | TIVE
DAYS) | 2
50%
 | 5
20 %
 | 10
10% | 20
5% | 50
2%
 | 100 | | | MINIMUM | | MEAN | TION | VARI- | ANNUAL | SECU- | | | | | | | | | | | | DEVIA- | CIENT OF | OF | (CON- | | EXCEEDANG | E PROBA | BILITY, | IN PERCEN | IT. | | | | | | DARD | COEFFI- | PERCENT | PERIOD | | | | | ANNUAL NO | | | | | | | STAN- | | | | DISCH | ARGE. IN | CES. FO | R INDICA | TED RECUF | RENCE | ### 14198000 WILLAMETTE RIVER AT WILSONVILLE, OR LOCATION.--Lat 45°17'57", long 122°45'00", in SE¼NE¼ sec.24, T.3 S., R.1 W., Clackamas County, Hydrologic Unit 17090007, on left bank, 0.2 mi downstream from Boeckman Creek, 1.1 mi downstream from bridge on Interstate Highway 5 at Wilsonville, and at mile 37.4 DRAINAGE AREA. -- 8,400 mi², approximately. PERIOD OF RECORD. -- October 1948 to July 1973. GAGE.--Water-stage recorder. Datum of gage is at National Geodetic Vertical Datum of 1929. Prior to Oct. 1, 1954, nonrecording gage at Butteville, 5.9 mi upstream at same datum. Oct. 1, 1954, to Nov. 2, 1970, at site 1.1 mi upstream at same datum. REMARKS.---Flow regulated by 12 reservoirs above station since 1968. Many diversions for irrigation above station. AVERAGE DISCHARGE.--24 years (water years 1949-72), 28,900 ft³/s, 21,000,000 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 339,000 ft³/s Dec. 25, 1964, elevation, 94.74 ft; minimum daily, 3,600 ft³/s Nov. 29, 30, 1952. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of Dec. 4, 1861, reached an elevation of about 105 ft at Wilsonville (discharge not determined). #### STATISTICAL SUMMARIES MONTHLY AND ANNUAL MEAN DISCHARGES 1949-72 MAGNITUDE AND PROBABILITY OF ANNUAL LOW FLOW BASED ON PERIOD OF RECORD 1950-72 | | MINIMUM | MAX1MUM | MEAN | STAN-
DARD
DEVIA-
TION | COEFFI-
CIENT OF
VARI- | PERCENT
OF
ANNUAL | PERIOD
(CON-
SECU- | | INTERVAL | ., IN YEA | R INDICAT
RS, AND A
BILITY, I | NNUAL NO | ON- | |-----------|---------|---------|-------|---------------------------------|------------------------------|-------------------------|--------------------------|----------|----------|-----------|-------------------------------------|------------------|-----------| | MONTH | (CFS) | (CFS) | (CFS) | (CFS) | ATION | RUNOFF | TIVE
DAYS) | 2
50% | 5
20% | 10
10% | 20
5% | 50
2 % | 100
1% | | OCTOBER | 4548 | 25010 | 13730 | 5390 | .39 | 3.9 | 1 | 5750 | 4830 | 4300 | 3860 | | | | NOVEMBER | 4217 | 80980 | 31700 | 16730 | .53 | 9.1 | 3 | 5780 | 4850 | 4330 | 3880 | | | | DECEMBER | 17180 | 123100 | 54510 | 29110 | .53 | 15.6 | 7 | 5860 | 4920 | 4390 | 3950 | | | | JANUARY | 14300 | 114100 | 61280 | 28670 | .47 | 17.6 | 14 | 5930 | 5000 | 4490 | 4070 | | | | FEBRUARY | 22800 | 100700 | 54180 | 20080 | .37 | 15.5 | 30 | 6090 | 5170 | 4670 | 4270 | | | | MARCH | 15890 | 83510 | 41260 | 18810 | .46 | 11.8 | 60 | 6380 | 5400 | 4930 | 4550 | | | | APRIL | 13630 | 54450 | 30520 | 11430 | .37 | 8.7 | 90 | 6920 | 5870 | 5360 | 4970 | | | | MAY | 12870 | 41430 | 24400 | 8309 | .34 | 7.0 | 120 | 7840 | 6550 | 5940 | 5470 | | | | JUNE | 7200 | 26330 | 15090 | 5571 | .37 | 4.3 | 183 | 11000 | 9140 | 8290 | 7660 | | | | JULY | 5542 | 11660 | 8092 | 1911 | .24 | 2.3 | | | | | | | | | AUGUST |
4413 | 8938 | 6571 | 1242 | . 19 | 1.9 | | | | | | | | | SEPTEMBER | 4573 | 12250 | 7840 | 2061 | .26 | 2.2 | | | | | | | | | ANNUAL | 20890 | 43870 | 28990 | 5403 | . 19 | 100 | | | | | | | | MAGNITUDE AND PROBABILITY OF INSTANTANEOUS PEAK FLOW BASED ON PERIOD OF RECORD MAGNITUDE AND PROBABILITY OF ANNUAL HIGH FLOW BASED ON PERIOD OF RECORD 1949-72 | DISCHARGE,
YEARS, A | | | | | | | PERIOD
(CON- | DISC | INTER | RVAL, ÍN | OR INDICA | D ANNUAL | | |------------------------|----------|--------------|-----------|----------|----------|-----------|------------------------|----------|--------|----------|-----------|----------|-----| | 1.25
80% | 2
50% | 5
20%
 | 10
10% | 25
4% | 50
2% | 100
1% | SECU-
TIVE
DAYS) | 2
50% | 5 20% | | | | 100 | 1 | 146000 | 189000 | 223000 | 274000 | | | | WEIGHTED | SKEW = | | | | | | 3 | 140000 | 180000 | 212000 | 259000 | | | | | | | | | | | 7 | 126000 | 161000 | 186000 | 222000 | | | | | | | | | | | 15 | 103000 | 130000 | 148000 | 170000 | | | | | | | | | | | 30 | 84100 | 105000 | 119000 | 136000 | | | | | | | | | | | 60 | 67300 | 84900 | 96900 | 113000 | | | | | | | | | | | 90 | 60400 | 74900 | 84100 | 95400 | | | DURATION TABLE OF DAILY MEAN FLOW FOR PERIOD OF RECORD 1949-72 | | | DIS | CHARGE, | IN CFS, | WHICH WAS | EQUALED | OR EXC | EEDED FOR | INDICATED | PERCENT | OF TIME | | | | |-------|-------|-------|---------|---------|-----------|---------|--------|-----------|-----------|---------|---------|-----|------|------| | 5,% | 10% | 15% | 20% | 25% | 30% | 40% | 50% | 60% | 70% | 75% | 80% | 85% | 90% | 95% | | 94600 | 69700 | 53600 | 43100 | 35700 | 30400 | 24100 | 18700 | 13900 | 10400 8 | 940 7 | 780 6 | 960 | 6370 | 5670 | 113 # WILLAMETTE RIVER BASIN LOCATION.--Lat 45°00'35", long 122°28'45", in NE\NE\ sec.31, T.6 S., R.3 E., Clackamas County, Hydrologic Unit 17090009, on right bank 0.5 mi upstream from Pine Creek, 5 mi southeast of Wilhoit, and at mile 32.5. 14198500 MOLALLA RIVER ABOVE PINE CREEK, NEAR WILHOIT, OR DRAINAGE AREA. -- 97.0 mi², at cableway 0.2 mi downstream. PERIOD OF RECORD. -- October 1935 to September 1982. 1850 1240 966 801 689 592 434 319 219 GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 791.35 ft National Geodetic Vertical Datum of 1929 (Bureau of Public Roads bench mark). Oct. 1, 1935, to Sept. 30, 1945, and Oct. 1, 1945, to Feb. 9, 1961, water-stage recorder at site 0.3 mi downstream at datums 8.42 ft and 10.44 ft lower, respectively. Feb. 10, 1961, to July 21, 1966, water-stage recorder at site 0.2 mi downstream at datum 5.99 ft lower. REMARKS.--No regulation or diversion above station. Records given herein are for measuring site. AVERAGE DISCHARGE.--47 years, 544 ft³/s, 76.16 in/yr, 394,100 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 24,300 ft³/s Dec. 22, 1964, gage height, 16.3 ft, from floodmark, site and datum then in use, from rating curve extended above 5,200 ft³/s; minimum, 18 ft³/s Oct. 3, 1965. | ,,, | ONTHLY AN | ID ANNUAL | MEAN DIS | SCHARGES | 1936-82 | | MA | | D ON PER | HOD OF I | RECORD | 1937-82 | | |--|--------------------------------|------------------------------|--|-----------------------------------|---|------------------------------|--|---|---|--|---|--|---| | | | MANIMUM | | STAN-
DARD
DEVIA- | COEFFI-
CIENT OF | | PERIOD
(CON- | DISCH | | ., IN YE | OR INDICARS, AND | ANNUAL N | 10N- | | MONTH | MINIMUM
(CFS) | MAXIMUM
(CFS) | MEAN
(CFS) | TION
(CFS) | VARI-
ATION | ANNUAL
RUNOFF | SECU-
TIVE
DAYS) | 2
50% | 5
20 % | 10
10% | 20
5% | 50
2% | 100
1% | | OCTOBER
NOVEMBER
DECEMBER
JANUARY | 29
24
106
119 | 1020
1799
2604
2574 | 243
731
1056
1032 | 227
482
543
577 | .93
.66
.51 | 3.7
11.2
16.1
15.8 | 1
3
7
14 | 30
31
32
34 | 24
25
25
27 | 22
22
23
24 | 20
21
21
22 | 19
19
20
- 20 | 18
18
19
19 | | FEBRUARY
MARCH
APRIL
MAY | 131
258
198
147 | 2411
1705
1366
1062 | 933
745
720
569 | 447
314
238
224 | .48
.42
.33
.39 | 14.2
11.4
11.0
8.7 | 30
60
90
120 | 38
46
57
79 | 29
35
42
55 | 26
30
36
45 | 24
27
32
39 | 22
25
28
33 | 20
23
26
29 | | JUNE
JULY
AUGUST
SEPTEMBER | 74
37
23
25 | 726
211
193
240 | 291
101
54
76 | 152
41
28
56 | .52
.41
.52
.73 | 4.4
1.5
.8
1.2 | 183 | 168 | 122 | 104 | 91 | 78 | 71 | | ANNUAL | 241 | 921 | 544 | 133 | .24 | 100 | DISCHARGE
YEARS, | BASE
, IN CFS,
AND ANNUA | FOR INDI | OD OF RE | CORD 193 | INTERVAL
IN PERCE | FLOW
, IN |
PERIOD
(CON- | BASE | AND PROB
D ON PER
IARGE, IN
INTERV
EXCEEDAN | CFS, FO | RECORD 1 | 1936-82

ATED RECUND ANNUAL | JRRENCE | | DI SCHARGE | BASE
, IN CFS, | D ON PERI | OD OF RE | CORD 193 | 6-82
INTERVAL
IN PERCE | FLOW | PERIOD | BASE | D ON PER | CFS, FO | RECORD 1 | 1936-82

ATED RECUND ANNUAL | URRENCE | | DISCHARGE
YEARS,
1.25
80% | BASE , IN CFS, AND ANNUA 2 50% | FOR INDI | CATED RE | CORD 193 CURRENCE BABILITY, 25 4% | INTERVAL
IN PERCE | FLOW
, IN
NT | PERIOD
(CON-
SECU-
TIVE | BASE
DISCH | ID ON PER
IARGE, IN
INTERV
EXCEEDAN | CFS, FO | RECORD 1 OR INDICA YEARS, AN ABILITY, 25 | 1936-82
ATED RECUND ANNUAL
IN PERCE | URRENCE
-
-
-
-
-
-
100 | | DISCHARGE
YEARS,
1.25
80% | BASE , IN CFS, AND ANNUA 2 50% | FOR INDI | OD OF RECOME OF RELATED RESIDENT OF ROBERT | CORRENCE BABILITY, 25 4% | 6-82
INTERVAL
IN PERCE
50
2%
8800 21 | FLOW , IN NT 100 1% | PERIOD (CON-
SECU-
TIVE
DAYS)
 | DISCH 2 50% 5850 4400 3190 2220 1700 1330 1190 | IARGE, IN INTERVEXCEEDAN 7880 5860 4170 2830 2150 1670 | CFS, F(AL, IN CE PROBA
10 10%
8970
6660
4660
3140
2370
1860
1640 | OR INDICA YEARS, AN ABILITY, 25 4% 10100 7530 5160 3440 2580 2050 | 1936-82 ITED RECUID ANNUAL IN PERCE 50 2% 10800 8080 5450 3620 2710 2180 | IRRENCE 100 1% 11500 8560 5690 3770 2810 2290 | | DISCHARGE
YEARS,
1.25
80% | BASE , IN CFS, AND ANNUA 2 50% | FOR INDI | OD OF RECOME OF RELATED RESIDENCE PROBLEM TO THE T | CORRENCE SABILITY, 25 4% 6300 1 | 6-82 INTERVAL IN PERCE 50 2% 8800 219 | FLOW , IN NT 100 1% 500 | PERIOD (CON-
SECU-
TIVE DAYS) 1 3 7 15 30 60 90 | BASE DISCH 2 50% 5850 4400 3190 2220 1700 1330 1190 OF RECC | IARGE, IN INTERVEXCEEDAN 7880 5860 5860 4170 2830 2150 1670 1480 | CFS, F(AL, IN CE PROBAL 10 10% | OR INDICA
YEARS, AN
HBILITY,
25
4%
10100
7530
5160
3440
2580
2050
1800 | 1936-82 ITED RECUID ANNUAL IN PERCE 50 2% 10800 8080 5450 3620 2710 2180 | IRRENCE 100 1% 11500 8560 5690 3770 2810 2290 | ### 14200000 MOLALLA RIVER NEAR CANBY, OR LOCATION.--Lat 45°14'40", long 122°41'10", in NW\$NE\$ sec.9, T.4 S., R.1 E., Clackamas County, Hydrologic Unit 17090009, on left bank at upstream side of Goods bridge, 1.5 mi south of Canby, and at mile 6.0. DRAINAGE AREA. -- 323 mi2. PERIOD OF RECORD. -- August 1928 to September 1959, October 1963 to September 1978.
GAGE.--Water-stage recorder. Datum of gage is 104.00 ft National Geodetic Vertical Datum of 1929. Prior to Oct. 24, 1933, nonrecording gage and Oct. 24, 1933, to Sept. 26, 1955, water-stage recorder at present site and at datum 1.00 ft higher. Sept. 27, 1955, to June 3, 1956, water-stage recorder at site 145 ft downstream at present datum. June 4, 1956, to Sept. 30, 1959, water-stage recorder at site 0.3 mi downstream at datum 1.98 ft lower. Oct. 1, 1963, to May 4, 1964, nonrecording gage at present site and datum. REMARKS.--No regulation. Numerous small diversions for irrigation above station. AVERAGE DISCHARGE.--46 years (water years 1929-59, 1964-78), 1,163 ft³/s, 48.90 in/yr, 842,600 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 43,600 ft³/s Dec. 22, 1964, gage height, 16.76 ft; minimum, 20 ft³/s Aug. 27, 1959. ## STATISTICAL SUMMARIES MONTHLY AND ANNUAL MEAN DISCHARGES 1929-78 MAGNITUDE AND PROBABILITY OF ANNUAL LOW FLOW BASED ON PERIOD OF RECORD 1930-78 | | MINIMON | Mayinini | MEAN | STAN-
DARD
DEVIA- | COEFFI-
CIENT OF | PERCENT
OF | PERIOD
(CON- | | ARGE, IN
INTERVAL
EXCEEDANG | , IN YEAR | RS, AND / | NNUAL N | ON- | |-----------|------------------|------------------|---------------|-------------------------|---------------------|------------------|------------------------|------------------|-----------------------------------|-----------|------------------|------------------|-----------| | MONTH | MINIMUM
(CFS) | MAXIMUM
(CFS) | MEAN
(CFS) | TION
(CFS) | VARI-
ATION | ANNUAL
RUNOFF | SECU-
TIVE
DAYS) | 2
50 % | 5
20 % | 10
10% | 20
5 % | 50
2 % | 100
1% | | OCTOBER | 60 | 2201 | 447 | 471 | 1.05 | 3.2 | 1 | 57 | 44 | 39 | 36 | 33 | 31 | | NOVEMBER | 53 | 3864 | 1525 | 1083 | .71 | 10.9 | 3 | 59 | 46 | 41 | 38 - | 34 | 33 | | DECEMBER | 211 | 5835 | 2292 | 1268 | •55 | 16.4 | 7 | 61 | 48 | 43 | 39 | 35 | 33 | | JANUARY | 303 | 5124 | 2433 | 1221 | .50 | 17.4 | 14 | 65 | 51 | 45 | 41 | 37 | 35 | | FEBRUARY | 270 | 4265 | 1916 | 876 | .46 | 13.7 | 30 | 73 | 56 | 49 | 44 | 39 | 37 | | MARCH | 505 | 3559 | 1711 | 692 | - 40 | 12.2 | 60 | 89 | 66 | 58 | 52 | 46 | 42 | | APRIL | 383 | 2954 | 1472 | 520 | .35 | 10.5 | 90 | 109 | 79 | 67 | 59 | 52 | 47 | | MAY | 275 | 2376 | 1110 | 445 | .40 | 7.9 | 120 | 147 | 101 | 85 | 73 | 62 | 56 | | JUNE | 164 | 1687 | 624 | 334 | .54 | 4.5 | 183 | 317 | 223 | 187 | 162 | 138 | 125 | | JULY | 77 | 491 | 207 | 94 | .46 | 1.5 | | | | | | | | | AUGUST | 42 | 378 | 106 | 58 | .54 | .8 | | | | | | | | | SEPTEMBER | 46 | 55 5 | 144 | 108 | .75 | 1.0 | | | | | | | | | ANNUAL | 524 | 1822 | 1162 | 313 | .27 | 100 | | | | | | | | MAGNITUDE AND PROBABILITY OF INSTANTANEOUS PEAK FLOW BASED ON PERIOD OF RECORD 1929-78 MAGNITUDE AND PROBABILITY OF ANNUAL HIGH FLOW BASED ON PERIOD OF RECORD 1929-78 | DISCHARGE
YEARS, | - | • | | RECURREN
ROBABILII | | | PERIOD
(CON- | DISC | INTER | VAL, İN ' | YEARS, A | ATED RECI
ND ANNUAL | L | |---------------------|------------------|------------------|-------------------|-----------------------|------------------|-------------------|------------------------|------------------|------------------|-------------------|----------|------------------------|-----------| | 1.25
80% | 2
50 % | 5
20 % | 10
10 % | 25
4% | 50
2 % | 100
1 % | SECU-
TIVE
DAYS) | 2
50 % | 5
20 % | 10
10 % | 25
4% | 50
2 % | 100
1% | | 9170 | 13600 | 20200 | 25000 | 31300 | 36300 | 41400 | | | | | | | | | | | | | | | | 1 | 10900 | 15800 | 19000 | 23100 | 26100 | 29000 | | WE I GHTE | D SKEW = | 045 | | | | | 3 | 8590 | 12300 | 14600 | 17600 | 19700 | 21700 | | | | | | | | | 7 | 6510 | 8830 | 10100 | 11500 | 12500 | 13300 | | | | | | | | | 15 | 4770 | 6210 | 6920 | 7600 | 7990 | 8320 | | | | | | | | | 30 | 3710 | 4720 | 5200 | 5640 | 5880 | 6070 | | | | | | | | | 60 | 2880 | 3710 | 4180 | 4680 | 5010 | 5300 | | | | | | | | | 90 | 2580 | 3280 | 3670 | 4090 | 4370 | 4610 | DURATION TABLE OF DAILY MEAN FLOW FOR PERIOD OF RECORD 1929-78 | | | DISC | HARGE, | IN CFS, | WHICH WAS | EQUALED | OR EXCE | EDED FOR | INDICATED | PERCENT | OF TIME | : | | | |------|------|------|--------|---------|-----------|---------|---------|----------|-----------|-------------|---------|-----|-----|-----| | 5% | 10% | 15% | 20% | 25% | 30% | 40% | 50% | 60% | 70% | 75 % | 80% | 85% | 90% | 95% | | 3930 | 2710 | 2110 | 1770 | 1510 | 1300 | 974 | 699 | 445 | 244 | 177 | 136 | 106 | 83 | 66 | 14200300 SILVER CREEK AT SILVERTON, OR 115 LOCATION.--Lat 45°00'34", long 122°47'15", in NEt sec.34, T.6 S., R.1 W., Marion County, Hydrologic Unit 17090009, on right bank 300 ft downstream from railroad bridge in Silverton, 2.5 mi upstream from Brush Creek, and at mile 3.4. DRAINAGE AREA .-- 47.9 mi2. 776 528 405 324 269 227 161 105 63 35 27 20 14 11 7.0 PERIOD OF RECORD. -- October 1963 to September 1968, October 1970 to September 1979. GAGE.--Water-stage recorder. Datum of gage is 218.5 ft National Geodetic Vertical Datum of 1929. REMARKS.--No regulation. Several small diversions for irrigation and municipal use above station. AVERAGE DISCHARGE.--14 years, 208 ft³/s, 58.97 in/yr, 150,700 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 5,900 ft³/s Dec. 22, 1964, gage height, 11.15 ft; minimum, 2.0 ft³/s Aug. 20, 21, 1967. | | | | | STAN-
DARD | COEFFI- | PERCENT | PERIOD | | NTERVAL, | IN YEAR | R INDICATE | NNUAL NO |)N- | |------------------------|--------------------------------|------------------------|---------------------------------------|--|----------------------------------|-------------------------|---|--|---|--|---|---|--------| | монтн | MINIMUM
(CFS) | MAXIMUM
(CFS) | MEAN
(CFS) | DEVIA-
TION
(CFS) | CIENT OF
VARI-
ATION | OF
ANNUAL
RUNOFF | (CON-
SECU-
TIVE
DAYS) | 2
50% | 5
20% | 10
10% | 31LITY, II

20
5% | 50
2% | 100 | | CTOBER | 9.5 | 135 | 46 | 37 | .80 | 1.9 | 1 | 5.8 | 3.9 | 3.1 | 2.6 |

 | | | OVEMBER | 40 | 937 | 274 | 234 | •85
55 | 10.9 | 3 | 6.1 | 4.1 | 3.3 | 2.8
3.0 | | | | DECEMBER
JANUARY | 37
57 | 973
785 | 498
526 | 276
233 | .55
.44 | 19.9
21.0 | 7
14 | 6.6
7.6 | 4.4
5.0 | 3.6
4.0 | 3.3 | | | | EBRUARY | 85 | 614 | 336 | 233
157 | .47 | 13.4 | 30 | 9.3 | 6.0 | 4.7 | 3.8 | | | | MARCH | 105 | 584 | 324 | 150 | .46 | 12.9 | 60 | 12 | 7.4 | 5.8 | 4.7 | | | | APRIL | 106 | 411 | 226 | 86 | .38 | 9.0 | 90 | 15 | 9.5 | 7.4 | 6.1 | | | | MAY | 62 | 221 | 136 | 51 | .37 | 5.4 | 120 | 20 | 14 | 11 | 9.6 | | | | JUNE | 26 | 115 | 64 | 29 | .45 | 2.6 | 183 | 39 | 28 | 24 | 21 | | | | JULY | 10 | 45 | 25 | 9.9 | .40 | 1.0 | | | | | | | | | AUGUST | 4.0 | 59 | 17 | 14 | .86 | .7 | | | | | | | | | SEPTEMBER | 5.4 | 82 | 31 | 26 | .85 | 1.2 | | | | | | | | | ANNUAL | 97 | 368 | 208 | 68 | .33 | 100 | | | | | | | | | MAGNII | | PROBABILI
D ON PERI | | | | FLOW | MA(| | | | OF ANNUAL
CORD 196 | | .OW | | OISCHARGE,
YEARS, | BASE
, IN CFS,
AND ANNUA | FOR INDI | OD OF RE | CORD 1964 CURRENCE | 1-79
INTERVAL
IN PERCE | , IN
NT |
PERIOD
(CON- | BASED
DISCHA | ON PERI | OD OF RECEIVED | | 54-79
ED RECUR
ANNUAL | RRENCE | | DISCHARGE, | BASE
, IN CFS, | D ON PERI | OD OF RE | CORD 1964
CURRENCE | 1-79
INTERVAL
IN PERCE | , IN | PERIOD
(CON-
SECU-
TIVE | BASEC
DISCHA
E | ON PERI | OD OF RECOMMENDED | CORD 196 R INDICATE EARS, AND BILITY, IN | 54-79 ED RECUF ANNUAL N PERCEN | RRENCE | |
OISCHARGE,
YEARS, A | BASE
, IN CFS,
AND ANNUA | FOR INDI | OD OF RE | CORD 1964 CURRENCE ABILITY, | I-79 INTERVAL IN PERCE | , IN
NT | PERIOD
(CON-
SECU- | BASEC
DISCHA | ON PERI | OD OF RECEIVED | CORD 196 R INDICATE EARS, AND BILITY, IN | 54-79
ED RECUP
ANNUAL
N PERCEN | RRENCE | | 1.25
80% | BASE , IN CFS, AND ANNUA 2 50% | FOR INDI | OD OF RE | CORD 1964 CURRENCE ABILITY, 25 4% | INTERVAL
IN PERCE | , IN
NT | PERIOD
(CON-
SECU-
TIVE | BASEC
DISCHA
E | ON PERI | OD OF RECOMMENDED | CORD 196 R INDICATE EARS, AND BILITY, IN | 54-79 ED RECUF ANNUAL N PERCEN | RRENCE | | 1.25
80% | BASE , IN CFS, AND ANNUA 2 50% | FOR INDI | OD OF RE | CORD 1964 CURRENCE ABILITY, 25 4% | INTERVAL
IN PERCE | , IN
NT | PERIOD
(CON-
SECU-
TIVE
DAYS) | DISCHA E 2 50% 1960 1560 | O ON PERI | OD OF RE | CORD 196 R INDICATE EARS, AND BILITY, II 25 4% | 54-79 ED RECUF ANNUAL N PERCEN | RRENCE | | 1.25
80% | BASE , IN CFS, AND ANNUA 2 50% | FOR INDI | OD OF RE | CORD 1964 CURRENCE ABILITY, 25 4% | INTERVAL
IN PERCE | , IN
NT | PERIOD (CON- SECU- TIVE DAYS) 1 3 7 | DISCHA 2 50% 1960 1560 1210 | O ON PERI | OD OF RE
CFS, FOF
L, IN YE
E PROBAE
10
10%

3360
2640
1850 | 25 4% 4000 3190 2140 | 54-79 ED RECUF ANNUAL N PERCEN 50 2% | RRENCE | | 1.25
80% | BASE , IN CFS, AND ANNUA 2 50% | FOR INDI | OD OF RE | CORD 1964 CURRENCE ABILITY, 25 4% | INTERVAL
IN PERCE | , IN
NT | PERIOD (CON-
SECU-
TIVE DAYS) | DISCHA E 2 50% 1960 1560 1210 937 | 2830
2210
1180 | OD OF RE
CFS, FOF
L, IN YE
E PROBAE
10
10%
3360
2640
1850
1310 | 25 (A) | 54-79 ED RECUF ANNUAL N PERCEN 50 2% | RRENCE | | 1.25
80% | BASE , IN CFS, AND ANNUA 2 50% | FOR INDI | OD OF RE | CORD 1964 CURRENCE ABILITY, 25 4% | INTERVAL
IN PERCE | , IN
NT | PERIOD (CON-
SECU-
TIVE DAYS) | DISCHA E 2 50% 1960 1560 1210 937 739 | 2830
2210
1180
906 | OD OF RE | 25 4% 4000 3190 2140 1450 1080 | 54-79 ED RECUF ANNUAL N PERCEN 50 2% | RRENCE | | 1.25
80% | BASE , IN CFS, AND ANNUA 2 50% | FOR INDI | OD OF RE | CORD 1964 CURRENCE ABILITY, 25 4% | INTERVAL
IN PERCE | , IN
NT | PERIOD (CON-
SECU-
TIVE DAYS) | DISCHA E 2 50% 1960 1560 1210 937 739 562 | 2830
2210
1180
906
731 | OD OF RECOMPANY | 25 4% 4000 3190 2140 1450 1080 956 | 54-79 ED RECUF ANNUAL N PERCEN 50 2% | RRENCE | | 1.25
80% | BASE , IN CFS, AND ANNUA 2 50% | FOR INDI | OD OF RE | CORD 1964 CURRENCE ABILITY, 25 4% | INTERVAL
IN PERCE | , IN
NT | PERIOD (CON-
SECU-
TIVE DAYS) | DISCHA E 2 50% 1960 1560 1210 937 739 | 2830
2210
1180
906 | OD OF RE | 25 4% 4000 3190 2140 1450 1080 | 54-79 ED RECUF ANNUAL N PERCEN 50 2% | RRENCE | | 1.25
80% | BASE , IN CFS, AND ANNUA 2 50% | FOR INDI | CATED RE NCE PROB 10 10 4920 | CORD 1964 CURRENCE ABILITY, 25 4% 6180 | INTERVAL
IN PERCE | , IN
NT
100
1% | PERIOD (CON-
SECU-
TIVE DAYS) | DISCHA E 2 50% 1960 1560 1210 937 739 562 488 | 2830 2210 1610 1180 906 731 637 | OD OF RECEIVED | 25 4% 4000 3190 2140 1450 1080 956 | 54-79 ED RECUF ANNUAL N PERCEN 50 2% | RRENCE | | 1.25
80% | BASE , IN CFS, AND ANNUA 2 50% | FOR INDI | CATED RE NCE PROB 10 10 4920 DURATIO | CORD 1964 CURRENCE ABILITY, 25 4% 6180 | INTERVAL
IN PERCE
50
2% | , IN
NT
100
1% | PERIOD (CON-
SECU-
TIVE DAYS) | DISCHA E 2 50% 1960 1210 937 739 562 488 OF RECOR | 2830
2210
1610
1610
1610
1610
1610
1610
161 | OD OF RECEIVED | 25 4% | 54-79 ED RECUF ANNUAL N PERCEN 50 2% | RRENCE | ## 14201000 PUDDING RIVER NEAR MOUNT ANGEL. OR LOCATION.--Lat 45°03'47", long 122°49'45", in SE± sec.8, T.6 S., R.1 W., Marion County, Hydrologic Unit 17090009, on left bank on downstream side of Cline Bridge, 1.5 mi west of Mount Angel, 3.5 mi upstream from Little Pudding River, and at mile 40.4. ## DRAINAGE AREA. -- 204 mi2. 2590 1860 1430 1150 971 814 588 401 232 113 75 50 36 19 PERIOD OF RECORD.--October 1939 to March 1966. Monthly discharge only January to September 1945, published in WSP 1318. GAGE.--Water-stage recorder. Datum of gage is 119.76 ft National Geodetic Vertical Datum of 1929. Prior to Sept. 22, 1945, staff or wire-weight gages at same site and datum. REMARKS.--No regulation. Many diversions for irrigation above station. AVERAGE DISCHARGE.--26 years (water years 1940-65), 711 ft3/s, 514,700 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 16,700 ft³/s Dec. 22, 1964, gage height, 31.50 ft; maximum gage height, 31.63 ft Dec. 22, 1964; minimum discharge observed, 2.4 ft³/s Aug. 9, 1965. | .,, | ONTHLY AN | D ANNUAL | MEAN DIS | CHARGES | 1940-65 | | MA | | AND PROBA
ED ON PERI | | | L LOW FLC
1941-65 | W | |---|--|--|---|--|--|---|-------------------------------------|---|--|---|---|---|----------| | | MINIMUM | MAXIMUM | MEAN | STAN-
DARD
DEVIA-
TION | COEFFI-
CIENT OF
VARI- | PERCENT
OF | PERIOD
(CON-
SECU- | DISCH | INTERVAL, | IN YEA | RS, AND | TED RECUR
ANNUAL NO
IN PERCEN | N- | | MONTH | (CFS) | (CFS) | (CFS) | (CFS) | ATION | ANNUAL
RUNOFF | TIVE
DAYS) | 2
50 % | 5
20 % | 10
10 % | 20
5 % | 50
2 % | 100 | | OCTOBER NOVEMBER DECEMBER JANUARY FEBRUARY MARCH APRIL MAY JUNE | 21
41
297
461
469
331
283
173
78 | 1121
2483
3401
3011
2961
2192
1750
1135 | 254
937
1456
1531
1501
1127
845
538
237 | 274
620
766
805
630
472
372
263 | 1.08
.66
.53
.53
.42
.42
.44 | 3.0
10.9
17.0
17.8
17.5
13.1
9.9
6.3 | 1
3
7
14
30
60
90 | 15
16
17
18
21
29
37
58 | 9.9
10
11
13
14
22
27
40 | 8.0
8.4
9.3
10
12
18
22
33 | 7.1
7.9
9.1
10
16
20
28 | 5.8
6.6
7.9
8.6 | | | JULY
AUGUST
SEPTEMBER | 24
10
12 | 514
194
57
150 | 76
31
44 | 107
42
14
31 | .45
.54
.44
.71 | 2.8
.9
.4
.5 | 183 | 157
 | 113 | 95
 | 82
 | | | | ANNUAL | 411 | 1041 | 711 | 150 | .21 | 100 | | | | | | | | | DI SCHADOF | | | | | | | | | | | | | | | YEARS, | AND ANNUA | L EXCEEDA | NCE PROE | BABILITY, | INTERVAL
IN PERCE | NT | PERIOD
(CON- | DISCH | INTERVA | L, ÍN Y | EARS, AN | TED RECUR
ID ANNUAL
IN PERCEN | | | | | | | | IN PERCE | | | DISCH | INTERVA | L, ÍN Y | EARS, AN | ID ANNUAL | | | YEARS, 1.25
80% | AND ANNUA
2 | 5
20%
 | NCE PROE
10
10% | 25
4% | IN PERCE | NT
 | (CON-
SECU-
TIVE | 2 | INTERVA
EXCEEDANC
5 | L, ÎN Y
E PROBA
10 | EARS, AN
BILITY,
25 | ID ANNUAL
IN PERCEN
50 | T
100 | | YEARS, 7
1.25
80% | 2
50%
6150 | 9560 1 | NCE PROE 10 10 10 2000 1 DURATIO | 3ABILITY, 25 4\$ 5200 1 | 1N PERCE
50
2%
7800
OF DAILY | NT
100
1% | (CON-
SECU-
TIVE
DAYS)
 | 2
50%
5580
4860
3920
3060
2390
1690
OF RECC | 7950
6640
5210
3860
2970
2380
2110 | 9400
7650
5890
4220
3240
2330 | 25 4% | 12300
9480
7010
4700
3630
3120 | T
100 | | YEARS, 1.25
80% | 2
50%
6150 | 9560 1 | NCE PROE 10 10 10 2000 1 DURATIO | 3ABILITY, 25 4\$ 5200 1 | TN PERCE 50 2% 7800 OF DAILY I | MEAN FLOW | (CON-
SECU-
TIVE
DAYS)
 | 2
50%
5580
4860
3920
3060
2390
1690
OF RECC | 7950
6640
5210
3860
2970
2380
2110 | 9400
7650
5890
4220
3240
2330 | 25 4% | 12300
9480
7010
4700
3630
3120 | T
100 | # 14201500 BUTTE CREEK AT MONITOR, OR 117 LOCATION.--Lat 45°06'06", long 122°44'42", in SE±SE± sec.25, T.5 S., R.1 W., Marion County, Hydrologic Unit 17090009, on left bank at downstream side of highway bridge at Monitor and at mile 7.7. DRAINAGE AREA .-- 58.7 mi2. 821 541 412 335 279 238 PERIOD OF RECORD.--January to December 1936, October 1940 to September 1952, October 1966 to September 1982. Monthly discharge only for January to December 1936, published is WSP 1318. GAGE.--Water-stage recorder. Altitude of gage is 155 ft, from topographic map. Jan. 20 to Oct. 22, 1936, nonrecording gage at present site at different datum. Oct. 23 to Dec. 19, 1936, nonrecording gage at site 70 ft downstream at different datum. Oct. 1, 1940, to Sept. 30, 1952, nonrecording gage at present site at 151.35 ft National Geodetic Vertical Datum of 1929. REMARKS.--No regulation. Diversions for irrigation by pumping above station. AVERAGE DISCHARGE.--28 years (water years 1941-52, 1967-82), 221 ft³/s, 51.13 in/yr, 160,100 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.—Maximum discharge, 7,310 ft 3 /s Jan. 21, 1972, gage height, 15.26 ft, from floodmark; minimum, 0.04 ft 3 /s July 23, 24, Aug. 26, 1982. #### STATISTICAL SUMMARIES | М | ONTHLY AN | ND ANNUAL | MEAN DIS | SCHARGES | 1941-82 | | MA | | AND PROBA | | | L LOW FLO
942-82 | W | |------------------------------------|--|-------------------------------------|--------------------------------------|-------------------------------------|--|-------------------------|---
---|--|--|---|--|-----------| | | MINIMUM | MAXIMUM | MEAN | STAN-
DARD
DEVIA-
TION | COEFFI-
CIENT OF
VARI- | PERCENT
OF
ANNUAL | PERIOD
(CON-
SECU- | | INTERVAL, | , IN YEA | RS, AND | TED RECUF
ANNUAL NO
IN PERCEN | N- | | MONTH | (CFS) | (CFS) | (CFS) | (CFS) | ATION | RUNOFF | TIVE
DAYS) | 2
50% | 5
20% | 10
10% | 20
5% | 50
2% | 100
1% | | OCTOBER | 9.3 | 485 | 90 | 106 | 1.18 | 3.4 | 1 | 4.1 | 2.1 | 1.4 | .9 | .6 | | | NOVEMBER | 28 | 779 | 298 | 201 | .67 | 11.2 | 3 | 4.8 | 2.5 | 1.7 | 1.2 | .7 | | | DECEMBER | 30 | 942 | 488 | 219 | .45 | 18.3 | 7 | 5.7 | 3.1 | 2.1 | 1.5 | .9 | | | JANUARY | 42 | 870 | 477 | 239 | .50 | 17.9 | 14 | 6.5 | 3.8 | 2.7 | 2.0 | 1.3 | | | FEBRUARY | 49 | 977 | 431 | 206 | .48 | 16.2 | 30 | 8.0 | 4.8 | 3.5 | 2.6 | 1.8 | | | MARCH | 97 | 593 | 320 | 131 | - 41 | 12.0 | 60 | 11 | 6.3 | 4.6 | 3.4 | | | | APRIL | 76 | 430 | 252 | 88 | . 35 | 9.5 | 90 | 15 | 8.7 | 6.5 | 5.0 | | | | MAY | 56 | 376 | 170 | 70 | .41 | 6.4 | 120 | 21 | 13 | 10 | 8.1 | 6.2 | | | JUNE | 25 | 182 | 79 | 37 | .46 | 3.0 | 183 | 51 | 37 | 31 | 26 | 21 | | | JULY | 5.1 | 73 | 26 | 15 | .60 | 1.0 | | ر
 | | | | | | | AUGUST | 2.1 | 49 | 13 | 9.5 | | .5 | SEPTEMBER | 3.3 | 72 | 21 | 18 | •86 | .8 | | | | | | | | | ANNUAL | 82 | 353 | 221 | 60 | .27 | 100 | | | | | | | | | MAGNI | | PROBABILI
D ON PERIO | | | | FLOW | MAC | | AND PROBA | | | L HIGH FL
941-82 | .OW | | DISCHARGE
YEARS, | BASE
, IN CFS,
AND ANNUA | FOR INDICAL EXCEEDA | OD OF RE | CORD 194 COURRENCE | 1-82
INTERVAL
IN PERCE | , IN
NT | PERIOD
(CON- | BASEI
DISCHA | ON PERI | CFS, FOR | ECORD 1 | 941-82
TED RECUR | RENCE | | DISCHARGE | BASE
, IN CFS, | FOR INDIC | OD OF RE | CORD 194 | 1-82
INTERVAL
IN PERCE |
, IN | PERIOD
(CON-
SECU-
TIVE | BASEC
DISCHA | O ON PERI
ARGE, IN
INTERVA
EXCEEDANCE | CFS, FOR | ECORD 1' R INDICA EARS, ANI BILITY, | 941-82
TED RECUR
D ANNUAL
IN PERCEN | RENCE | | DISCHARGE
YEARS,
1.25
80% | BASE
, IN CFS,
AND ANNUA
2
50% | FOR INDICAL EXCEEDA | OD OF RECOMMENDED OF RESERVED TO 10% | ECORD 194 ECURRENCE BABILITY, 25 4% | 1-82
INTERVAL
IN PERCE | , IN
NT | PERIOD
(CON-
SECU- | BASEC
DISCHA | O ON PERI | CFS, FOR | R INDICA
EARS, AN | 941-82
TED RECUR
D ANNUAL
IN PERCEN | RENCE | | DISCHARGE
YEARS, | BASE
, IN CFS,
AND ANNUA | FOR INDICAL EXCEEDA | OD OF RECATED RENCE PROE | ECORD 194 ECURRENCE BABILITY, 25 4% | INTERVAL
IN PERCE | , IN
NT | PERIOD
(CON-
SECU-
TIVE | BASEC
DISCHA | O ON PERI
ARGE, IN
INTERVA
EXCEEDANCE | CFS, FOR | ECORD 1' R INDICA EARS, ANI BILITY, | 941-82
TED RECUR
D ANNUAL
IN PERCEN | RENCE | | DISCHARGE
YEARS,
1.25
80% | BASE , IN CFS, AND ANNUA 2 50% | FOR INDICAL EXCEEDA | OD OF RECOMMENDED OF RESERVED TO 10% | ECORD 194 ECURRENCE BABILITY, 25 4% | INTERVAL
IN PERCE | , IN
NT | PERIOD
(CON-
SECU-
TIVE
DAYS) | DISCHA E 2 50% | ARGE, IN
INTERVA
EXCEEDANC
5
20% | CFS, FOR | R INDICA
EARS, AND
BILITY,
25
4% | TED RECURD ANNUAL IN PERCEN 2% | RENCE | | DISCHARGE
YEARS,
1.25
80% | BASE
, IN CFS,
AND ANNUA
2
50% | FOR INDICAL EXCEEDA | OD OF RECOMMENDED OF RESERVED TO 10% | ECORD 194 ECURRENCE BABILITY, 25 4% | INTERVAL
IN PERCE | , IN
NT | PERIOD
(CON-
SECU-
TIVE
DAYS) | DISCHA 2 50% 2460 1850 | ARGE, IN
INTERVA
EXCEEDANC
5
20% | CFS, FOF
LL, IN YE
E PROBAL
10
10\$
3800
2960 | R INDICA
EARS, AND
BILITY,
25
4%
4290
3410 | 941-82 TED RECUR D ANNUAL IN PERCEN 50 2\$ 4590 3700 | RENCE | | DISCHARGE
YEARS,
1.25
80% | BASE , IN CFS, AND ANNUA 2 50% | FOR INDICAL EXCEEDA | OD OF RECOMMENDED OF RESERVED TO 10% | ECORD 194 ECURRENCE BABILITY, 25 4% | INTERVAL
IN PERCE | , IN
NT | PERIOD
(CON-
SECU-
TIVE
DAYS) | DISCHA 2 50% 2460 1850 1420 | ARGE, IN
INTERVA
EXCEEDANC
5
20%
3330
2560
1880 | CFS, FOR L, IN YE E PROBABLE 10 10\$ 3800 2960 2100 | R INDICA
EARS, ANN
BILITY,
25
4%
4290
3410
2320 | 941-82 TED RECUR D ANNUAL IN PERCEN 50 2% 4590 3700 2440 | RENCE | | 01SCHARGE
YEARS,
1.25
80% | BASE , IN CFS, AND ANNUA 2 50% | FOR INDICAL EXCEEDA | OD OF RECOMMENDED OF RESERVED TO 10% | ECORD 194 ECURRENCE BABILITY, 25 4% | INTERVAL
IN PERCE | , IN
NT | PERIOD
(CON-
SECU-
TIVE
DAYS) | DISCHA 2 50% 2460 1850 1420 992 | 5 20%
3330 2560 1880 1270 | CFS, FOR
LL, IN YI
CE PROBAB
10
10\$
3800
2960
2100
1400 | R INDICA
EARS, AND
BILITY,
25
4%
4290
3410
2320
1520 | 941-82 TED RECUR D ANNUAL IN PERCEN 50 2% 4590 3700 2440 1590 | T 100 1% | | DISCHARGE
YEARS,
1.25
80% | BASE , IN CFS, AND ANNUA 2 50% | FOR INDICAL EXCEEDA | OD OF RECOMMENDED OF RESERVED TO 10% | ECORD 194 ECURRENCE BABILITY, 25 4% | INTERVAL
IN PERCE | , IN
NT | PERIOD
(CON-
SECU-
TIVE
DAYS) | DISCHA E 2 50% 2460 1850 1420 992 761 | 3330
2560
1880
1270
941 | CFS, FOF
LL, IN YIEE PROBAE
10
10\$
3800
2960
2100
1400
1010 | R INDICA
R INDICA
EARS, AN
BILITY,
25
4%
4290
3410
2320
1520
1070 | 941-82 TED RECURD ANNUAL IN PERCEN 2% 4590 3700 2440 1590 1100 | RENCE | | DISCHARGE
YEARS,
1.25
80% | BASE , IN CFS, AND ANNUA 2 50% | FOR INDICAL EXCEEDA | OD OF RECOMMENDED OF RESERVED TO 10% | ECORD 194 ECURRENCE BABILITY, 25 4% | INTERVAL
IN PERCE | , IN
NT | PERIOD
(CON-
SECU-
TIVE
DAYS)
 | DISCHA E 2 50% 2460 1850 1420 992 761 591 | 3330
2560
1880
1273
3330 | CFS, FOR L, IN YEE PROBAGE 10 10 2960 2100 1400 1010 797 | R INDICA: R INDICA: EARS, AN BILITY, 25 4% 4290 3410 2320 1520 1070 854 | 941-82 TED RECURD ANNUAL IN PERCEN 50 2\$ 4590 3700 2440 1590 1100 885 | 100
1% | | DISCHARGE
YEARS,
1.25
80% | BASE , IN CFS, AND ANNUA 2 50% | FOR INDICAL EXCEEDA | CATED RENCE PROE | ECURRENCE BABILITY, 25 45 | INTERVAL
IN PERCE
50
2% | , IN
NT
100
1% | PERIOD (CON-
SECU-
TIVE DAYS) 1 3 7 7 15 30 60 90 90 | DISCHA E 2 50% 2460 1850 1420 992 761 591 529 | 3330
2560
1880
2941
733
658 | CFS, FORL, IN YEE PROBAL 10 10\$ 3800 2960 2100 1400 1010 797 717 | R INDICA
R INDICA
EARS, AN
BILITY,
25
4%
4290
3410
2320
1520
1070 | 941-82 TED RECURD ANNUAL IN PERCEN 2% 4590 3700 2440 1590 1100 | 100
1% | | 01SCHARGE
YEARS,
1.25
80% | BASE , IN CFS, AND ANNUA 2 50% | FOR INDICAL EXCEEDA | CATED RENCE PROE | ECURRENCE BABILITY, 25 45 | INTERVAL
IN PERCE
50
2% | , IN
NT
100
1% | PERIOD
(CON-
SECU-
TIVE
DAYS)
 | DISCHA E 2 50% 2460 1850 1420 992 761 591 529 | 3330
2560
1880
2941
733
658 | CFS, FORL, IN YEE PROBAL 10 10\$ 3800 2960 2100 1400 1010 797 717 | R INDICA: R INDICA: EARS, AN BILITY, 25 4% 4290 3410 2320 1520 1070 854 | 941-82 TED RECURD ANNUAL IN PERCEN 50 2\$ 4590 3700 2440 1590 1100 885 | T 100 1% | | 01SCHARGE
YEARS,
1.25
80% | BASE , IN CFS, AND ANNUA 2 50% | FOR INDICAL EXCEEDA 5 20 4760 305 | CATED RENCE PROE | ECURRENCE BABILITY, 25 4% 7050 | INTERVAL
IN PERCE
50
2%
7970 | , IN
NT
100
1% | PERIOD (CON-
SECU-
TIVE DAYS) 1 3 7 7 15 30 60 90 90 | DISCHA E 2 50% 2460 1850 1420 992 761 591 592 OF RECOF | 3330
2560
1880
1270
941
733
80 1941-8 | CFS, FORL, IN YEE PROBAL 10 10\$ 3800 2960 2100 1400 1010 797 717 | R INDICA: EARS, ANI BILITY, 25 4% 4290 3410 2320 1070 854 772 | 941-82 TED RECURD ANNUAL IN PERCEN 50 2\$ 4590 3700 2440 1590 1100 885 | T 100 1% | 172 119 26 ## 14202000 PUDDING RIVER AT AURORA, OR LOCATION.--Lat 45°14'00", long 122°44'56", in SEt sec.12, T.4 S., R.1 W., Marion County, Hydrologic Unit 17090009, on upstream side of bridge on U.S. Highway 99E at Aurora, 0.9 mi upstream from Mill Creek, and at mile 8.1. DRAINAGE AREA .-- 479 mi2. 4670 3410 2550 1980 1610 1350 943 630 373 185 102 82 69 56 PERIOD OF RECORD. -- October 1928 to September 1964. GAGE.--Wire-weight gage read once daily. Datum of gage is 72.23 ft National Geodetic Vertical Datum of 1929. Prior to Oct. 1, 1934, and June 1 to Sept. 30, 1961, staff or wire-weight gage at same site at datum 5.00 ft higher. REMARKS.--Slight regulation at high stages by pumping plant at mouth of Little Pudding River and at times in summer, by mllls on tributaries. Small diversions above station. COOPERATION. -- Gage-height record collected in cooperation with U.S. Weather Bureau. AVERAGE DISCHARGE.--36 years, 1,217 ft³/s, 881,100 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 25,400 ft³/s Dec. 30, 1937, gage height, 29.5 ft, present datum, from graph based on gage readings, from rating curve extended above 16,000 ft³/s; minimum, 26 ft³/s Aug. 13, 14, 1961. EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage known, 30.0 ft, present datum, Jan. 7, 1923, discharge 27,900 ft³/s, from rating curve extended above 16,000 ft³/s. | | ONTHLY AN | ID ANNUAL | MEAN DIS | CHARGES | 1929-64 | | MA | | | | OF ANNU | AL LOW FL
1930-64 | OW | |-------------------------------|-----------------------|--|-----------------------------------|-----------------------------------|--|------------------|--
--|--|---|---|---|--------------| | | | | | STAN-
DARD
DEVIA- | COEFFI-
CIENT OF | PERCENT
OF | PERIOD
(CON- | DISC | INTERVA | L, IN YE | ARS, AND | ATED RECU
ANNUAL N
IN PERCE | ON- | | MONTH | MINIMUM
(CFS) | MAXIMUM
(CFS) | MEAN
(CFS) | TION
(CFS) | VARI-
ATION | ANNUAL
RUNOFF | SECU-
TIVE
DAYS) | 2
50% | 5
20 % | 10
10% | 20
5 % | 50
2% | 100
1% | | OCTOBER | 64 | 1774 | 340 | 360 | 1.06 | 2.3 | 1 | 49 | 38 | 33 | 29 | 25 | | | NOVEMBER | 79 | 4643 | 1387 | 1056 | .76 | 9.4 | 3 | 50 | 38 | 33 | 29 | 25 | | | DECEMBER | 436 | 5704 | 2355 | 1365 | . 58 | 16.0 | 7 | 51 | 40 | 35 | 31 | 28 | | | JANUARY | 766 | 5722 | 2693 | 1428 | .53 | 18.3 | 14 | 54 | 42 | 37 | 34 | 30 | | | FEBRUARY | 832 | 5600 | 2642 | 1225 | . 46 | 18.0 | 30 | 58 | 46 | 41 | 37 | 33 | | | MARCH | 599 | 4235 | 2094 | 879 | .42 | 14.3 | 60 | 70 | 57 | 51 | 47 | 44 | | | APRIL | 456 | 3355 | 1563 | 745 | .48 | 10.6 | 90 | 81 | 65 | 58 | 54 | 50 | | | MAY | 242 | 2192 | 881 | 435 | .49 | 6.0 | 120 | 110 | 83 | 72 | 64 | 57 | | | JUNE | 158 | 1101 | 419 | 203 | .48 | 2.9 | 183 | 249 | 179 | 150 | 129 | 109 | | | JULY
AUGUST | 67 | 364 | 151 | 67 | -44 | 1.0 | | | | | | | | | NUGUS I
SEPTEMBER | 34 | 120 | 72
91 | 21
41 | . 29 | .5 | | | | | | | | | SEFIEMBER | 41 | 213 | 91 | 41 | . 45 | •6 | | | | | | | | | ANNUAL | 695 | 1980 | 1217 | 321 | .26 | 100 | | | | | | | | | | UNSE | | AN AE DE | CODD 102 | 0-64 | | | | | DIAD AF I | | AL HIGH FI | | | | | FOR INDI | CATED RE | | 29-64
INTERVAL
IN PERCE | | PERIOD | BASE | HARGE, IN | N CFS, FO | RECORD 1 | 1929-64
ATED RECUIND ANNUAL | RRENCE | | | | FOR INDI | CATED RE | CURRENCE | INTERVAL
IN PERCE | | | BASE | HARGE, IN | N CFS, FO | RECORD 1 | 1929-64
ATED RECUI | RRENCE | | YEARS, | AND ANNUA | FOR INDI | CATED RE | CURRENCE
BABILITY, | INTERVAL
IN PERCE | NT
 | PERIOD
(CON- | BASE | HARGE, IN | N CFS, FO | RECORD 1 | 1929-64
ATED RECUIND ANNUAL | RRENCE | | YEARS,

1.25 | AND ANNUA | FOR INDI | CATED RE | CURRENCE
BABILITY, | INTERVAL
IN PERCE | NT

100 | PERIOD
(CON-
SECU- | BASI
DISCI | HARGE, INTERN | N CFS, FO | RECORD 1 | 1929-64
ATED RECUI
ND ANNUAL
IN PERCEI | RRENCE | | YEARS,

1.25 | AND ANNUA
2
50% | FOR INDI | CATED RE
INCE PROE | CURRENCE
BABILITY,
25
4% | INTERVAL
IN PERCE | NT

100 | PERIOD
(CON-
SECU-
TIVE | DISCH | HARGE, IN
INTERN
EXCEEDAN | N CFS, FO
/AL, IN N
NCE PROB | RECORD 1 | ATED RECUIND ANNUAL IN PERCEI | RRENCE
NT | | YEARS,
1.25
80%
5540 | 2
50%
8070 | FOR INDI | CATED RE
INCE PROE | CURRENCE
BABILITY,
25
4% | INTERVAL
IN PERCE
50
2% | NT

100 | PERIOD
(CON-
SECU-
TIVE
DAYS) | DISCH | HARGE, IN
INTERN
EXCEEDAN
5
20% | 10
10% | RECORD OR INDICA YEARS, AN ABILITY, 25 4% | 1929-64 ATED RECUI ND ANNUAL IN PERCEI 50 2% | RRENCE
NT | | YEARS,
1.25
80%
5540 | AND ANNUA
2
50% | FOR INDI | CATED RE
INCE PROE | CURRENCE
BABILITY,
25
4% | INTERVAL
IN PERCE
50
2% | NT

100 | PERIOD (CON- SECU- TIVE DAYS) | DISCH | HARGE, IN INTER EXCEEDAN 5 20% | 10
10
10
10
14300
12200 | RECORD OR INDIC/ YEARS, AN ABILITY, 25 4% 18300 14800 | 1929-64 ATED RECUI ND ANNUAL IN PERCEI 50 2% 21700 16800 | RRENCE
NT | | YEARS,
1.25
80%
5540 | 2
50%
8070 | FOR INDI | CATED RE
INCE PROE | CURRENCE
BABILITY,
25
4% | INTERVAL
IN PERCE
50
2% | NT

100 | PERIOD (CON- SECU- TIVE DAYS) 1 3 7 | DISCH
2
50%
7710
7270
6480 | HARGE, IN INTERV EXCEEDAN 5 20% 11400 10200 8500 | 10
10
10%
14300
12200
9640 | 0R INDIC/
YEARS, AN
ABILITY,
25
4%
18300
14800
10900 | 1929-64 ATED RECUI ND ANNUAL IN PERCEI 50 2\$ 21700 16800 11700 | RRENCE
NT | | YEARS,
1.25
80%
5540 | 2
50%
8070 | FOR INDI | CATED RE
INCE PROE | CURRENCE
BABILITY,
25
4% | INTERVAL
IN PERCE
50
2% | NT

100 | PERIOD (CON-
SECU-
TIVE DAYS) | DISCH | HARGE, IN INTER EXCEEDAN 5 20% | 10
10
10
10
14300
12200 | RECORD OR INDIC/ YEARS, AN ABILITY, 25 4% 18300 14800 | 1929-64 ATED RECUI ND ANNUAL IN PERCEI 50 2% 21700 16800 | RRENCE
NT | | YEARS,
1.25
80%
5540 | 2
50%
8070 | FOR INDI | CATED RE
INCE PROE | CURRENCE
BABILITY,
25
4% | INTERVAL
IN PERCE
50
2% | NT

100 | PERIOD (CON- SECU- TIVE DAYS) 1 3 7 15 30 | DISCH
2
50%
7710
7270
6480
5340
4180 | HARGE, IN INTERIECT STATE STAT | 10
10%
14300
12200
9640
7280
5820 | OR INDICA
YEARS, AN
ABILITY,
25
4%
18300
14800
10900
7870
6390 | 1929-64 ATED RECUIND ANNUAL IN PERCEI | RRENCE
NT | | YEARS,
1.25
80%
5540 | 2
50%
8070 | FOR INDI | CATED RE
INCE PROE | CURRENCE
BABILITY,
25
4% | INTERVAL
IN PERCE
50
2% | NT

100 | PERIOD (CON- SECU- TIVE DAYS) 1 3 7 15 30 60 | DISCH
2
50%
7710
7270
6480
5340
4180
3200 | HARGE, IN INTERN EXCEEDAN 11400 10200 8500 6660 5260 4110 | 10
10
10
10
14300
12200
9640
7280 | RECORD 1 OR INDIC/ YEARS, AM ABILITY, 25 4% 18300 14800 10900 7870 | 1929-64 ATED RECUIND ANNUAL IN PERCEI 50 2% 21700 16800 11700 8190 6740 5700 | RRENCE
NT | | YEARS,
1.25
80%
5540 | 2
50%
8070 | FOR INDI | CATED RE
INCE PROE | CURRENCE
BABILITY,
25
4% | INTERVAL
IN PERCE
50
2% | NT

100 | PERIOD (CON- SECU- TIVE DAYS) 1 3 7 15 30 | DISCH
2
50%
7710
7270
6480
5340
4180 | HARGE, IN INTERIECT STATE STAT | 10
10%
14300
12200
9640
7280
5820 | OR INDICA
YEARS, AN
ABILITY,
25
4%
18300
14800
10900
7870
6390 | 1929-64 ATED RECUIND ANNUAL IN PERCEI | 100
1% | | YEARS,
1.25
80%
5540 | 2
50%
8070 | FOR INDI | CATED REINCE PROBLEM | CURRENCE ABILITY, 25 4% 9600 2 | FINTERVAL
IN PERCE
50
2%
23200 | 100
1% | PERIOD (CON- SECU- TIVE DAYS) 1 3 7 15 30 60 | 7710
7270
6480
5340
4180
3200
2870 | HARGE, IN INTERN EXCEEDAN 11400 10200 8500 4110 3660 | 10%
14300
12200
9640
7280
5820
4650
4110 | DR INDIC/
YEARS, AN
ABILITY,
25
4%
18300
14800
10900
7870
6390
5270 | 1929-64 ATED RECUIND ANNUAL IN PERCEI 50 2% 21700 16800 11700 8190 6740 5700 | 100
1% | | YEARS,
1.25
80%
5540 | 2
50%
8070 | FOR INDI
L EXCEEDA
5
20%
12100 1 | CATED RE NICE PROE 10 103 5200 1 | CURRENCE ABILITY, 25 4% 9600 2 | FINTERVAL IN PERCE 50 2% 23200 | 100
1%
 | PERIOD (CON-
SECU-
TIVE DAYS) | DISCH
2
50%
7710
7270
6480
5340
4180
3200
2870
OF RECC | HARGE, IN INTERNEXCEEDAN 11400 10200 8500 6660 5260 4110 3660 DRD 1929- | 14300
12200
9640
7280
4650
4110 | OR INDIC/
YEARS, AN
ABILITY,
25
4\$
18300
10900
7870
6390
5270
4630 | 1929-64 ATED RECUIND ANNUAL IN PERCEI 50 2% 21700 16800 11700 8190 6740 5700 | 100
1% | # 14202500 TUALATIN RIVER NEAR GASTON, OR LOCATION.--Lat 45°26'11", long 123°10'07", in SE¢SW¢ sec.34, T.1 S., R.4 W., Washington County, Hydrologic Unit 17090010, on right bank 1.5 ml west of Gaston, and at mile 63.9. DRAINAGE AREA .-- 48.5 mi2. PERIOD OF RECORD.--October 1940 to September 1956, October 1972 to September 1976, October 1978 to September 1978 in reports of Oregon Water Resources Department. Prior to October
1973 published as "at Gaston." GAGE.--Water-stage recorder. Altitude of gage is 170 ft, by barometer. Prior to May 20, 1942, water-stage recorder at site 1.5 mi downstream at datum 164.18 ft National Geodetic Vertical Datum of 1929. May 20, 1942, to Sept. 30, 1956, nonrecording gage at present site at different datum. REMARKS.--Slight diurnal fluctuation caused by logponds upstream. Small diversions for irrigation above station. In 1949, city of Hillsboro began diverting about 5 ft³/s for municipal supply. Some water is diverted from Roaring Creek upstream for Forest Grove municipal supply. AVERAGE DISCHARGE.--24 years (water years 1941-56, 1973-76, 1979-82), 197 ft³/s, 55.16 in/yr, 142,700 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 8,170 ft³/s Dec. 21, 1955, gage height, 13.18 ft, site and datum then in use; minimum, 0.20 ft³/s Sept. 22, 23, 1951, Aug. 14, 15, Sept. 25, Oct. 8, 1952. #### STATISTICAL SUMMARIES (BEFORE MUNICIPAL DIVERSIONS) MONTHLY AND ANNUAL MEAN DISCHARGES 1941-50 MAGNITUDE AND PROBABILITY OF ANNUAL LOW FLOW BASED ON PERIOD OF RECORD 1942-50 119 | | | 60 k V 1 ku 1 ku | MEAN | STAN-
DARD
DEVIA- | COEFFI-
CIENT OF | OF | PERIOD
(CON-
SECU- | | INTERVAL | CFS, FOF
, IN YEAF
CE PROBAE | RS, AND A | NNUAL NO | DN- | |---|--|---|--|--|--|---------------------------------|---|--------------------------------------|--|--|--|--|--------| | ONTH | (CFS) | MAXIMUM
(CFS) | MEAN
(CFS) | TION
(CFS) | VARI-
ATION | ANNUAL
RUNOFF | TIVE
DAYS) | 2
50% | 5
20 % | 10
10% | 20
5% | 50
2 % | 100 | | CTOBER | 18 | 244 |
56 | 68 | 1.22 | 2.5 | 1 | | | | | | | | OVEMBER | 96 | 528 | 254 | 140 | .55 | 11.2 | 3 | | | | ' | | | | ECEMBER | 102 | 672 | 425 | 202 | .48 | 18.8 | 7 | | | | | | | | ANUARY | 138 | 542 | 351 | 131 | • 37 | 15.5 | 14 | | | | | | | | EBRUARY | 193 | 827 | 485 | 212 | .44 | 21.4 | 30 | | | | | | | | ARCH | 107 | 594 | 300 | 153 | .51 | 13.3 | 60 | | | | | | _ | | PRIL | 82 | 300 | 184 | 80 | .44 | 8.1 | 90 | | | | | | | | AY | 48 | 239 | 102 | 54 | .53 | 4.5 | 120 | | | | | | _ | | JNE | 33 | 64 | 49 | 11 | .23 | 2.2 | 183 | | | | | | | | | | 35 | 25 | 6.5 | | 1.1 | | | | | | | | | ULY | 15 | | | | | | | F00 TIL | W 40 VE4 | RS OF DAT | | DIE | | | | 15
8.9 | 21 | 16 | 4.0 | .26 | •7 | NOTE: L | _E33 IHA | N IO YEA | KS OF DAI | A AVAILA | DLE. | | | JGUST | | | 16
18 | 4.0
11 | .26
.61 | .7
.8 | NOTE: I | _E35 IMA | N JO YEA | KS OF DAT | A AVAILA | DLE. | | | ULY UGUST EPTEMBER NNUAL MAGN I 1 | 8.9
4.7
119
FUDE AND | 21
41
239
 | 18
187
 | 11
46
 | .61
.25
OUS PEAK F | 100 | | | AND PROB | ABILITY C | F ANNUAL | HIGH F | | | UGUST EPTEMBER NNUAL MAGNIT | 8.9
4.7
119
FUDE AND
BASE | 21
41
239
PROBABILI
D ON PERIO | 187 TY OF INDO OF RECATED RE | 46 STANTANE CORD 194 CURRENCE | .61
.25
OUS PEAK F | .8
100

FLOW
 | | GNITUDE
BASE
DISCH | AND PROB
D ON PER
ARGE, IN
INTERV | ABILITY C | OF ANNUAL
CORD 19 | HIGH FI
41-50
ED RECUF | RENCE | | UGUST EPTEMBER NNUAL MAGNIT | 8.9
4.7
119
FUDE AND
BASE
IN CFS, | 21
41
239
PROBABILI
D ON PERIO
FOR INDIC
L EXCEEDAI | 18 187 TY OF IND OF RECATED RECE PROBLEM | 11
46
ASTANTANE
CORD 194
CCURRENCE
BABILITY, | .61
.25
OUS PEAK 1
1-82
INTERVAL,
IN PERCEN | .8
100
FLOW
, IN
NT | PERIOD
(CON-
SECU- | GNITUDE
BASE
DISCH | AND PROB
D ON PER
ARGE, IN
INTERV | ABILITY COLOR OF RECORDS | OF ANNUAL
CORD 19
R INDICAT
ARS, AND | HIGH FI
41-50
ED RECUF
ANNUAL
N PERCEN | RRENCE | | UGUST EPTEMBER NNUAL MAGNIT | 8.9
4.7
119
FUDE AND
BASE
IN CFS, | 21
41
239
PROBABILI
D ON PERIO | 18 187 TY OF INDOD OF RECATED RECE PROBLEM | 46 ISTANTANE CORD 194 CURRENCE BABILITY, | .61
.25
OUS PEAK F
1-82
INTERVAL,
IN PERCEN | .8
100
FLOW
, IN | MA(| GNITUDE
BASE
DISCH | AND PROB
D ON PER
ARGE, IN
INTERV | ABILITY COLOR OF RECORD OF SERVICE CFS, FOR AL, IN YE | OF ANNUAL
CORD 19 | HIGH FI
41-50
ED RECUF | RRENCE | | JGUST EPTEMBER NNUAL MAGNIT | 8.9
4.7
119
FUDE AND
BASE
IN CFS, | 21
41
239
PROBABILI
D ON PERIO
FOR INDIC
L EXCEEDAI | 187 TY OF INDO OF RE CATED RE NCE PROE | 11
46
ASTANTANE
CORD 194
CCURRENCE
BABILITY, | .61
.25
OUS PEAK 1
1-82
INTERVAL,
IN PERCEN | .8
100
FLOW
, IN
NT | PERIOD
(CON-
SECU-
TIVE
DAYS) | GNITUDE
BASE
DISCH | AND PROB
D ON PER
ARGE, IN
INTERV
EXCEEDAN
5
20\$ | ABILITY C
IOD OF RE
CFS, FOR
AL, IN YE
CE PROBAE
10
10% | OF ANNUAL
CORD 19
: INDICAT
ARS, AND
SILITY, I
25
4% | HIGH FI
41-50
ED RECUI
ANNUAL
N PERCEN
50
2% | 100 | | JGUST
EPTEMBER
NNUAL
MAGNIT
ISCHARGE,
YEARS, A | 8.9 4.7 119 FUDE AND BASE IN CFS, AND ANNUA 2 50% | 21
41
239
PROBABILI
D ON PERIO
FOR INDIC
EXCEEDAN | 187 TY OF INDO OF RE CATED RE NCE PROE | 11
46
ASTANTANE
ECORD 194
ECURRENCE
BABILITY,
25
4% | .61
.25
OUS PEAK 1
1-82
INTERVAL,
IN PERCEN | .8
100
FLOW
, IN
NT | PERIOD
(CON-
SECU-
TIVE
DAYS) | GNITUDE
BASE
DISCH | AND PROB
D ON PER
ARGE, IN
INTERV
EXCEEDAN
5
20\$ | ABILITY COLOR OF REAL, IN YECE PROBABLE 10 10\$ | DF ANNUAL
CORD 19
R INDICAT
ARS, AND
BILITY, I | HIGH FI
41-50
ED RECUF
ANNUAL
N PERCEN | 100 | | JGUST
EPTEMBER
NNUAL
MAGNIT
ISCHARGE,
YEARS, A | 8.9 4.7 119 FUDE AND BASE IN CFS, AND ANNUA 2 50% | 21
41
239
PROBABILI
D ON PERIO
FOR INDIC
L EXCEEDAI | 187 TY OF INDO OF RE CATED RE NCE PROE | 11
46
ASTANTANE
ECORD 194
ECURRENCE
BABILITY,
25
4% | .61
.25
OUS PEAK 1
1-82
INTERVAL,
IN PERCEN | .8
100
FLOW
, IN
NT | PERIOD (CON-SECU-TIVE DAYS) | DISCH DISCH 2 50% 2100 1570 | AND PROB
D ON PER
ARGE, IN
INTERV
EXCEEDAN
5
20\$ | ABILITY COLOR OF RECEPTOR OF STATE S | of ANNUAL
CORD 19
NINDICAT
ARS, AND
BILITY, 1 | HIGH FI
41-50
ED RECUF
ANNUAL
N PERCEN
50
2% | 100 | | JGUST EPTEMBER NNUAL MAGNIT SCHARGE, YEARS, A 1.25 80% | 8.9 4.7 119 FUDE AND BASE IN CFS, AND ANNUA 2 50% | 21
41
239
PROBABILI
D ON PERIO
FOR INDIC
EXCEEDAN | 187 TY OF INDO OF RE CATED RE NCE PROE | 11
46
ASTANTANE
ECORD 194
ECURRENCE
BABILITY,
25
4% | .61
.25
OUS PEAK 1
1-82
INTERVAL,
IN PERCEN | .8
100
FLOW
, IN
NT | PERIOD (CON-SECU-TIVE DAYS) | DISCH 2 50% 2100 1570 1200 | AND PROB
D ON PER
ARGE, IN
INTERV
EXCEEDAN
5
20\$ | ABILITY COLOR OF RECEPTOR OF STATE S | OF ANNUAL
CORD 19
: INDICAT
ARS, AND
SILITY, I
25
4% | HIGH FI
41-50
ED RECUI
ANNUAL
N PERCEN
50
2% | 100 | | JGUST EPTEMBER NNUAL MAGNIT SCHARGE, YEARS, A 1.25 80% | 8.9 4.7 119 FUDE AND BASE IN CFS, AND ANNUA 2 50% | 21
41
239
PROBABILI
D ON PERIO
FOR INDIC
EXCEEDAN | 187 TY OF INDO OF RE CATED RE NCE PROE | 11
46
ASTANTANE
ECORD
194
ECURRENCE
BABILITY,
25
4% | .61
.25
OUS PEAK 1
1-82
INTERVAL,
IN PERCEN | .8
100
FLOW
, IN | PERIOD (CON- SECU- TIVE DAYS) 1 3 7 | DISCH 2 50% 2100 1570 1200 893 | AND PROB
D ON PER
ARGE, IN
INTERV
EXCEEDAN
5
20\$
2660
1960
1510
1120 | ABILITY C
IOD OF RE
CFS, FOR
AL, IN YE
CE PROBABE
10
10%
3080
2210
1680
1230 | of ANNUAL
CORD 19
NINDICAT
ARS, AND
BILITY, 1 | HIGH FI
41-50
ED RECUF
ANNUAL
N PERCEN
50
2% | 100 | | JGUST EPTEMBER NNUAL MAGNIT SCHARGE, YEARS, A 1.25 80% | 8.9 4.7 119 FUDE AND BASE IN CFS, AND ANNUA 2 50% | 21
41
239
PROBABILI
D ON PERIO
FOR INDIC
EXCEEDAN | 187 TY OF INDO OF RE CATED RE NCE PROE | 11
46
ASTANTANE
ECORD 194
ECURRENCE
BABILITY,
25
4% | .61
.25
OUS PEAK 1
1-82
INTERVAL,
IN PERCEN | .8
100
FLOW
, IN | PERIOD (CON-SECU-TIVE DAYS) 1 3 7 15 | DISCH 2 50% 2100 1570 1200 893 655 | AND PROB
D ON PER
ARGE, IN
INTERV
EXCEEDAN
5
20\$
2660
1960
1910
1120
840 | ABILITY COLOR OF REAL, IN YEAR OF ROBARE 10 10 \$ 3080 2210 1680 1230 927 | of ANNUAL
CORD 19
NINDICAT
ARS, AND
BILITY, 1 | HIGH FI
41-50
ED RECUF
ANNUAL
N PERCEN
50
2% | 100 | | UGUST
EPTEMBER
NNUAL
MAGNIT
ISCHARGE,
YEARS, A | 8.9 4.7 119 FUDE AND BASE IN CFS, AND ANNUA 2 50% | 21
41
239
PROBABILI
D ON PERIO
FOR INDIC
EXCEEDAN | 187 TY OF INDO OF RE CATED RE NCE PROE | 11
46
ASTANTANE
ECORD 194
ECURRENCE
BABILITY,
25
4% | .61
.25
OUS PEAK 1
1-82
INTERVAL,
IN PERCEN | .8
100
FLOW
, IN | PERIOD (CON- SECU- TIVE DAYS) 1 3 7 | DISCH 2 50% 2100 1570 1200 893 | AND PROB
D ON PER
ARGE, IN
INTERV
EXCEEDAN
5
20\$
2660
1960
1510
1120 | ABILITY C
IOD OF RE
CFS, FOR
AL, IN YE
CE PROBABE
10
10%
3080
2210
1680
1230 | of ANNUAL
CORD 19
NINDICAT
ARS, AND
BILITY, 1 | HIGH FI
41-50
ED RECUF
ANNUAL
N PERCEN
50
2% | RENCE | | | | DISC | HARGE, | IN CFS, | WHICH WAS | EQUALED | OR EXCE | EDED FOR | INDICATED | PERCEN | T OF TIM | 1E | | | |-----|-----|------|--------|---------|-----------|---------|---------|----------|-----------|--------|----------|-----|-----|-------------| | 55 | 10% | 15% | 20% | 25% | 30% | 40% | 50% | 60% | 70% | 75% | 80% | 85% | 90% | 95 % | | 711 | 479 | 349 | 280 | 231 | 186 | 124 | 83 | 53 | 33 | 26 | 21 | 18 | 15 | 13 | ## 14202500 TUALATIN RIVER NEAR GASTON, OR--Continued ## STATISTICAL SUMMARIES (AFTER MUNICIPAL DIVERSIONS) MONTHLY AND ANNUAL MEAN DISCHARGES 1951-82 MAGNITUDE AND PROBABILITY OF ANNUAL LOW FLOW BASED ON PERIOD OF RECORD 1952-82 | | M 1 M 1 M 2 M 2 | MANIMA | 14F 4 13 | STAN-
DARD
DEVIA- | COEFFI-
CIENT OF | PERCENT
OF | PERIOD
(CON- | ſ | NTERVAL, | , IN YEA | R INDICAT
RS, AND A
BILITY, I | NNUAL NO |) N - | |------------------------|------------------------------|--------------------|--|--|----------------------------------|-------------------------|--|--|--|--|---|---|--------------| | MONTH | (CFS) | MAXIMUM
(CFS) | MEAN
(CFS) | TION
(CFS) | VARI-
ATION | ANNUAL
RUNOFF | SECU-
TIVE
DAYS) | 2
50 % | 5
20 % | 10
10 % | 20
5 % | 50
2 % | 100
1% | | OCTOBER | 2.2 | 146 |
55 | 47 | .85 | 2.2 | 1 | 4.0 | .9 | .4 | .2 | | | | NOVEMBER | 8.5 | 642 | 236 | 194 | .82 | 9.6 | 3 | 4.2 | 1.1 | .5 | .2 | | | | DECEMBER | 168 | 843 | 488 | 211 | .43 | 19.9 | 7 | 5.0 | 1.6 | .8 | . 4 | | | | JANUARY | 115 | 871 | 518 | 248 | . 48 | 21.1 | 14 | 6.5 | 2.6 | 1.4 | .8 | | | | EBRUARY | 140 | 842 | 436 | 166 | . 38 | 17.7 | 30 | 8.8 | 3.9 | 2.2 | 1.2 | | | | MARCH | 134 | 677 | 336 | 133 | .40 | 13.7 | 60 | 12 | 5.7 | 3.5 | 2.2 | | | | APRIL | 110 | 374 | 217 | 81 | .37 | 8.8 | 90 | 14 | 7.2 | 4.5 | 2.9 | | | | YAM | 42 | 154 | 86 | 35 | .40 | 3.5 | 120 | 19 | 10 | 6.8 | 4.5 | | | | JUNE | 18 | 87 | 39 | 18 | . 45 | 1.6 | 183 | 35 | 22 | 16 | 11 | | | | JULY | 9.5 | 32 | 18 | 5.9 | .33 | •7 | | | | | | | | | AUGUST | 2.5 | 37 | 14 | 8.9 | •62 | •6 | | | | | | | | | SEPTEMBER | 2.1 | 31 | 14 | 8.0 | •56 | •6 | | | | | | | | | ANNUAL | 117 | 315 | 204 | 62 | .30 | 100 | | | | | | | | | OISCHARGE, | BASE
IN CFS, | | OD OF RE | CORD 195 | 1-82

I NTERVAL |
, IN | | BASED | ON PERI | OD OF R | OF ANNUAL ECORD 19 R INDICATI | 51-82

ED RECUR | | | DISCHARGE,
YEARS, A | BASE
IN CFS,
AND ANNUA | D ON PERI | OD OF RE | CORD 195 | 1-82
INTERVAL
IN PERCE |
, IN | PERIOD
(CON-
SECU- | BASED
DISCHA | ON PERI | CFS, FOI | ECORD 19 | 51-82

ED RECUR
ANNUAL | RENCE | | OISCHARGE,
YEARS, A | BASE
IN CFS, | FOR INDI | OD OF RE | CORD 195 CURRENCE | 1-82
INTERVAL
IN PERCE | , IN
NT | PERIOD
(CON-
SECU-
TIVE | DISCHA | ON PERI | CFS, FOI | ECORD 19 R INDICATI EARS, AND BILITY, II | 51-82 ED RECUR ANNUAL N PERCEN | RRENCE | | DISCHARGE,
YEARS, A | BASE
IN CFS,
AND ANNUA | FOR INDI | OD OF RE | CORD 195
CURRENCE
ABILITY, | INTERVAL
IN PERCE | , IN
NT | PERIOD
(CON-
SECU- | BASED
DISCHA
E | ON PERI | CFS, FOI | ECORD 19 R INDICATI EARS, AND BILITY, I | 51-82 ED RECUR ANNUAL N PERCEN | RRENCE | | DISCHARGE,
YEARS, A | BASE
IN CFS,
AND ANNUA | FOR INDI | OD OF RE | CORD
195
CURRENCE
ABILITY, | INTERVAL
IN PERCE | , IN
NT | PERIOD
(CON-
SECU-
TIVE
DAYS) | DISCHA E 2 50% | RGE, IN
INTERVA
XCEEDANC
5
20% | CFS, FOI
L, IN YI
E PROBAI | ECORD 19 R INDICATI EARS, AND BILITY, II | 51-82 ED RECUR ANNUAL N PERCEN | RRENCE | | DISCHARGE,
YEARS, A | BASE
IN CFS,
AND ANNUA | FOR INDI | OD OF RE | CORD 195
CURRENCE
ABILITY, | INTERVAL
IN PERCE | , IN
NT | PERIOD
(CON-
SECU-
TIVE
DAYS) | DISCHA E 2 50% | RGE, IN
INTERVA
XCEEDANC | CFS, FOILL, IN YILL PROBAL | ECORD 19 R INDICATI EARS, AND BILITY, II 25 4% 3510 | 51-82
ED RECUR
ANNUAL
N PERCEN
50
2% | RRENCE | | DISCHARGE,
YEARS, A | BASE
IN CFS,
AND ANNUA | FOR INDI | OD OF RE | CORD 195
CURRENCE
ABILITY, | INTERVAL
IN PERCE | , IN
NT | PERIOD
(CON-
SECU-
TIVE
DAYS) | DISCHA E 2 50% 2010 1610 | RGE, IN INTERVACEEDANC | CFS, FOI
L, IN YI
E PROBAI
10
10% | R INDICATI
EARS, AND
BILITY, II
25
4% | 51-82
ED RECUR
ANNUAL
N PERCEN
50
2% | RRENCE | | DISCHARGE,
YEARS, A | BASE
IN CFS,
AND ANNUA | FOR INDI | OD OF RE | CORD 195
CURRENCE
ABILITY, | INTERVAL
IN PERCE | , IN
NT | PERIOD (CON- SECU- TIVE DAYS) | DISCHA E 2 50% | ON PERI
RGE, IN
INTERVA
XCEEDANG
5
20%
2570
2050
1510 | CFS, FOILL, IN YILL PROBAL | ECORD 19 R INDICATI EARS, AND BILITY, II 25 4% 3510 | 51-82
ED RECUR
ANNUAL
N PERCEN
50
2% | RRENCE | | DISCHARGE,
YEARS, A | BASE
IN CFS,
AND ANNUA | FOR INDI | OD OF RE | CORD 195
CURRENCE
ABILITY, | INTERVAL
IN PERCE | , IN
NT | PERIOD (CON- SECU- TIVE DAYS) | DISCHA E 2 50% 2010 1610 1250 | RGE, IN INTERVACEEDANC | CFS, FOI
LL, IN YI
E PROBAI
10
10% | ECORD 19 R INDICATI EARS, AND BILITY, II 25 4% 3510 2680 1750 | 51-82
ED RECUR
ANNUAL
N PERCEN
50
2% | RRENCE | | DISCHARGE,
YEARS, A | BASE
IN CFS,
AND ANNUA | FOR INDI | OD OF RE | CORD 195
CURRENCE
ABILITY, | INTERVAL
IN PERCE | , IN
NT | PERIOD (CON- SECU- TIVE DAYS) 1 3 7 | DISCHA E 2 50% 2010 1610 1250 925 | 0 N PERI
RGE, IN
INTERVA
XCEEDANG
5
20%
2570
2050
1510
1130 | CFS, FOI
LL, IN YI
E PROBAI
10
10%
2970
2330
1630
1230 | ECORD 19 R INDICATI EARS, AND BILITY, II 25 4\$ 3510 2680 1750 1340 | 51-82
ED RECUR
ANNUAL
N PERCEN
50
2% | RRENCE | | DISCHARGE,
YEARS, A | BASE
IN CFS,
AND ANNUA | FOR INDI | OD OF RE | CORD 195
CURRENCE
ABILITY, | INTERVAL
IN PERCE | , IN
NT | PERIOD (CON-
SECU-
TIVE DAYS) | DISCHA E 2 50% 2010 1610 1250 925 692 | ON PERIOR OF THE | CFS, FOI
LL, IN YI
E PROBAI
10
10\$
2970
2330
1630
1230
972 | R INDICATI
EARS, AND
BILITY, II
25
4%
3510
2680
1750
1340
1110 | 51-82
ED RECUR
ANNUAL
N PERCEN
50
2% | RRENCE | | DISCHARGE,
YEARS, A | BASE
IN CFS,
AND ANNUA | FOR INDI | CATED RENCE PROB | CORD 195 CURRENCE ABILITY, 25 4% | INTERVAL
IN PERCE
50
2% | , IN
NT
100
1% | PERIOD (CON- SECU- TIVE DAYS) 1 3 7 15 30 60 90 FOR PERIOD | DISCHA E 2 50 2010 1610 1250 925 692 549 498 OF RECOR | ON PERI | CFS, FOI
LL, IN YILE PROBAI
10
10 2330
1630
1230
972
826
745 | R INDICATI
EARS, AND
BILITY, II
25
4%
3510
2680
1750
1110
959
855 | 51-82
ED RECUR
ANNUAL
N PERCEN
50
2% | RRENCE | | DISCHARGE,
YEARS, A | BASE
IN CFS,
AND ANNUA | FOR INDI | CATED RENCE PROB | CURRENCE ABILITY, 25 4% N TABLE (CFS, WHIC | INTERVAL IN PERCE 50 2% | , IN
NT
100
1% | PERIOD (CON- SECU- TIVE DAYS) 1 3 7 15 30 60 90 FOR PERIOD EXCEEDED FOR | DISCHA E 2 50\$ 2010 1610 1250 925 692 549 498 OF RECOR | 2570
2050
1130
864
718
652
D 1951-8 | 2970
2330
1630
1230
1230
1230
1230
1230
1230
1230
12 | R INDICATI
EARS, AND
BILITY, II
25
4%
3510
2680
1750
1340
1110
959
855 | ED RECUF
ANNUAL
N PERCEN
50
2% | 100
1% | | 1.25
80% | BASE IN CFS, IND ANNUA 2 50% | FOR INDIIL EXCEEDA | DD OF RECOMMENDED OF REPORTS OF RECOMMENDED RECO | CORD 195 CURRENCE ABILITY, 25 4% | INTERVAL IN PERCE 50 2% | , IN
NT
100
1% | PERIOD (CON- SECU- TIVE DAYS) 1 3 7 15 30 60 90 FOR PERIOD | DISCHA E 2 50 2010 1610 1250 925 692 549 498 OF RECOR | ON PERI | CFS, FOI
LL, IN YILE PROBAI
10
10 2330
1630
1230
972
826
745 | R INDICATI
EARS, AND
BILITY, II
25
4%
3510
2680
1750
1110
959
855 | 51-82
ED RECUR
ANNUAL
N PERCEN
50
2% | RRENCE | ## 14203000 SCOGGINS CREEK NEAR GASTON, OR LOCATION.--Lat 45°27'32", long 123°09'16", on line between secs. 26 and 27, T.1 S., R.4 W., Washington County, Hydrologic Unit 17090010, on left bank 100 ft upstream from bridge on State Highway 47, 1.7 mi northwest of Gaston, and at mile 1.7. DRAINAGE AREA. -- 43.3 mi². PERIOD OF RECORD. --October 1940 to September 1974. Prior to October 1973, published as "Scoggin Creek near Gaston." GAGE.--Water-stage recorder. Datum of gage is 168.92 ft National Geodetic Vertical Datum of 1929. Prior to Oct. 1, 1947, water-stage recorder at site 300 ft upstream at same datum. Oct. 1, 1947, to June 7, 1950, nonrecording gage at site 150 ft upstream at same datum. REMARKS.——Some diurnal fluctuation caused by logponds above station. Diversions by pumping for irrigation above station. Part of domestic water supply for Hillsboro is diverted from Sain Creek above station. AVERAGE DISCHARGE. -- 34 years. 143 ft³/s. 44.85 in/yr, 103,600 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 5,320 ft³/s Dec. 21, 1955, gage height, 15.94 ft; minimum, 0.10 ft³/s Aug. 28, Sept. 30, Oct. 1, 3, 1958, Aug. 23, 24, 1961. ## STATISTICAL SUMMARIES MONTHLY AND ANNUAL MEAN DISCHARGES 1941-74 MAGNITUDE AND PROBABILITY OF ANNUAL LOW FLOW BASED ON PERIOD OF RECORD 1942-74 | | MINIMUM | MAX I MUM | MEAN | STAN-
DARD
DEVIA-
TION | COEFFI-
CIENT OF
VARI- | PERCENT
OF
ANNUAL | PERIOD
(CON-
SECU- | H | NTERVAL, | CFS, FOR
IN YEARS
E PROBABI | , AND AN | INUAL NOI | N- | |-----------|---------|-----------|-------|---------------------------------|------------------------------|-------------------------|--------------------------|----------|----------|-----------------------------------|----------|-----------------|-----------| | MONTH | (CFS) | (CFS) | (CFS) | (CFS) | ATION | RUNOFF | TIVE
DAYS) | 2
50% | 5
20% | 10
10% | 20
5% | 50
2% | 100
1% | | OCTOBER | 5.2 | 139 | 27 | 27 | 1.00 | 1.6 | 1 | 1.5 | .5 | .3 | .2 | .1 | | | NOVEMBER | 11 | 432 | 155 | 111 | .72 | 9.0 | 3 | 2.1 | .9 | .6 | .4 | .2 | | | DECEMBER | 51 | 655 | 322 | 157 | .49 | 18.6 | 7 | 3.1 | 1.6 | 1.1 | .8⁻ | .5 | | | JANUARY | 90 | 675 | 364 | 177 | .49 | 21.1 | 14 | 3.8 | 2.2 | 1.5 | 1.1 | .7 | | | FEBRUARY | 115 | 660 | 333 | 140 | .42 | 19.3 | 30 | 4.6 | 2.7 | 2.0 | 1.5 | 1.1 | | | MARCH | 74 | 499 | 259 | 118 | .46 | 15.0 | 60 | 5.7 | 3.6 | 2.8 | 2.3 | 1.8 | | | APRIL | 54 | 269 | 144 | 59 | -41 | 8.3 | 90 | 7.1 | 4.8 | 3.8 | 3.2 | 2.5 | | | MAY | 35 | 167 | 68 | 31 | .46 | 3.9 | 120 | 9.5 | 6.7 | 5.5 | 4.6 | 3.8 | | | JUNE | 14 | 54 | 30 | 10 | .34 | 1.7 | 183 | 20 | 15 | 13 | 11 | 9.3 | | | JULY | 4.1 | 23 | 13 | 4.7 | .38 | .7 | | | | | | | | | AUGUST | 1.0 | 15 | 6.4 | 3.3 | .50 | .4 | | | | | | | | | SEPTEMBER | 2.1 | 16 | 7.5 | 3.8 | .50 | .4 | | | | | | | | | ANNUAL | 72 | 225 | 143 | 36 | . 25 | 100 | | | | | | | | MAGNITUDE AND PROBABILITY OF INSTANTANEOUS PEAK FLOW BASED ON PERIOD OF RECORD 1941-74 MAGNITUDE AND PROBABILITY OF ANNUAL HIGH FLOW BASED ON PERIOD OF RECORD 1941-74 121 | OISCHARGE,
YEARS, A | | | | | CE INTER
Y, IN PE | | PERIOD
(CON- | | INTERV | 'AL, ÎN Y | EARS, AN | TED RECUI
D ANNUAL
IN PERCEI | | |------------------------|--------------|--------------|---------------|--------------|----------------------|-----------|------------------------|----------|----------|-----------|-------------|------------------------------------|-----| | 1.25
80% | 2
50%
 | 5
20%
 | 10
10%
 | 25
4%
 | 50
2% | 100
1% | SECU-
TIVE
DAYS) | 2
50% | 5
20% | 10
10% | 25
4% | 50
2% | 100 | | 1290 | 1770 | 2580 | 3220 | 4170 | 4980 | | | | | | | | | | | | | | | | | 1 | 1460 | 1940 | 2290 | 2770 | 3150 | | | WEIGHTED | SKEW = | .641 | | | | | 3 | 1140 | 1490 | 1740 | 2100 | 2390 | | | | | | | | | | 7 | 904 | 1130 | 1250 | 1400 | 1490 | | | | | | | | | | 15 | 721 | 875 | 939 | 994 | 1020 | | | | | | | | | | 30 | 539 | 654 | 706 | 753 | 778 | | | | | | | | | | 60 | 425 | 530 | 583 | 636 | 668 | | | | | | | | | | 90 | 375 | 464 | 508 | 55 1 | 577 | | DURATION TABLE OF DAILY MEAN FLOW FOR PERIOD OF RECORD 1941-74 | _ | | | DISC | HARGE, | IN CFS, | WHICH WAS | EQUALED | OR EXCE | DED FOR | INDICATED | PERCE | NT OF TIME | = | | | |---|--------|-----|-------------|--------|---------|-----------|---------|---------|---------|-----------|-------|------------|-----|-----|-----| | _ | 5%
 | 10% | 15% | 20% | 25% | 30% | 40% | 50% | 60% | 70% | 75% | 80% | 85% | 90% | 95% | | | 576 | 394 | 2 88 | 223 | 180 | 148 | 95 | 58 | 32 | 18 | 13 | 9.8 | | 5.3 | 3.5 | ### 14203500 TUALATIN RIVER NEAR DILLEY, OR LOCATION.--Lat 45°28'30", long 123°07'23", in NE±NW± sec.24, T.1 S., R.4 W., Washington County, Hydrologic Unit 17090010, on left bank 5 ft upstream from highway bridge, 1.0 mi south of Dilley, 1.2 mi downstream from Scoggins Creek, and at mile 58.81. DRAINAGE AREA .-- 125 mi2. PERIOD OF RECORD.--October 1939 to September 1982. Prior to October 1940 monthly discharge only, published in WSP 1318. GAGE.--Water-stage recorder. Datum of gage is 147.57 ft National Geodetic Vertical Datum of 1929. Prior to June 16, 1950, nonrecording gage at several sites within 200 ft of
present site at datum 4.00 ft higher. June 16, 1950, to Aug. 10, 1966, water-stage recorder at present site at datum 4.00 ft higher. REMARKS.--Diurnal fluctuation caused by operation of millpond on Scoggins Creek above station and regulation by Henry Hagg Lake since January 1975. Diversions above station of approximately 3,000 acre-ft from J.W. Barney Reservoir on the Middle Fork of North Fork Trask River for municipal water supply and irrigation in Wapato Lake area. AVERAGE DISCHARGE.--43 years, 401 ft3/s, 290,500 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 17,100 ft³/s Dec. 22, 1964, gage height, 19.34 ft, from rating curve extended above 6,000 ft³/s; minimum, 0.08 ft³/s Sept. 3, 1967. ## STATISTICAL SUMMARIES MONTHLY AND ANNUAL MEAN DISCHARGES 1940-74 MAGNITUDE AND PROBABILITY OF ANNUAL LOW FLOW BASED ON PERIOD OF RECORD 1941-74 | | MINIMUM | MAYIMIM | MEAN | STAN-
DARD
DEVIA- | COEFFI-
CIENT OF
VARI- | PERCENT
OF | PERIOD
(CON- | 11 | NTEŔVAL, | CFS, FOR
IN YEARS
E PROBABI | , AND AN | INUAL NO | N- | |-----------|---------|------------------|---------------|-------------------------|------------------------------|------------------|------------------------|----------|----------|-----------------------------------|----------|-----------------|-----------| | MONTH | (CFS) | MAXIMUM
(CFS) | MEAN
(CFS) | TION
(CFS) | ATION | ANNUAL
RUNOFF | SECU-
TIVE
DAYS) | 2
50% | 5
20% | 10
10% | 20
5% | 50
2% | 100
1% | | OCTOBER | 5.5 | 353 | 80 | 75 | .93 | 1.6 | 1 | 3.6 | 1.0 | .5 | .2 | .1 | | | NOVEMBER | 19 | 1709 | 441 | 355 | .80 | 8.8 | 3 | 5.0 | 1.7 | .8 | .5 | .2 | | | DECEMBER | 156 | 2228 | 962 | 512 | .53 | 19.2 | 7 | 6.4 | 2.7 | 1.5 | .9 | .5 | | | JANUARY | 277 | 2497 | 1069 | 564 | .53 | 21.3 | 14 | 8.0 | 3.5 | 2.0 | 1.2 | .7 | | | FEBRUARY | 284 | 1922 | 989 | 404 | .41 | 19.7 | 30 | 10 | 4.6 | 2.7 | 1.6 | .9 | | | MARCH | 219 | 1406 | 733 | 339 | .46 | 14.6 | 60 | 14 | 7.0 | 4.4 | 2.9 | 1.7 | | | APRIL | 143 | 769 | 412 | 179 | .43 | 8.2 | 90 | 17 | 9.7 | 6.8 | 4.9 | 3.2 | | | MAY | 88 | 437 | 185 | 88 | .48 | 3.7 | 120 | 24 | 15 | 11 | 9.0 | 6.7 | | | JUNE | 39 | 132 | 76 | 25 | .33 | 1.5 | 183 | 56 | 39 | 31 | 25 | 20 | | | JULY | 6.1 | 49 | 28 | 12 | .44 | ` . 5 | | | | | | | | | AUGUST | .9 | 40 | 16 | 9.3 | - 59 | .3 | | | | | | | | | SEPTEMBER | 1.8 | 60 | 21 | 13 | •63 | .4 | | | | | | | | | ANNUAL | 216 | 839 | 417 | 117 | •28 | 100 | | | | | | | | MAGNITUDE AND PROBABILITY OF INSTANTANEOUS PEAK FLOW BASED ON PERIOD OF RECORD 1941-74 MAGNITUDE AND PROBABILITY OF ANNUAL HIGH FLOW BASED ON PERIOD OF RECORD 1941-74 | DISCHARGE,
YEARS, A | | | | | NCE INTER | | PERIOD
(CON- | DISCH | INTERV | 'AL, ÎN Y | EARS, A | ATED RECUI | | |------------------------|----------|----------------------|-----------|----------|-----------|-----------|------------------------|----------|--------|-----------|----------|------------|-----| | 1.25
80% | 2
50% | 5
20 %
 | 10
10% | 25
4% | 50
2% | 100
1% | SECU-
TIVE
DAYS) | 2
50% | 5 20% | 10 | 25
4% | 50
2% | 100 | | 3530 | 5000 | 7540 | 9600 | 12700 | 15400 | | | | | | | | | | | | | | | | | 1 | 4270 | 6050 | 7460 | 9500 | 11200 | | | WEIGHTED | SKEW = | • 599 | | | | | 3 | 3340 | 4700 | 5830 | 7540 | 9060 | | | | | | | | | | 7 | 2600 | 3580 | 4270 | 5200 | 5930 | | | | | | | | | | 15 | 2090 | 2720 | 3040 | 3380 | 3580 | | | | | | | | | | 30 | 1570 | 2010 | 2240 | 2480 | 2630 | | | | | | | | | | 60 | 1230 | 1580 | 1790 | 2020 | 2170 | | | | | | | | | | 90 | 1080 | 1390 | 1570 | 1770 | 1900 | | DURATION TABLE OF DAILY MEAN FLOW FOR PERIOD OF RECORD 1941-74 | | | DISCHA | RGE, IN | CFS, WH | ICH WAS | EQUALED C | R EXCEEDE | D FOR IN | NDICATED | PERCENT | OF TIME | | | | |--------|-----|--------|---------|---------|---------|-----------|-----------|----------|----------|---------|---------|-----|-----|-----| | 5% | 10% | 15% | 20% | 25% | 30% | 40% | 50% | 60% | 70% | 75% | 80% | 85% | 90% | 95% | | 1740 1 | 140 | 852 | 659 | 536 | 428 | 275 | 157 | 86 | 46 | 33 | 24 | 18 | 13 | 6.9 | ## 14204000 GALES CREEK NEAR GALES CREEK, OR LOCATION.--Lat 45°38'30", long 123°15'55", in NW\SE\ sec.23, T.2 N., R.5 W., Washington County, Hydrologic Unit 17090010, on right bank 0.5 mi downstream from Beaver Creek, 4.6 mi northwest of town of Gales Creek, and at mile 17.5. DRAINAGE AREA .-- 33.2 mi2. 448 295 221 173 111 136 70 46 28 17 14 11 9.0 7.9 6.3 PERIOD OF RECORD.--October 1935 to September 1945, October 1963 to September 1970. GAGE.--Water-stage recorder. Datum of gage is 449.31 ft National Geodetic Vertical Datum of 1929. Prior to Feb. 3, 1964, nonrecording gage at same site and datum. REMARKS.--No regulation or diversion above station. AVERAGE DISCHARGE.--17 years, 115 ft^3/s , 47.04 in/yr, 83,320 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 3,970 ft 3 /s Dec. 22, 1964, gage height, 8.63 ft; minimum, 1.7 ft 3 /s Sept. 28, 1967. | M | ONTHLY AN | ID ANNUAL I | MEAN DISC | CHARGES | 1936-70 | | MA | | | | F ANNUAL
CORD 19 | | W | |--|--|---|---|---|---|--|---|--|--|--|--|--|-----------| | | MINIMUM | MAXIMUM | MEAN | STAN-
DARD
DEVIA-
TION | COEFFI-
CIENT OF
VARI- | PERCENT
OF
ANNUAL | PERIOD
(CON-
SECU- | Į. | NTERVAL, | IN YEAR | INDICATI | NNUAL NO | N- | | MONTH | (CFS) | (CFS) | (CFS) | (CFS) | ATION | RUNOFF | TIVE
DAYS) | 2
50% | 5
20% | 10
10% | 20
5% | 50
2% | 100
1% | | OCTOBER NOVEMBER DECEMBER JANUARY FEBRUARY MARCH APRIL MAY JUNE JULY AUGUST SEPTEMBER ANNUAL | 8.0
8.2
43
59
105
70
48
23
16
9.4
4.5
3.4 | 54
298
551
614
496
359
275
107
52
27
15
25 | 19
98
251
312
271
207
113
55
29
15
9.2
9.5 | 12
92
158
161
105
95
61
20
11
5.1
3.1 | .66
.94
.63
.52
.39
.46
.54
.36
.37
.34
.33 | 1.3
7.1
18.1
22.5
19.5
14.9
8.1
3.9
2.1
1.1
.7
.7 | 1
3
7
14
30
60
90
120
183 | 4.6
5.6
6.2
6.6
7.1
8.0
8.9
10 | 3.1
3.9
4.4
4.8
5.2
6.0
6.9
8.2 | 2.5
3.1
3.5
3.9
4.3
5.1
6.0
7.3 | 2.1
2.6
2.9
3.2
3.6
4.4
5.4
6.8 |

 | | | | | PROBABILITE | | | | -LOW | MA(| | | | F ANNUAL
CORD 19: | | .OW | | MAGNI' | BASE
, IN CFS, | | OD OF REC | CORD 1936 | 5-70
INTERVAL, | , IN | PERIOD
(CON- | BASED

DISCHA | ON PERI

RGE, IN
INTERVA | OD OF RE | | 36-70

ED RECUF
ANNUAL | RENCE | | MAGNI' | BASE
, IN CFS, | D ON PERIO | OD OF REC | CORD 1936 | INTERVAL, | , IN | PERIOD | BASED

DISCHA | ON PERI

RGE, IN
INTERVA | OD OF RE | CORD 193 | 36-70

ED RECUF
ANNUAL | RENCE | | MAGNITOLISCHARGE YEARS, 1.25 80% | BASE
, IN CFS,
AND ANNUA | FOR INDICAL EXCEEDA | DD OF REC | CORD 1936
CURRENCE
ABILITY, | INTERVAL,
IN PERCEI | , IN
NT
 | PERIOD
(CON-
SECU-
TIVE | BASED DISCHA E2 | ON PERI RGE, IN INTERVA XCEEDANC | OD OF RE CFS, FOR L, IN YE E PROBAB | CORD 19: | 36-70 ED RECUF ANNUAL N PERCEN | RENCE | | MAGNITOLISCHARGE YEARS, 1.25 80% | BASE , IN CFS, AND ANNUA 2 50% | FOR INDICAL EXCEEDAL 5 20% | CATED REC | CURRENCE ABILITY, 25 4% | 5-70 INTERVAL, IN PERCEI 50 2% | , IN
NT
100
1% | PERIOD (CON- SECU- TIVE DAYS) 1 3 7 15 30 60 | BASED DISCHA E 2 50% 1580 1210 869 650 467 373 325 | ON PERI | OD OF RE CFS, FOR L, IN YE E PROBAB 10 10\$ 2560 1920 1270 890 613 460 397 | 2970
2240
1410
947
653
477 | B6-70 ED RECUF ANNUAL N PERCEN 50 2% | 100
1% | | MAGNITOLISCHARGE YEARS, 1.25 80% | BASE , IN CFS, AND ANNUA 2 50% | FOR INDICAL EXCEEDAN | CATED RECONCE PROBA | CURRENCE ABILITY, 25 4% | 5-70 INTERVAL, IN PERCEI 50 2% | IN NT 1000 1% | PERIOD (CON-
SECU-
TIVE DAYS) | DISCHA E 2 50% 1580 1210 869 650 467 373 325 OF RECOR | ON PERI | OD OF RE CFS, FOR L, IN YE E PROBAB 10 10 10 12 2560 1920 1270 890 613 460 397 | 2970
2240
1410
947
653
477
411 | B6-70 ED RECUF ANNUAL N PERCEN 50 2% | 100
1% | #### 14204500 GALES CREEK NEAR FOREST GROVE, OR LOCATION.--Lat 45°33'20", long 123°11'10", in SE½ sec.21, T.1 N., R.4 W., Washington County, Hydrologic Unit 17090010, on left bank 50 ft downstream from Roderick road bridge, 0.1 mi below Kelly Creek, 2.5 mi southeast of town of Gales Creek, 4.5 mi northwest of Forest Grove, and at mile 8.7. DRAINAGE AREA .-- 66.1 mi2. PERIOD OF RECORD. -- October 1940 to September 1956, October 1970 to September 1981. GAGE.--Water-stage recorder. Datum of gage is 201.81 ft National Geodetic Vertical Datum of 1929. Prior to Sept. 13, 1941, at site 1.4 mi downstream at datum 14.33 ft lower. Sept. 13, 1941, to June 19, 1952, at downstream side of bridge at datum 1.44 ft higher. June 20, 1952, to Jan. 3, 1956, at datum 1.00 ft higher. REMARKS.--No regulation. Small diversions for irrigation above station. AVERAGE DISCHARGE.--27 years, 225 ft³/s, 46.23 in/yr, 163,000 acre-ft/yr. EXTREMES
FOR PERIOD OF RECORD.--Maximum discharge, 6,410 ft³/s Feb. 17, 1949, gage height, 10.90 ft, from floodmark, site and datum then in use; maximum gage height, 12.95 ft, from floodmark, Jan. 21, 1972; minimum discharge, 1 ft³/s Aug. 19, 1947. ## STATISTICAL SUMMARIES MONTHLY AND ANNUAL MEAN DISCHARGES 1941-81 MAGNITUDE AND PROBABILITY OF ANNUAL LOW FLOW BASED ON PERIOD OF RECORD 1942-81 | | MINIMUM | MAXIMUM | MEAN | STAN-
DARD
DEVIA-
TION | COEFFI-
CIENT OF
VARI- | PERCENT
OF
ANNUAL | PERIOD
(CON-
SECU- | 11 | NTERVAL, | CFS, FOR
IN YEARS
E PROBABI | , AND AN | INUAL NO | N | |-----------|---------|---------|-------|---------------------------------|------------------------------|-------------------------|--------------------------|----------|----------|-----------------------------------|----------|----------|-----------| | MONTH | (CFS) | (CFS) | (CFS) | (CFS) | ATION | RUNOFF | TIVE
DAYS) | 2
50% | 5
20% | 10
10% | 20
5% | 50
2% | 100
1% | | OCTOBER | 7.3 | 198 | 44 | 43 | .97 | 1.6 | 1 | 7.7 | 4.8 | 3.6 | 2.8 | 2.1 | | | NOVEMBER | 18 | 718 | 245 | 186 | .76 | 9.0 | 3 | 8.2 | 5.3 | 4.1 | 3.3 | 2.5 | | | DECEMBER | 27 | 1080 | 531 | 275 | .52 | 19.5 | 7 | 8.8 | 5.8 | 4.5 | 3.7 | 2.8 | | | JANUARY | 27 | 1152 | 560 | 310 | .55 | 20.6 | 14 | 9.5 | 6.5 | 5.2 | 4.2 | 3.4 | | | FEBRUARY | 62 | 1106 | 531 | 241 | .45 | 19.5 | 30 | 11 | 7.4 | 6.0 | 5.1 | 4.1 | | | MARCH | 124 | 904 | 396 | 201 | .51 | 14.6 | 60 | 13 | 9.1 | 7.5 | 6.3 | 5.2 | | | APRIL | 73 | 398 | 213 | 91 | .43 | 7.8 | 90 | 14 | 11 | 9.2 | 8.0 | 6.9 | | | YAY | 45 | 252 | 99 | 43 | .43 | 3.6 | 120 | 18 | 13 | 11 | 9.9 | 8.3 | | | JUNE | 29 | 82 | 47 | 13 | .29 | 1.7 | 183 | 33 | 24 | 21 | 18 | 15 | | | JULY | 7.5 | 33 | 22 | 6.8 | •31 | •8 | | | | | | | | | AUGUST | 4.9 | 22 | 14 | 4.4 | .31 | .5 | | | | | | | | | SEPTEMBER | 6.8 | 31 | 16 | 6.1 | •39 | •6 | | | | | | | | | ANNUAL | 52 | 383 | 225 | 76 | .34 | 100 | | | | | | | | MAGNITUDE AND PROBABILITY OF INSTANTANEOUS PEAK FLOW BASED ON PERIOD OF RECORD 1941-81 MAGNITUDE AND PROBABILITY OF ANNUAL HIGH FLOW BASED ON PERIOD OF RECORD 1941-81 | YEARS, A | | | | | | | PERIOD
(CON- | | INTERV | AL, IN Y | EARS, AN | TED RECUI
D ANNUAL
IN PERCEI | | |-------------|----------|-------------|-------------------|----------|----------|-----------|------------------------|----------|----------|-----------|----------|------------------------------------|-----| | 1.25
80% | 2
50% | 5
20% | 10
10 % | 25
4% | 50
2% | 100
1% | SECU-
TIVE
DAYS) | 2
50% | 5
20% | 10
10% | 25
4% | 50
2% | 100 | | 2110 | 3170 | 4680 | 5700 | 6990 | 7950 | | | | | | | | | | | | | | | | | 1 | 2500 | 3470 | 4040 | 4710 | 5170 | | | WE I GHTED | SKEW = | 165 | | | | | 3 | 1970 | 2720 | 3160 | 3670 | 4030 | | | | | | | | | | 7 | 1510 | 1990 | 2240 | 2480 | 2620 | | | | | | | | | | 15 | 1150 | 1460 | 1590 | 1700 | 1760 | | | | | | | | | | 30 | 846 | 1080 | 1180 | 1280 | 1330 | | | | | | | | | | 60 | 674 | 872 | 963 | 1050 | 1090 | | | | | | | | | | 90 | 605 | 775 | 843 | 896 | 922 | | DURATION TABLE OF DAILY MEAN FLOW FOR PERIOD OF RECORD 1941-81 | | | | DISCH | ARGE, | IN CFS, | WHICH WAS | EQUALED | OR EXCEE | DED FOR | INDICATED | PERCENT | OF TIME | | | | |---|-----|-----|-------|-------|---------|-----------|---------|----------|---------|-----------|---------|---------|-----|-----|-----| | _ | 5% | 10% | 15% | 20% | 25% | 30% | 40% | 50% | 60% | 70% | 75% | 80% | 85% | 90% | 95% | | | 892 | 609 | 449 | 351 | 279 | 220 | 136 | 83 | 47 | 28 | 23 | 19 | 16 | 12 | 8.9 | MAGNITUDE AND PROBABILITY OF ANNUAL LOW FLOW 125 ### 14205500 EAST FORK DAIRY CREEK AT MOUNTAINDALE, OR LOCATION.--Lat 45°38'05", long 123°02'35", in NE‡NW‡ sec.27, T.2 N., R.3 W., Washington County, Hydrologic Unit 17090010, on left bank at dam site 0.7 mi northwest of village of Mountaindale. DRAINAGE AREA.--43.0 mi², including two small streams on left bank which enter creek below station. PERIOD OF RECORD.--October 1940 to September 1951. GAGE..-Water-stage recorder. Datum of gage is 183.55 ft National Geodetic Vertical Datum of 1929. REMARKS.--Records include measured or estimated discharge of two small streams which flow through dam site at station and enter creek from left bank about a mile below station. Diurnal fluctuation at low stages caused by logpond upstream. Probably some pumping for irrigation above station. AVERAGE DISCHARGE.--11 years (water years 1941-51), 107 ft3/s, 77,460 acre-ft/yr. MONTHLY AND ANNUAL MEAN DISCHARGES 1041-51 EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 1,420 ft³/s Feb. 17, 1949, gage height, 12.54 ft; minimum, 7 ft³/s Sept. 10-12, 1944. ### STATISTICAL SUMMARIES | | | | | | COEFFI-
CIENT OF | OF | PERIOD
(CON- | | ARGE, IN
INTERVAL,
EXCEEDANC | IN YEARS | , AND AN | INUAL NO |)N- | |---------------------------------|--|---|--|--|---|--------------------|---|----------------------------|---|--|---|---|-----------| | MONTH | MINIMUM
(CFS) | MAXIMUM
(CFS) | MEAN
(CFS) | TION
(CFS) | VARI-
ATION | ANNUAL
RUNOFF | SECU-
TIVE
DAYS) | 2
50% | 5
20 % | 10
10% | 20
5% | 50
2% | 100 | | OCTOBER | 10 | 67 | 23 | 17 | .71 | 1.8 | 1 | 10 | 9.1 | 8.2 | 7.5 | | | | OVEMBER | 26 | 179 | 103 | 61 | .59 | 7.9 | 3 | 10 | 9.1 | 8.3 | 7.7 | | | | DECEMBER | 33 | 325 | 206 | 104 | •50 | 15.8 | 7 | 11 | 9.2 | 8.5 | 8.0 | | | | JANUARY | 102 | 414 | 218 | 103 | .47 | 16.7 | 14 | 11 | 9.7 | 9.1 | 8.6 | | | | FEBRUARY | 94 | 584 | 306 | 140 | .46 | 23.5 | 30 | 11 | 10 | 10.0 | 9.6 | | | | MARCH | 63 | 436 | 191 | 108 | •57 | 14.7 | 60 | 12 | 11 | 11 | 10 | | | | APRIL | 51 | 198 | 110 | 51 | .46 | 8.5 | 90 | 14 | 12 | 12 | 11 | | | | 4AY | 37 | 153 | 63 | 31 | .49 | 4.8 | 120 | 16 | 14 | 13 | 12 | | | | JUNE | 26 | 54 | 35 | 8.8 | . 25 | 2.7 | 183 | 24 | 20 | 18 | 17 | | | | JULY | 15 | 27 | 20 | 4.1 | -21 | 1.5 | | | | | | | | | AUGUST | 9.8 | 18 | 13 | 2.2 | .16 | 1.0 | | | | | | | | | SEPTEMBER | 10.0 | 18 | 13 | 2.1 | .17 | 1.0 | | | | | | | | | * • • • • • • | | | | | | | | | | | | | | | ANNUAL
 | 59
 | 151 | 107 | 30 | .28 | 100 | | | | | | | | | MAGNI
DISCHARGE
YEARS, | TUDE AND
BASE
, IN CFS,
AND ANNUA | PROBABILI
D ON PERIO
FOR INDI | TY OF IN
OD OF RE
CATED RE | STANTANEC
CORD 1941
CURRENCE
ABILITY, | DUS PEAK I
I-51
INTERVAL
IN PERCEI | FLOW
, IN | PERIOD
(CON- | BASE
DISCH | AND PROBAD ON PERI | OD OF REC

CFS, FOR
L, IN YEA | ORD 194 INDICATE RS, AND | 1-51
D RECUR | RENCE | | MAGNI' | TUDE AND
BASE | PROBABILI
D ON PERIO
FOR INDIC
L EXCEEDA | TY OF IN
OD OF RE
CATED RE
NCE PROB | STANTANEC
CORD 1941 | DUS PEAK (I-51 INTERVAL IN PERCEI | FLOW
, IN |
PERIOD | BASE
DISCH | O ON PERI
ARGE, IN
INTERVA | OD OF REC

CFS, FOR
L, IN YEA | ORD 194 INDICATE RS, AND | 1-51
D RECUR | RENCE | | MAGNI | TUDE AND
BASE
, IN CFS,
AND ANNUA | PROBABILI
D ON PERIO
FOR INDIV
L EXCEEDA
5
20% | TY OF IN
OD OF RE
CATED RE
NCE PROB | STANTANEC
CORD 1941
CURRENCE
ABILITY, | DUS PEAK (I-51 INTERVAL IN PERCEI | FLOW
, IN
NT | PERIOD
(CON-
SECU-
TIVE | BASE
DISCH | O ON PERI
ARGE, IN
INTERVA
EXCEEDANC | OD OF REC
CFS, FOR
L, IN YEA
E PROBABI | ORD 194 INDICATE RS, AND LITY, IN 25 | 1-51 D RECUR ANNUAL I PERCEN | RRENCE | | MAGNI DISCHARGE YEARS, 1.25 80% | TUDE AND BASE , IN CFS, AND ANNUA 2 50% | PROBABILI
D ON PERIO
FOR INDI-
L EXCEEDA
5
20% | TY OF IN
OD OF RE
CATED RE
NCE PROB | STANTANEC
CORD 1941
CURRENCE
ABILITY, | DUS PEAK (I-51 INTERVAL IN PERCEI | FLOW
, IN
NT | PERIOD
(CON-
SECU-
TIVE
DAYS) | BASE
DISCH | D ON PERI ARGE, IN INTERVA EXCEEDANC 5 20% | OD OF REC | ORD 194 INDICATE RS, AND LITY, IN 25 | 1-51 D RECUR ANNUAL I PERCEN | RENCE | | MAGNI DISCHARGE YEARS, 1.25 80% | TUDE AND
BASE
, IN CFS,
AND ANNUA
2
50% | PROBABILI
D ON PERIO
FOR INDI-
L EXCEEDA
5
20% | TY OF IN
OD OF RE
CATED RE
NCE PROB | STANTANEC
CORD 1941
CURRENCE
ABILITY, | DUS PEAK (I-51 INTERVAL IN PERCEI | FLOW
, IN
NT | PERIOD
(CON-
SECU-
TIVE
DAYS) | DISCH | D ON PERI
ARGE, IN
INTERVA
EXCEEDANC | OD OF REC | ORD 194 INDICATE RS, AND LITY, IN 25 4% | D RECUF
ANNUAL
I PERCEN
50
2% | 100
17 | | MAGNI DISCHARGE YEARS, 1.25 80% | TUDE AND BASE , IN CFS, AND ANNUA 2 50% | PROBABILI
D ON PERIO
FOR INDI-
L EXCEEDA
5
20% | TY OF IN
OD OF RE
CATED RE
NCE PROB | STANTANEC
CORD 1941
CURRENCE
ABILITY, | DUS PEAK (I-51 INTERVAL IN PERCEI | FLOW
, IN
NT | PERIOD
(CON-
SECU-
TIVE
DAYS) | DISCH | D ON PERI ARGE, IN INTERVA EXCEEDANC 5 20% | OD OF REC | ORD 194INDICATE RS, AND LITY, IN 25 4% | D RECUF
ANNUAL
I PERCEN
50
2% | 100
15 | | MAGNI DISCHARGE YEARS, 1.25 80% | TUDE AND BASE , IN CFS, AND ANNUA 2 50% | PROBABILI
D ON PERIO
FOR INDI-
L EXCEEDA
5
20% | TY OF IN
OD OF RE
CATED RE
NCE PROB | STANTANEC
CORD 1941
CURRENCE
ABILITY, | DUS PEAK (I-51 INTERVAL IN PERCEI | FLOW
, IN
NT | PERIOD
(CON-
SECU-
TIVE
DAYS) | DISCH 2 50% 1070 865 | D ON PERI ARGE, IN INTERVA EXCEEDANC 5 20% 1260 1070 | OD OF REC
CFS, FOR
L, IN YEA
E PROBABI
10
10% | ORD 194 INDICATE RS, AND LITY, IN 25 4% | D
RECUF
ANNUAL
I PERCEN
50
2% | 100
17 | | MAGNI DISCHARGE YEARS, 1.25 80% | TUDE AND BASE , IN CFS, AND ANNUA 2 50% | PROBABILI
D ON PERIO
FOR INDI-
L EXCEEDA
5
20% | TY OF IN
OD OF RE
CATED RE
NCE PROB | STANTANEC
CORD 1941
CURRENCE
ABILITY, | DUS PEAK (I-51 INTERVAL IN PERCEI | FLOW
, IN
NT | PERIOD (CON-SECU-TIVE DAYS) | DISCH 2 50% 1070 865 679 | D ON PERI ARGE, IN INTERVA EXCEEDANC 5 20% 1260 1070 840 | OD OF REC
CFS, FOR
L, IN YEA
E PROBABI
10
10% | ORD 194 INDICATE RS, AND LITY, IN 25 4% | D RECUF
ANNUAL I PERCEN
50
2% | 100
15 | DURATION TABLE OF DAILY MEAN FLOW FOR PERIOD OF RECORD 1941-51 90 270 349 389 | | | DISC | HARGE, | IN CFS, | WHICH WAS | EQUALED | OR EXCE | DED FOR | INDICATED | PERCENT | OF TIME | : | | | |------------|-----|------|--------|---------|-----------|---------|---------|---------|-----------|---------|---------|-----|-----|-----| | 5 % | 10% | 15% | 20% | 25% | 30% | 40% | 50% | 60% | 70% | 75% | 80% | 85% | 90% | 95% | | 408 | 277 | 207 | 160 | 128 | 107 | 74 | 51 | 34 | 22 | 19 | 15 | 14 | 13 | 11 | ## 14206000 MCKAY CREEK NEAR NORTH PLAINS, OR LOCATION.--Lat 45°37'32", long 122°58'32", in SEt sec.30, T.2 N., R.2 W., Washington County, Hydrologic Unit 17090010, on downstream end of left timber bent of bridge on Shadybrook Road, 2.0 mi upstream from Jackson Creek, and 2.3 mi northeast of North Plains. DRAINAGE AREA .-- 27.6 mi2. WEIGHTED SKEW = .538 PERIOD OF RECORD.--October 1940 to September 1943, October 1948 to September 1956. GAGE.--Water-stage recorder. Datum of gage is 172.57 ft National Geodetic Vertical Datum of 1929. Oct. 1, 1940, to Sept. 30, 1943, at datum 0.25 ft higher. REMARKS. -- Some diurnal fluctuation in summer caused by pumping for irrigation above station. AVERAGE DISCHARGE.--11 years (water years 1941-43, 1949-56), $70.7 ft^3/s$, 51,180 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 2,100 ft³/s Feb. 17, 1949, gage height, 11.23 ft; maximum gage height, 11.35 ft Dec. 21, 1955; minimum discharge, 0.4 ft³/s Aug. 17, 18, 22, 1951. ## STATISTICAL SUMMARIES MONTHLY AND ANNUAL MEAN DISCHARGES 1941-56 MAGNITUDE AND PROBABILITY OF ANNUAL LOW FLOW BASED ON PERIOD OF RECORD 1942-56 | | *************************************** | 1444118114 | MEAN | STAN-
DARD
DEVIA- | CIENT OF | OF | PERIOD
(CON- | | INTERVAL | CFS, FOF
, IN YEAR
CE PROBAE | RS, AND A | NNUAL NO |)N- | |-------------|---|--------------------------------------|---------------|-------------------------|----------------------|------------------|------------------------|------------------------|---------------------------|---|-------------------|-------------------|-----------| | MONTH | MINIMUM
(CFS) | MAXIMUM
(CFS) | MEAN
(CFS) | TION
(CFS) | VARI-
ATION | ANNUAL
RUNOFF | SECU-
TIVE
DAYS) | 2
50% | 5
20 % | 10
10% | 20
5% | 50
2 % | 100
1% | | OCTOBER | 2.3 | 29 | 10 | 8.5 | | 1.2 | 1 | | | | | | | | NOVEMBER | 5.0 | 221 | 76 | 63 | .83 | 8.9 | 3 | | | | | | | | DECEMBER | 27 | 307 | 177 | 82 | .46 | 20.7 | 7 | | | | | | | | IANUARY | 56 | 318 | 176 | 85 | .48 | 20.6 | 14 | | | | | | | | EBRUARY | 50 | 398 | 198 | 104 | -53 | 23.1 | 30 | | | | | | | | IARCH | 29 | 248 | 114 | 69 | .60 | 13.3 | 60 | | | | | | | | PRIL | 21 | 115 | 58 | 35 | -61 | 6.7 | 90 | | | | | | | | AY | 12 | 43 | 24 | 9.5 | .40 | 2.8 | 120 | | | | | | | | UNE | 6.3 | 23 | 12 | 5.6 | .47 | 1.4 | 183 | | | | | | | | ULY | 2.6 | 8.2 | 5.0 | 1.8 | .36 | •6 | | | | | | | | | UGUST | 1.6 | 4.5 | 3.2 | .9 | .28 | .4 | NOTE: L | ESS THA | N 10 YEA | RS OF DAT | TA AVAILA | BLE. | | | EPTEMBER | 2.4 | 5.5 | 3.3 | 1.0 | .29 | .4 | | | | | | | | | NNUAL | 36 | 110 | 71 | 19 | •27 | 100 | | | | | | | | | OISCHARGE | BASE
, IN CFS, | PROBABILI
D ON PERIO
FOR INDIO | OD OF REC | CORD 194 | 1-56

INTERVAL | , IN | PERIOD | BASE
D1SCH | D ON PER ARGE, IN INTERV | ABILITY O
LOD OF RE
CFS, FOR
AL, IN YE | CORD 19 R INDICAT | 41-56
ED RECUR | RENCE | | 1.25
80% | 2
50% | 5
20 % | 10
10% | 25
4% | 50
2% | 100
1% | SECU-
TIVE | 2 | 5 | 10 | 25 | 50 | 100 | | 737 | 936 | 1240 | 1450 | | | | DAYS)
 | 50 %

796 | 20 %

1040 | 10%

1220 | | 2 %
 | | DURATION TABLE OF DAILY MEAN FLOW FOR PERIOD OF RECORD 1941-56 15 30 60 90 886 697 550 409 307 268 531 387 286 217 202 645 496 365 273 |
 | | DISCH | IARGE, | IN CFS, | WHICH WAS | EQUALED | OR EXCE | EDED FOR | INDICATE | D PERCEN | T OF TIM | 1E | | | |---------|-----|-------|--------|---------|-----------|---------|---------|----------|----------|----------|----------|-----|-----|-----| |
5% | 10% | 15% | 20% | 25% | 30% | 40% | 50% | 60% | 70% | 75% | 80% | 85% | 90% | 95% | |
319 | 208 | 143 | 103 | 77 | 58 | 35 | 20 | 12 | 6.6 | 5.2 | 4.3 | 3.5 | 2.9 | 2.3 | ## 14206500 TUALATIN RIVER AT FARMINGTON, OR LOCATION.--Lat 45°26'50", long 122°56'58", in SEtSEt sec.29, T.1 S., R.2 W., Washington County, Hydrologic Unit 17090010, on left bank at Harris bridge at Farmington, 5.0 mi south of Hillsboro, and at mile 33.3. DRAINAGE AREA .-- 568 mi2. PERIOD OF RECORD. --October 1939 to September 1958. October 1972 to September 1976 (October, May to September only, each year). GAGE.--Water-stage recorder. Datum of gage is 100.42 ft National Geodetic Vertical Datum of 1929. Prior to Oct. 1, 1940, nonrecording gage at same site at datum 2.00 ft higher. Oct. 1, 1940, to Sept. 30, 1958, nonrecording gage at present site and datum. REMARKS.--Flow regulated by Henry Hagg Lake since January 1975. AVERAGE DISCHARGE.--19 years (water years 1940-58), 1,355 ft³/s, 981,000 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge during period October 1939 to September 1958, 24,200 ft³/s Dec. 22, 1955, gage height, 36.03 ft, from floodmark; no flow Aug. 4-7, Aug. 10 to Sept. 6, 1958. EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since 1932, about 37 ft Dec. 22 or 23, 1933. ## STATISTICAL SUMMARIES MONTHLY AND ANNUAL MEAN DISCHARGES 1940-58 MAGNITUDE AND PROBABILITY OF ANNUAL LOW FLOW BASED ON PERIOD OF RECORD 1941-58 | | MINIMUM | MAXIMUM | MEAN | STAN-
DARD
DEVIA-
TION | COEFFI-
CIENT OF
VARI- | PERCENT
OF
ANNUAL | PERIOD
(CON-
SECU- | | INTERVAL | CFS, FOR
, IN YEARS
CE PROBABI | , AND AN | INUAL NO | ON− | |-----------|---------|---------|-------|---------------------------------|------------------------------|-------------------------|--------------------------|----------|----------|--------------------------------------|----------|------------------|-----------| | MONTH | (CFS) | (CFS) | (CFS) | (CFS) | ATION | RUNOFF | TIVE
DAYS) | 2
50% | 5
20% | 10
10% | 20
5% | 50
2 % | 100
1% | | OCTOBER | 35 | 791 | 212 | 194 | .92 | 1.3 | 1 | 28 | 14 | 8.9 | 5.8 | | | | NOVEMBER | 85 | 3177 | 1074 | 902 | .84 | 6.5 | 3 | 30 | 15 | 9.4 | 6.1 | | | | DECEMBER | 337 | 7425 | 2929 | 1876 | .64 | 17.9 | 7 | 32 | 16 | 11 | 7.0 | | | | JANUARY | 945 | 7017 | 3401 | 1866 | .55 | 20.7 | 14 | 35 | 20 | 13 | 9.5 | | | | FEBRUARY | 1453 | 6603 | 3944 | 1571 | .40 | 24.0 | 30 | 40 | 24 | 18 | 13 | | | | MARCH | 730 | 5172 | 2474 | 1244 | •50 | 15.1 | 60 | 52 | 35 | 27 | 21 | | | | APRIL | 478 | 3135 | 1357 | 673 | .50 | 8.3 | 90 | 64 | 43 | 34 | 27 | | | | MAY | 247 | 1544 | 565 | 299 | .53 | 3.4 | 120 | 85 | 60 | 48 | 38 | | | | JUNE | 134 | 422 | 243 | 75 | .31 | 1.5 | 183 | 168 | 122 | 100 | 84 | | | | JULY | 39 | 160 | 98 | 39 | .40 | •6 | | | | | | | | | AUGUST | .8 | 99 | 50 | 24 | . 49 | .3 | | | | | | | | | SEPTEMBER | 25 | 118 | 62 | 28 | • 45 | . 4 | | | | | | | | | ANNUAL | 651 | 2327 | 1355 | 416 | .31 | 100 | | | | | | | | MAGNITUDE AND PROBABILITY OF INSTANTANEOUS PEAK FLOW BASED ON PERIOD OF RECORD 1940-58 MAGNITUDE AND PROBABILITY OF ANNUAL HIGH FLOW BASED ON PERIOD OF RECORD 1940-58 127 | | | | | RECURRENC
ROBABILITY | | | PERIOD
(CON- | DISC | INTER | VAL, IN | OR INDICAT
YEARS, AND
ABILITY. I | ANNUAL | | |-------------|----------------------|------------------|-----------|-------------------------|-----------------|-----------|------------------------|----------|------------------|-----------|--|------------------|-----| | 1.25
80% | 2
50 %
 | 5
20 % | 10
10% | 25
4 % | 50
2% | 100
1% | SECU-
TIVE
DAYS) | 2
50% | 5
20 % | 10
10% | 25
4% | 50
2 % | 100 | | 7050 | 10500 | 15100 | 18100 | 21800 | | | | | | | | | | | | | | | | | | 1 | 10300 | 14100 | 16000 | 18000 | | | | WEIGHTE | D SKEW = | 275 | | | | | 3 | 9610 | 12600 | 14000 | 15300 | | | | | | | | | | | 7 | 8280 | 10500 | 11500 | 12300 | | | | | | | | | | | 15 | 6800 | 8550 | 9280 | 9890 | | | | | | | | | | | 30 | 5260 | 6830 | 7640 | 8460 | | | | | | | | | | | 60 | 4160 | 5440 | 6150 | 6930 | | | | | | | | | | | 90 | 3730 | 4860 | 5450 | 6050 | | | DURATION TABLE OF DAILY MEAN FLOW FOR PERIOD OF RECORD 1940-58 | | | DISC | HARGE, | IN CFS, | WHICH WAS | EQUALED | OR EXCE | EDED FOR | INDICATED | PERCENT | OF TIME | | | | |----------------|------|------|--------|---------|-----------|---------|-------------|-------------|-------------|-------------|---------|-------------|-----|-----| |
5 % | 10% | 15% | 20% | 25% | 30% | 40% | 50 % | 60 % | 70 % | 75 % | 80% | 85 % | 90% | 95% | |
5760 | 4090 | 3040 | 2340 | 1830 | 1410 | 796 | 433 | 240 | 138 | 101 | 79 | 64 | 51 | 32 | ### 14207500 TUALATIN RIVER AT WEST LINN, OR LOCATION.--Lat 45°21'03", long 122°40'30", in SW½ sec.34, T.2 S., R.1 E., Clackamas County, Hydrologic Unit 17090010, on left bank 300 ft upstream from bridge on State Highway 212, 0.4 mi west of West Linn city limits, and at mile 1.8.
DRAINAGE AREA .-- 706 mi2. PERIOD OF RECORD.--July 1928 to September 1982. Prior to October 1960, published as "near Willamette." GAGE.--Water-stage recorder. Datum of gage is 85.61 ft National Geodetic Vertical Datum of 1929 (levels by Corps of Engineers). Prior to June 12, 1941, nonrecording gage at datum 1.02 ft higher. REMARKS.--October 1951 to September 1970, all records published for this station included the daily flow of Oswego Canal. October 1971 to September 1982, maximum and average discharge only include flow in Oswego Canal. Oswego Canal diverts at point 5.0 mi above station for development of power between outlet of Lake Oswego and Willamette River. Some regulation in low-water season by flashboards on crest of diversion dam for Oswego Canal and regulation by Henry Hagg Lake since January 1975. Several diversions above station for irrigation. AVERAGE DISCHARGE.--54 years, 1,530 ${\rm ft}^3/{\rm s}$, 29.43 in/yr, 1,108,000 acre-ff/yr, adjusted for diversion. EXTREMES FOR PERIOD OF RECORD.—Maximum discharge, 23,300 ft 3 /s Dec. 23, 1933, gage height, 17.72 ft; minimum daily, 0.20 ft 3 /s July 30 to Aug. 2, 1966. ### STATISTICAL SUMMARIES NOT ADJUSTED FOR DIVERSION MONTHLY AND ANNUAL MEAN DISCHARGES 1929-51 MAGNITUDE AND PROBABILITY OF ANNUAL LOW FLOW BASED ON PERIOD OF RECORD 1930-51 | | | MAYIMIN | MEAN | STAN-
DARD
DEVIA-
TION | COEFFI-
CIENT OF
VARI- | PERCENT
OF | PERIOD
(CON-
SECU- | 11 | NTEŔVAL, | CFS, FOR
IN YEARS
E PROBABI | , AND AN | NUAL N | ON- | |-----------|------------------|------------------|---------------|---------------------------------|------------------------------|------------------|--------------------------|----------|----------|-----------------------------------|----------|----------|-----------| | MONTH | MINIMUM
(CFS) | MAXIMUM
(CFS) | MEAN
(CFS) | (CFS) | ATION | ANNUAL
RUNOFF | TIVE
DAYS) | 2
50% | 5
20% | 10
10% | 20
5% | 50
2% | 100
1% | | OCTOBER | 24 | 859 | 140 | 181 | 1.29 | .9 | 1 | 8.9 | 5.3 | 4.1 | 3.3 | | | | NOVEMBER | 40 | 4121 | 1074 | 1076 | 1.00 | 6.5 | 3 | 9.1 | 5.6 | 4.4 | 3.7 | | | | DECEMBER | 272 | 7685 | 2843 | 2080 | .73 | 17.3 | 7 | 10 | 6.5 | 5.2 | 4.4 | | | | JANUARY | 669 | 6459 | 3524 | 1898 | .54 | 21.5 | 14 | 12 | 7.6 | 6.2 | 5.4 | | | | FEBRUARY | 1080 | 7092 | 3574 | 1558 | .44 | 21.8 | 30 | 15 | 9.5 | 7.9 | 6.9 | | | | MARCH | 740 | 5382 | 2622 | 1276 | . 49 | 16.0 | 60 | 22 | 15 | 13 | 11 | | | | APRIL | 506 | 3642 | 1593 | 917 | .58 | 9.7 | 90 | 29 | 21 | 18 | 16 | | | | MAY | 175 | 1868 | 627 | 342 | • 55 | 3.8 | 120 | 45 | 33 | 28 | 25 | | | | JUNE | 100 | 587 | 259 | 114 | .44 | 1.6 | 183 | 137 | 94 | 76 | 62 | | | | JULY | 23 | 214 | 84 | 48 | .58 | .5 | | | | | | | | | AUGUST | 7.7 | 63 | 26 | 15 | .58 | .2 | | | | | | | | | SEPTEMBER | 8.5 | 92 | 33 | 26 | •79 | .2 | | | | | | | | | ANNUAL | 671 | 2046 | 1356 | 453 | .33 | 100 | | | | | | | | MAGNITUDE AND PROBABILITY OF INSTANTANEOUS PEAK FLOW BASED ON PERIOD OF RECORD 1929-82 MAGNITUDE AND PROBABILITY OF ANNUAL HIGH FLOW BASED ON PERIOD OF RECORD 1929-51 | | • | • | | RECURRENC
ROBABILITY | | | PERIOD
(CON- | DISC | INTER | /AL, IN | OR INDICAT
YEARS, AND
ABILITY, I | ANNUAL | | |-------------|--------------|----------|-----------|-------------------------|----------|-----------|------------------------|----------|----------|-----------|--|----------|-----| | 1.25
80% | 2
50%
 | 5
20% | 10
10% | 25
4% | 50
2% | 100
1% | SECU-
TIVE
DAYS) | 2
50% | 5
20% | 10
10% | 25
4% | 50
2% | 100 | | 7000 | 10000 | 14700 | 18000 | 22600 | | | | | | | | | | | | | | | | | | 1 | 9100 | 13400 | 16400 | 20500 | | | | WEIGHTE | D SKEW = | • .176 | | | | | 3 | 8830 | 12800 | 15500 | 19100 | | | | | | | | | | | 7 | 8160 | 11300 | 13300 | 15800 | | | | | | | | | | | 15 | 6910 | 9100 | 10300 | 11600 | | | | | | | | | | | 30 | 5410 | 6930 | 7720 | 8540 | | | | | | | | | | | 60 | 4230 | 5440 | 6060 | 6690 | | | | | | | | | | | 90 | 3780 | 4910 | 5480 | 6040 | | | DURATION TABLE OF DAILY MEAN FLOW FOR PERIOD OF RECORD 1929-51 | | | DISC | HARGE, | IN CFS, | WHICH WAS | EQUALED | OR EXCE | DED FOR | INDICATED | PERCENT | OF TIME | | | | |--------------|------|------|--------|---------|-----------|---------|---------|---------|-----------|---------|---------|-----|-----|-----| | 5% | 10% | 15% | 20% | 25% | 30% | 40% | 50% | 60% | 70% | 75% | 80% | 85% | 90% | 95% | | 57 50 | 4200 | 3200 | 2410 | 1810 | 1380 | 803 | 433 | 219 | 98 | 63 | 43 | 32 | 21 | 13 | # 14207500 TUALATIN RIVER AT WEST LINN, OR--Continued STATISTICAL SUMMARIES ADJUSTED FOR DIVERSION MONTHLY AND ANNUAL MEAN DISCHARGES 1952-70 MAGNITUDE AND PROBABILITY OF ANNUAL LOW FLOW BASED ON PERIOD OF RECORD 1953-70 | | MINIMUM | MAXIMUM | MEAN | STAN-
DARD
DEVIA-
TION | COEFFI-
CIENT OF
VARI- | PERCENT
OF
ANNUAL | PERIOD
(CON-
SECU- | | INTERVAL, | , IN YEA | OR INDICAT
ARS, AND A
ABILITY, I | NNUAL NO |)N- | |--------------------------------------|------------------------------|-----------------------|--|---|--|-------------------------|--|--|--|--|--|---|-----------| | 10NTH | (CFS) | (CFS) | (CFS) | (CFS) | ATION | RUNOFF | TIVE
DAYS) | 2
50 % | 5
20 % | 10
10% | 20
5 % | 50
2 % | 100
1% | | CTOBER | 9.2 | 574 |
178 | 169 | .95 | 1.0 | 1 | 2.9 | 1.2 | .7 | .4 | | | | IOVEMBER | 87 | 3229 | 1064 | 880 | .83 | 5.8 | 3 | 3.1 | 1.3 | .7 | .5 | | | | DECEMBER | 629 | 8476 | 3199 | 2033 | .64 | 17.3 | 7 | 3.4 | 1.5 | .9 | •6 | | | | IANUARY | 1067 | 7802 | 4354 | 2180 | .50 | 23.5 | 14 | 3.9 | 1.9 | 1.3 | .9 | | | | EBRUARY | 1942 | 7410 | 4239 | 1587 | .37 | 22.9 | 30 | 5.2 | 2.8 | 2.1 | 1.7 | | | | 1ARCH | 990 | 6400 | 2812 | 1348 | .48 | 15.2 | 60 | 8.6 | 4.7 | 3.6 | 3.0 | | | | PRIL | 450 | 3968 | 1619 | 818 | .51 | 8.8 | 90 | 15 | 7.3 | 5.1 | 3.9 | | | | MAY | 276 | 1565 | 691 | 383 | .55 | 3.7 | 120 | 31 | 16 | 11 | 8.7 | | | | UNE | 63 | 497 | 247 | 132 | .53 | 1.3 | 183 | 134 | 83 | 64 | 51 | | | | IULY | 4.6 | 137 | 52 | 40 | .78 | .3 | | | | | | | | | UGUST | 2.0 | 98 | 14 | 22 | 1.57 | .1 | | | | | | | | | SEPTEMBER | 3.9 | 155 | 30 | 36 | 1.19 | .2 | | | | | | | | | NNUAL | 1045 | 2538 | 1530 | 348 | .23 | 100 | | | | | | | | |) I SCHARGE, | BASE | ON PERIO | OD OF RE | CORD

CURRENCE | OUS PEAK F |
, IN | | BASED | ON PERI | CFS, FO | OF ANNUAL
RECORD 19 | 52-70

ED RECUR | | | DISCHARGE,
YEARS, A | BASE
IN CFS,
AND ANNUA | FOR INDIC
EXCEEDAL | OD OF RECATED RENCE PROB | CORD
CURRENCE
ABILITY, | INTERVAL
IN PERCEI |
, IN | PERIOD
(CON-
SECU- | BASED

DISCHA | O ON PERI | CFS, FO | RECORD 19 | 52-70

ED RECUR
ANNUAL |
RENCE | | ISCHARGE,
YEARS, A | BASE | FOR INDIC | OD OF RE | CORD
CURRENCE | INTERVAL, | , IN
NT | PERIOD
(CON- | BASED

DISCHA | ON PERI | CFS, FO | RECORD 19 | 52-70

ED RECUR
ANNUAL | RENCE | | ISCHARGE,
YEARS, A | BASE
IN CFS,
AND ANNUA | FOR INDIC
EXCEEDAL | OD OF RECATED RENCE PROB | CORD
CURRENCE
ABILITY, | INTERVAL
IN PERCEI | , IN
NT | PERIOD
(CON-
SECU-
TIVE
DAYS) | DISCHA E 2 50% | O ON PERI
ARGE, IN
INTERVA
EXCEEDANC
5
20% | CFS, FO
NL, IN Y
DE PROBA
10 | RECORD 19 | 52-70
ED RECUR
ANNUAL
N PERCEN
50
2% | RENCE | | ISCHARGE,
YEARS, A
1.25
80% | BASE | FOR INDIC
EXCEEDAL | OD OF RECATED RENCE PROB | CORD
CURRENCE
ABILITY, | INTERVAL
IN PERCEI | , IN
NT | PERIOD (CON-
SECU-
TIVE DAYS) | DISCHA E 2 50\$ | O ON PERI
ARGE, IN
INTERVA
EXCEEDANC
5
20% | CFS, FO
NL, IN Y
DE PROBA
10
10% | RECORD 19. OR INDICATI FEARS, AND BILITY, II 25 4% | 52-70 ED RECUR ANNUAL N PERCEN 50 2% | RENCE | | I SCHARGE,
YEARS, A | BASE | FOR INDIC
EXCEEDAL | OD OF RECATED RENCE PROB | CORD
CURRENCE
ABILITY, | INTERVAL
IN PERCEI | , IN
NT | PERIOD (CON- SECU- TIVE DAYS) | DISCHA 2 50% 10100 9810 | O ON PERI | CFS, FO
AL, IN Y
CE PROBA
10
10% | RECORD 19. PR INDICATI (FARS, AND BILITY, II 25 4% 18100 17200 | 52-70 ED RECUR ANNUAL N PERCEN 50 2% | RENCE | | ISCHARGE,
YEARS, A
1.25
80% | BASE | FOR INDIC
EXCEEDAL | OD OF RECATED RENCE PROB | CORD
CURRENCE
ABILITY, | INTERVAL
IN PERCEI | , IN
NT | PERIOD (CON-
SECU-
TIVE
DAYS) | DISCHA 2 50% 10100 9810 9060 | O ON PERI
ARGE, IN
INTERVA
EXCEEDANCE
5
20%
13400
13000
11500 | CFS, FO
NL, IN Y
EE PROBA
10
10%
15600
14900
12900 | RECORD 19 | 52-70 ED RECUR ANNUAL N PERCEN 50 2% | RENCE | | ISCHARGE,
YEARS, A
1.25
80% | BASE | FOR INDIC
EXCEEDAL | OD OF RECATED RENCE PROB | CORD
CURRENCE
ABILITY, | INTERVAL
IN PERCEI | , IN
NT | PERIOD (CON-
SECU-
TIVE DAYS) | BASED
DISCHA
E
2
50≴
10100
9810
9060
7790 | 5
20%
13400
11500
9700 | CFS, FO
CFS, FO
LL, IN Y
EE PROBA
10
10%
15600
14900
12900
10600 | RECORD 19: OR INDICATI (EARS, AND BILITY, II 25 4% 18100 17200 14400 11600 | 52-70 ED RECUR ANNUAL N PERCEN 50 2% | RENCE | | ISCHARGE,
YEARS, A
1.25
80% | BASE | FOR INDIC
EXCEEDAL | OD OF RECATED RENCE PROB | CORD
CURRENCE
ABILITY, | INTERVAL
IN PERCEI | , IN
NT | PERIOD (CON-
SECU-
TIVE DAYS) 1 3 7 7 15 30 | DISCHA 2 50% 10100 9810 9060 7790 6380 | 13400
11500
17890
17890 | CFS, FOUL, IN YEE PROBA-10 10 14900 14900 10600 8630 | RECORD 19 | 52-70 ED RECUR ANNUAL N PERCEN 50 2% | RENCE | | ISCHARGE,
YEARS, A
1.25
80% | BASE | FOR INDIC
EXCEEDAL | OD OF RECATED RENCE PROB | CORD
CURRENCE
ABILITY, | INTERVAL
IN PERCEI | , IN
NT | PERIOD (CON-
SECU-
TIVE DAYS) | DISCHA 2 50% 10100 9810 9060 7790 6380 4940 | 13400
13000
11500
9700
6320 | CFS, FO
CFS, FO
LF, IN Y
LE PROBA
10
10
15600
14900
12900
10600
8630
7080 | RECORD 19: | 52-70 ED RECUR ANNUAL N PERCEN 50 2% | RENCE | | ISCHARGE,
YEARS, A
1.25
80% | BASE | FOR INDIC
EXCEEDAL | OD OF RECATED RENCE PROB | CORD
CURRENCE
ABILITY, | INTERVAL
IN PERCEI | , IN
NT | PERIOD (CON-
SECU-
TIVE DAYS) 1 3 7 7 15 30 | DISCHA 2 50% 10100 9810 9060 7790 6380 | 13400
11500
17890
17890 | CFS, FOUL, IN YEE PROBA-10 10 14900 14900 10600 8630 | RECORD 19 | 52-70 ED RECUR ANNUAL N PERCEN 50 2% | RENCE | | ISCHARGE,
YEARS, A
1.25
80% | BASE | FOR INDIC
EXCEEDAL | CATED RE | CORD CURRENCE ABILITY, 25 4% | INTERVAL
IN PERCEI
50
2% | , IN
NT
100
1% | PERIOD (CON-
SECU-
TIVE DAYS) | DISCHA 2 50% 10100 9810 9060 7790 6380 4940 4300 | ARGE, IN INTERVA EXCEEDANC 13400 13000 11500 7890 6320 5350 | CFS, FO
NL, IN Y
E PROBA
10
10%
15600
14900
12900
10600
8630
7080
5930 | RECORD 19: | 52-70 ED RECUR ANNUAL N PERCEN 50 2% | RENCE | | ISCHARGE,
YEARS, A
1.25
80% | BASE | FOR INDIG | DOD OF RECEASED OF RECEASED RESIDENCE PROBLEM TO THE TH | CORD CURRENCE ABILITY, 25 4% N TABLE | INTERVAL
IN PERCEN
50
2% | IN NT 100 1% | PERIOD (CON-
SECU-
TIVE DAYS) | DISCHA E 2 50% 10100 9810 9060 7790 6380 4940 4300 OF RECOR | ARGE, IN INTERVALENCE DANCE 13400 13000 11500 9700 7890 6320 53550 20 1952-7 | CFS, FO
NL, IN Y
E PROBA
10
10 10 12
15600
14900
10600
8630
7080
5930 | RECORD 19: OR INDICATI (EARS, AND BILITY, II 25 4% 18100 17200 14400 11600 9370 7920 6550 | 52-70 ED RECUR ANNUAL N PERCEN 50 2% | RENCE | | YEARS, A | BASE | FOR INDIG | DOD OF RECEASED OF RECEASED RESIDENCE PROBLEM TO THE TH | CORD CURRENCE ABILITY, 25 4% N TABLE | INTERVAL
IN PERCENTED TO THE PERCENT OF DAILY N | IN NT 100 1% | PERIOD (CON- SECU- TIVE DAYS) 1 3 7 15 30 60 90 FOR PERIOD EXCEEDED FO | DISCHA E 2 50% 10100 9810 9060 7790 6380 4940 4300 OF RECOR | ARGE, IN INTERVALENCE DANCE 13400 13000 11500 9700 7890 6320 53550 20 1952-7 | CFS, FO
NL, IN Y
E PROBA
10
10 10 12
15600
14900
10600
8630
7080
5930 | RECORD 19: OR INDICATI (EARS, AND BILITY, II 25 4% 18100 17200 14400 11600 9370 7920 6550 | 52-70 ED RECUR ANNUAL N PERCEN 50 2% | RENCE | ### 14208000 CLACKAMAS RIVER AT BIG BOTTOM, OR LOCATION.--Lat 45°01'00", long 121°55'10", in NW±SE± sec.26, T.6 S., R.7 E., Clackamas County, Hydrologic Unit 17090011, Mount Hood National Forest, on right bank at lower end of Big Bottom, 0.5 mi downstream from Pot Creek, 28 mi southeast of Estacada, and at mile 65.1. DRAINAGE AREA .-- 136 m12. PERIOD OF RECORD. --April 1920 to September 1970. Monthly discharge only April 1920 published in WSP 1318. GAGE.--Water-stage recorder. Altitude of gage is 2,040 ft, from topographic map. Prior to Dec. 27, 1962, at site 0.2 mi upstream at different datum. REMARKS.--No regulation or diversion above station. AVERAGE DISCHARGE.--50 years, 477 ft^3/s , 47.63 in/yr, 345,600 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 11,200 ft³/s Dec. 22, 1964, gage height, 10.55 ft, from rating curve extended above 1,200 ft³/s on basis of slope-area measurement of peak flow; minimum, 184 ft³/s Sept. 12, 1942. ### STATISTICAL SUMMARIES MAGNITUDE AND PROBABILITY OF ANNUAL LOW FLOW MONTHLY AND ANNUAL MEAN DISCHARGES 1921-70 BASED ON PERIOD OF RECORD 1922-70 | | MINIMUM | MAXIMUM | MEAN | STAN-
DARD
DEVIA-
TION | COEFFI-
CIENT OF
VARI- | PERCENT
OF
ANNUAL | PERIOD
(CON-
SECU- | | INTERVAL | CFS, FOI
, IN YEA
CE PROBAL | RS, AND | ANNUAL N | ON- | |-----------|---------|---------|-------|---------------------------------|------------------------------|-------------------------|--------------------------|----------|------------------|-----------------------------------|----------|----------|-----------| | MONTH | (CFS) | (CFS) | (CFS) | (CFS) | ATION | RUNOFF | TIVE
DAYS) | 2
50% | 5
20 % | 10
10% | 20
5% | 50
2% | 100
1% | | OCTOBER | 208 | 578 | 296 | 83 | .28 | 5.2 | 1 | 239 | 216 | 204 | 195 | 185 | 178 | | NOVEMBER | 208 | 976 | 465 | 200 | .43 | 8.1 | 3 | 240 | 217 | 205 | 196 | 186 | 179 | | DECEMBER | 225 | 1509 | 591 | 282 | •48 | 10.3 | 7 | 242 | 218 | 206 | 197 | 187 | 180 | | JANUARY | 245 | 1445 | 601 | 294 | . 49 | 10.5 | 14 | 244 | 220 | 208 | 198 | 187 | 180 | | FEBRUARY | 250 | 1241 | 587 | 241 | .41 | 10.2 | 30 | 248 | 223 | 211 | 201 | 190 | 182 | | MARCH | 331 | 896 | 516 | 143 | . 28 | 9.0 | 60 | 252 | 226 | 214 | 203 | 192 | 185 | | APRIL | 316 | 1111 | 628 | 168 | . 27 | 11.0 | 90 | 256 | 229 | 216 | 205 | 194 | 187 | | MAY | 298 | 1353 | 708 | 2 2 9 | .32 | 12.4 | 120 | 263 | 233 | 220 | 210 | 199 | 192 | | JUNE | 243 | 1175 | 518 | 226 | .44 | 9.0 | 183 | 306 | 260 | 242 | 229 | 217 | 210 | | JULY | 207 | 488 | 303 | 61 | .20 | 5.3 | | | | | | | | | AUGUST | 192 | 334 | 260 | 34 | .13 | 4.5 | | | | | | | | | SEPTEMBER | 190 | 315 | 254 | 30 | .12 | 4.4 | | | | | | | | | ANNUAL | 302 | 699 | 477 | 91 | .19 | 100 | | | | | | | | MAGNITUDE AND PROBABILITY OF INSTANTANEOUS PEAK FLOW BASED ON PERIOD OF RECORD 1921-70 MAGNITUDE AND PROBABILITY OF ANNUAL HIGH FLOW BASED ON PERIOD OF RECORD 1921-70 | YEARS, / | , IN CFS,
AND ANNUA | L EXCEE | DANCE PR | OBABILIT | Y, IN PI | RCENT | PERIOD
(CON- | | INTERV | I CFS, FO
'AL,
IN Y
ICE PROBA | EARS, AN | ID ANNUAL | | |-------------|------------------------|--------------|---------------|--------------|----------|-----------|------------------------|----------|------------------|-------------------------------------|----------|-----------|------| | 1.25
80% | 2
50%
 | 5
20%
 | 10
10%
 | 25
4%
 | 50
2% | 100
1% | SECU-
TIVE
DAYS) | 2
50% | 5
20 % | 10
10% | 25
4% | 50
2% | 100 | | 1910 | 3010 | 4750 | 6030 | 7780 | 9180 | 10600 | | | | | | | | | | | | | | | | 1 | 2430 | 3690 | 4590 | 5780 | 6710 | 7670 | | WE I GHTED |) SKEW = | •004 | | | | | 3 | 1950 | 2920 | 3630 | 4590 | 5350 | 6160 | | | | | | | | | 7 | 1550 | 2180 | 2610 | 3150 | 3550 | 3960 | | | | | | | | | 15 | 1250 | 1640 | 1870 | 2130 | 2310 | 2480 | | | | | | | | | 30 | 1040 | 1270 | 1390 | 1510 | 1590 | 1650 | | | | | | | | | 60 | 854 | 1020 | 1100 | 1190 | 1240 | 1290 | | | | | | | | | 90 | 759 | 895 | 962 | 1030 | 1070 | 1100 | | | | DISCH | ARGE, I | V CFS, | WHICH WAS | EQUALED | OR EXC | EDED FOR | INDICATED | PERCENT | OF TIM | E | | | |------|-----|-------|---------|--------|-----------|---------|--------|----------|-----------|---------|--------|-----|-----|-----| | 5% | 10% | 15% | 20% | 25% | 30% | 40% | 50% | 60% | 70% | 75% | 80% | 85% | 90% | 95% | | 1040 | 841 | 728 | 641 | 573 | 517 | 433 | 371 | 322 | 288 | 275 | 262 | 250 | 237 | 221 | ### 14208500 OAK GROVE FORK AT TIMOTHY MEADOWS, OR LOCATION.--Lat 45°07'00", long 121°48'00", in SW\u00e4 sec.23, T.5 S., R.8 E., Clackamas County, Hydrologic Unit 17090011, 0.8 mi upstream from Anvil Creek, 10 mi upstream from Oak Grove intake dam, and 26.5 mi southeast of Cazadero. DRAINAGE AREA. -- 54 mi², approximately. 5% 356 10% 299 15% 267 20% 238 25% 222 30% 207 40% 181 168 159 70% 149 144 139 132 90% 124 95% 113 PERIOD OF RECORD.--March 1913 to September 1929. Published as "Oak Grove Fork of Clackamas River at Timothy Meadows, near Cazedero", prior to 1922. GAGE.--Water-stage recorder. Datum of gage is 3,140 ft National Geodetic Vertical Datum of 1929 (from levels to approximate gage datum). REMARKS.--No diversion above station. No regulation except natural storage in Clackamas Lake and in meadows above station. AVERAGE DISCHARGE.--16 years (water years 1914-29), 188 ft3/s. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 970 ft³/s Jan. 7, 1923, gage height, 3.20 ft, from rating curve extended above 460 ft³/s; minimum, 90 ft³/s Oct. 18-26, 28-31, Nov. 1-5, 1926. STATISTICAL SUMMARIES | | | | Mean | STAN-
DARD
DEVIA- | COEFFI-
CIENT OF | PERCENT
OF | PERIOD
(CON- | | INTERVAL | , IN YEAR | R INDICAT
RS, AND A
BILITY, I | ANNUAL N | ON- | |--|---|--|--|--|--|----------------------------------|---|-----------------------------------|--|--|--|--|--------| | MONTH | (CFS) | MAXIMUM
(CFS) | MEAN
(CFS) | TION
(CFS) | VARI-
ATION | ANNUAL
RUNOFF | SECU-
TIVE
DAYS) | 2
50% | 5
20% | 10
10% | 20
5% | 50
2% | 100 | | OCTOBER | 94 | 160 | 133 | 20 | .15 | 5.7 | 1 | 122 | 107 | 99 | 93 | | | | NOVEMBER | 120 | 239 | 158 | 38 | .24 | 6.8 | 3 | 123 | 108 | 100 | 93 | | | | DECEMBER | 121 | 350 | 190 | 67 | .35 | 8.2 | 7 | 124 | 108 | 100 | 93 | | | | JANUARY | 123 | 329 | 200 | 66 | .33 | 8.6 | 14 | 125 | 109 | 101 | 94 - | | | | FEBRUARY | 158 | 330 | 200 | 48 | .24 | 8.6 | 30 | 128 | 112 | 103 | 96 | | | | MARCH | 147 | 291 | 196 | 37 | . 19 | 8.4 | 60 | 133 | 116 | 106 | 99 | | | | APRIL | 171 | 335 | 241 | 50 | .21 | 10.4 | 90 | 137 | 119 | 109 | 101 | | | | YAP | 143 | 388 | 289 | 79 | • 27 | 12.4 | 120 | 140 | 122 | 112 | 103 | | | | JUNE | 121 | 540 | 256 | 118 | .46 | 11.0 | 183 | 152 | 129 | 118 | 109 | | | | JULY | 110 | 281 | 173 | 46 | .27 | 7.4 | | | | | | | | | | 103 | 185 | 147 | 23 | . 15 | 6.3 | | | | | | | | | AUGUS F | 103 | 107 | | | | | | | | | | | | | | | 170 | 141 | 21 | . 15 | 6.1 | | | | | | | | | AUGUST
SEPTEMBER
ANNUAL

MAGNI | 100
137 | 170
232 | 141 | 21
28 | .15 | 100 |
MAG |
SN I TUDE | AND PROB | | OF ANNUAL | | | | MAGNI SCHARGE | 100 137 TUDE AND BASE , IN CFS, | 232 PROBABILITO ON PERIO | 141 193 TY OF INDO OF RECATED RE | 21
28
STANTANE
CORD 191 | .15
.15
:OUS PEAK I | 6.1
100
FLOW | MAG | BASE
DISCH | D ON PER
ARGE, IN
INTERV | CFS, FOR | DF ANNUAL
ECORD 19
R INDICAT
EARS, AND | ED RECUE | RRENCE | | MAGNI DISCHARGE YEARS, | 100 137 TUDE AND BASE , IN CFS, AND ANNUA | PROBABILITO ON PERIO | 141 193 TY OF INDO OF RECATED RENCE PROB | 21
28
ASTANTANE
CORD 191
CCURRENCE
ABBILITY, | .15
.15
OUS PEAK I
4-28
INTERVAL
IN PERCEI | 6.1
100
FLOW
, IN
NT | PERIOD
(CON-
SECU- | DISCH. | D ON PER ARGE, IN INTERVA | CFS, FOR | ECORD 19 R INDICAT EARS, AND BILITY, I | ED RECUI
ANNUAL
N PERCEI | RRENCE | | MAGNI DISCHARGE YEARS, | 100
137
TUDE AND
BASE
, IN CFS, | PROBABILITO ON PERIO | 141 193 TY OF INDO OF RECATED RENCE PROB | 21
28
NSTANTANE
CCORD 191
CCURRENCE
BABILITY, | .15
.15
COUS PEAK I
4-28
INTERVAL
IN PERCEI | 6.1
100
FLOW | PERIOD
(CON- | BASE
DISCH | D ON PER ARGE, IN INTERV EXCEEDANG | CFS, FOR | ECORD 19 R INDICAT EARS, AND BILITY, I | 14-28 ED RECUI ANNUAL N PERCEI | RRENCE | | MAGNI SCHARGE YEARS, 1.25 | 100 137 TUDE AND BASE , IN CFS, AND ANNUA | PROBABILITO ON PERIO | 141 193 TY OF INDO OF RECATED RENCE PROB | 21
28
ASTANTANE
CORD 191
CCURRENCE
ABBILITY, | .15
.15
OUS PEAK I
4-28
INTERVAL
IN PERCEI | 6.1
100
FLOW
, IN
NT | PERIOD
(CON-
SECU-
TIVE
DAYS) | DISCH | D ON PER ARGE, IN INTERV EXCEEDANC | CFS, FOR
AL, IN YE
CE PROBAE
10
10% | ECORD 19 R INDICAT EARS, AND BILITY, I 25 4% | ED RECUI
ANNUAL
N PERCEI | RRENCE | | MAGNI DISCHARGE YEARS, 1.25 80% | TUDE AND BASE , IN CFS, AND ANNUA 2 50% | PROBABILITO ON PERIOD P | 141 193 TY OF INDD OF RE CATED RE NCE PROB | 21
28
NSTANTANE
ECORD 191
CCURRENCE
AABILITY,
25
4% | .15
.15
.15
.15
.10US PEAK I
4-28
 | 6.1
100
FLOW
, IN
NT | PERIOD
(CON-
SECU-
TIVE
DAYS) | DISCH. | D ON PER ARGE, IN INTERV EXCEEDANG 5 20% | CFS, FOR | ECORD 19 R INDICAT EARS, AND BILITY, I 25 4% | ED RECUI
O ANNUAL
N PERCEI
50
2% | RRENCE | | MAGNITALISCHARGE YEARS, 1.25 80% | 100 137 TUDE AND BASE , IN CFS, AND ANNUA 2 50% | PROBABILITO ON PERIOD P | 141 193 TY OF INDD OF RE CATED RE NCE PROB | 21
28
NSTANTANE
ECORD 191
CCURRENCE
AABILITY,
25
4% | .15
.15
.15
.15
.10US PEAK I
4-28
 | 6.1
100
FLOW
, IN
NT | PERIOD (CON- SECU- TIVE DAYS) | DISCH. 2 50% 483 451 | D ON PER ARGE, IN INTERV EXCEEDANC 5 20% 684 630 | CFS, FOF
AL, IN YE
E PROBAE
10
10%
819
749 | ECORD 19 R INDICAT EARS, AND BILITY, I 25 4% 990 899 | ED RECUI
D ANNUAL
N PERCEI
50
2% | RRENCE | | MAGNITALISCHARGE YEARS, 1.25 80% | TUDE AND BASE , IN CFS, AND ANNUA 2 50% | PROBABILITO ON PERIOD P | 141 193 TY OF INDD OF RE CATED RE NCE PROB | 21
28
NSTANTANE
ECORD 191
CCURRENCE
AABILITY,
25
4% | .15
.15
.15
.15
.10US PEAK I
4-28
 | 6.1
100
FLOW
, IN
NT | PERIOD
(CON-
SECU-
TIVE
DAYS) | DISCH. 2 50% 483 451 412 | D ON PER
ARGE, IN INTERV EXCEEDANC 5 20% 684 630 545 | CFS, FOR
AL, IN YE
CE PROBAR
10
10%
819
749
625 | 25
4%
990
899
718 | TED RECUI
ANNUAL
N PERCEI
50
2% | RRENCE | | MAGNI DISCHARGE YEARS, 1.25 80% | TUDE AND BASE , IN CFS, AND ANNUA 2 50% | PROBABILITO ON PERIOD P | 141 193 TY OF INDD OF RE CATED RE NCE PROB | 21
28
NSTANTANE
ECORD 191
CCURRENCE
AABILITY,
25
4% | .15
.15
.15
.15
.10US PEAK I
4-28
 | 6.1
100
FLOW
, IN
NT | PERIOD
(CON-
SECU-
TIVE
DAYS) | DISCH 2 50% 483 451 412 368 | D ON PER ARGE, IN INTERV EXCEEDANC 5 20% 684 630 545 471 | CFS, FOR AL, IN YE PROBABLE 10 10% 819 749 625 533 | 25
4%
990
899
718
605 | ED RECUI
D ANNUAL
N PERCEI
50
2% | RRENCE | | MAGNI DISCHARGE YEARS, 1.25 80% | TUDE AND BASE , IN CFS, AND ANNUA 2 50% | PROBABILITO ON PERIOD P | 141 193 TY OF INDD OF RE CATED RE NCE PROB | 21
28
NSTANTANE
ECORD 191
CCURRENCE
AABILITY,
25
4% | .15
.15
.15
.15
.10US PEAK I
4-28
 | 6.1
100
FLOW
, IN
NT | PERIOD (CON-
SECU-
TIVE DAYS) | DISCH 2 50% 483 451 412 368 332 | ARGE, IN INTERV, EXCEEDANG 5 20% 684 630 545 471 416 | CFS, FOR
AL, IN YEE PROBAB
10
10\$
819
749
625
533
466 | R INDICAT
EARS, AND
BILITY, I
25
4%
990
899
718
605
524 | 114-28 ED RECUI ANNUAL N PERCEI 50 2% | RRENCE | | MAGNI DISCHARGE YEARS, 1.25 80% | TUDE AND BASE , IN CFS, AND ANNUA 2 50% | PROBABILITO ON PERIOD P | 141 193 TY OF INDD OF RE CATED RE NCE PROB | 21
28
NSTANTANE
ECORD 191
CCURRENCE
AABILITY,
25
4% | .15
.15
.15
.15
.10US PEAK I
4-28
 | 6.1
100
FLOW
, IN
NT | PERIOD
(CON-
SECU-
TIVE
DAYS) | DISCH 2 50% 483 451 412 368 | D ON PER ARGE, IN INTERV EXCEEDANC 5 20% 684 630 545 471 | CFS, FOR AL, IN YE PROBABLE 10 10% 819 749 625 533 | 25
4%
990
899
718
605 | TED RECUI
ANNUAL
N PERCEI
50
2% | RRENCE | ## 14208700 OAK GROVE FORK NEAR GOVERNMENT CAMP, OR LOCATION.--Lat 45°06'50", long 121°48'50", in NEL sec.27, T.5 S., R.8 E., Clackamas County, Hydrologic Unit 17090011, Mount Hood National Forest, on right bank 0.1 mi upstream from Anvil Creek, 0.3 mi downstream from Timothy Lake, 14 mi south of Government Camp, and at mile 15.5. DRAINAGE AREA .-- 54.4 mi2. PERIOD OF RECORD. -- July 1956 to September 1982. GAGE.--Water-stage recorder and artificial control. Datum of gage is 3,041.83 ft National Geodetic Vertical Datum of 1929 (Portland General Electric Co. bench mark). REMARKS.--Flow regulated since 1956 by Timothy Lake. No diversion above station. AVERAGE DISCHARGE.--26 years, 130 ft^3/s , 32.45 In/yr, 94,180 acre-ft/yr, adjusted for storage. EXTREMES FOR PERIOD OF RECORD.---Maximum discharge, 2,110 ft^3 /s Dec. 24, 1964, gage height, 3.93 ft, from rating curve extended above 290 ft^3 /s on basis of slope-area measurement of peak flow; minimum, 3.7 ft^3 /s Sept. 23, 1968. #### STATISTICAL SUMMARIES MONTHLY AND ANNUAL MEAN DISCHARGES 1957-82 MAGNITUDE AND PROBABILITY OF ANNUAL LOW FLOW BASED ON PERIOD OF RECORD 1958-82 | | MINIMUM | MAXIMUM | MEAN | STAN-
DARD
DEVIA-
TION | COEFFI-
CIENT OF
VARI- | PERCENT
OF
ANNUAL | PERIOD
(CON-
SECU- | | INTERVAL | CFS, FOR | RS, AND A | NNUAL N | ON- | |-----------|---------|-------------|-------|---------------------------------|------------------------------|-------------------------|--------------------------|----------|----------|-----------|-----------|----------|-----------| | MONTH | (CFS) | (CFS) | (CFS) | (CFS) | ATION | RUNOFF | TIVE
DAYS) | 2
50% | 5
20% | 10
10% | 20
5% | 50
2% | 100
1% | | OCTOBER | 42 | 274 | 154 | 68 | .44 | 10.0 | 1 | | | | | | | | NOVEMBER | 87 | 337 | 179 | 64 | .36 | 11.6 | 3 | | | | | | | | DECEMBER | 68 | 274 | 152 | 49 | .32 | 9.8 | 7 | 40 | 33 | 29 | 25 | 22 | | | JANUARY | 45 | 343 | 164 | 73 | . 45 | 10.6 | 14 | 39 | 34 | 32 | 30 · | 29 | | | FEBRUARY | 43 | 333 | 150 | 79 | .53 | 9.7 | 30 | 41 | 34 | 32 | 30 | 29 | | | MARCH | 31 | 452 | 158 | 96 | .60 | 10.2 | 60 | 48 | 36 | 32 | 29 | 27 | | | APRIL | 35 | 2 75 | 111 | 77 | .70 | 7.2 | 90 | 54 | 39 | 33 | 30 | 27 | | | MAY | 33 | 364 | 127 | 95 | .75 | 8.2 | 120 | 60 | 41 | 34 | 29 | 25 | | | JUNE | 32 | 301 | 108 | 79 | .73 | 7.0 | 183 | 78 | 52 | 42 | 36 | 29 | | | JULY | 31 | 168 | 71 | 40 | .56 | 4.6 | | | | | | | | | AUGUST | 33 | 134 | 67 | 32 | .48 | 4.3 | | | | | | | | | SEPTEMBER | 33 | 237 | 107 | 64 | .60 | 6.9 | | | | | | | | | ANNUAL | 79 | 222 | 129 | 37 | .28 | 100 | | | | | | | | MAGNITUDE AND PROBABILITY OF INSTANTANEOUS PEAK FLOW BASED ON PERIOD OF RECORD 1957-82 MAGNITUDE AND PROBABILITY OF ANNUAL HIGH FLOW BASED ON PERIOD OF RECORD 1957-82 | DISCHARGE,
YEARS, A | IN CFS, | | | | | | PERIOD
(CON- | | INTERV | AL, IN Y | EARS, AN | TED RECUID ANNUAL | | |------------------------|----------|----------|-----------|----------|----------|---------------|------------------------|----------|----------|-----------|----------|-------------------|-----| | 1.25
80% | 2
50% | 5
20% | 10
10% | 25
4% | 50
2% | 100
1%
 | SECU-
TIVE
DAYS) | 2
50% | 5
20% | 10
10% | 25
4% | 50
2% | 100 | | 341 | 467 | 676 | 840 | 1080 | 1290 | | | | | | | | | | | | | | | | | 1 | 357 | 501 | 638 | 872 | 1100 | | | WEIGHTED | SKEW = | •599 | | | | | 3 | 347 | 463 | 559 | 704 | 833 | | | | | | | | | | 7 | 328 | 415 | 479 | 568 | 640 | | | | | | | | | | 15 | 306 | 369 | 413 | 471 | 517 | | | | | | | | | | 30 | 271 | 329 | 369 | 422 | 462 | | | | | | | | | | 60 | 230 | 283 | 316 | 358 | 389 | | | | | | | | | | 90 | 204 | 251 | 283 | 324 | 356 | | DURATION TABLE OF DAILY MEAN FLOW FOR PERIOD OF RECORD 1957-82 | | | DISC | HARGE, | IN CFS, | WHICH WAS | EQUALED | OR EXCE | EDED FOR | INDICATED | PERCENT | OF TIME | | | | |-----|-----|------|--------|---------|-----------|---------|---------|----------|-----------|------------|---------|-----|-----|-----| | 5% | 10% | 15% | 20% | 25% | 30% | 40% | 50% | 60% | 70% | 75% | 80% | 85% | 90% | 95% | | 324 | 281 | 249 | 223 | 196 | 174 | 132 | 93 | 61 | 49 | 4 6 | 43 | 40 | 37 | 35 | ### 14209000 OAK GROVE FORK ABOVE POWERPLANT INTAKE, OR LOCATION.--Lat 45°04'20", long 121°57'00", on line between secs.3 and 4, T.6 S., R.7 E., Clackamas County, Hydrologic Unit 17090011, Mount Hood National Forest, on right bank 0.2 mi upstream from Spring Creek, 0.7 mi upstream from Kink Creek, 1.0 mi upstream from Portland General Electric Co. diversion dam, 24 mi southeast of Estacada, and at mile 6.1. DRAINAGE AREA .-- 126 mi2. 5% 950 10% 804 15% 20% 25% 573 30% 527 40% 466 PERIOD OF RECORD.--May 1909 to September 1982. Monthly discharge only for some periods, published in WSP 1318. Published as both "Oak Grove Fork of Clackamas River at proposed intake, near Cazadero", and "Oak Grove Fork of Clackamas River at intake, near Cazadero", May 1909 to September 1910, as "Oak Grove Fork of Clackamas River at intake, near Cazadero", October 1910 to September 1921, and as "Oak Grove Fork at Portland General Electric Power Co. intake", October 1921 to September 1929. GAGE.--Water-stage recorder. Datum of gage is 2,052.31 ft National Geodetic Vertical Datum of 1929. May 21, 1909, to Nov. 17, 1911, nonrecording gage and Mar. 26, 1912, to Sept. 30, 1923, water-stage recorder, at various sites 0.7 mi downstream, below Kink Creek, at different datum. REMARKS.--Flow regulated since 1956 by Timothy Lake. No diversion above station. AVERAGE DISCHARGE.--73 years, 500 ft³/s, 362,200 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 5,000 ft³/s Jan. 7, 1923, gage height, 5.45 ft, site and datum then in use, from rating curve extended above 2,300 ft³/s on basis of peak discharge for other stations in Clackamas River basin; minimum, 208 ft³/s Aug. 28-31, 1979. ## STATISTICAL SUMMARIES (BEFORE THE CONSTRUCTION OF TIMOTHY LAKE OUTLET STRUCTURE) MONTHLY AND ANNUAL MEAN DISCHARGES 1910-55 MAGNITUDE AND PROBABILITY OF ANNUAL LOW FLOW BASED ON PERIOD OF RECORD 1911-55 | | MINIMUM | MAXIMUM | MEAN | STAN-
DARD
DEVIA-
TION | COEFFI- | PERCENT
OF
ANNUAL | PERIOD
(CON-
SECU- | DISCH | INTERVAL | I CFS, FO
., IN YEA
ICE PROBA | RS, AND | ANNUAL N | ION- | |--|--|--|---|--|--|----------------------------------|---|------------------------------------|--|--|---|---|--| | MONTH | (CFS) | (CFS) | MEAN
(CFS) | (CFS) | VARI-
ATION | RUNOFF | TIVE
DAYS) | 2
50% | 5
20 % | 10
10% | 20
5% | 50
2 % | 100 | | OCTOBER | 252 | 4 78 | 343 |
57 | .17 | 5.8 | 1 | 305 | 273 | 257 | 244 | 230 | 220 | | IOV EMBER | 263 | 811 | 431 | 132 | .31 | 7.2 | 3 | 306 | 274 | 258 | 245 | 230 | 221 | | ECEMBER | 268 | 1047 | 514 | 187 | .36 | 8.6 | 7 | 308 | 276 | 260 | 246 | 232 | 222 | | ANUARY | 271 | 1199 | 533 | 211 | .40 | 8.9 | 14 | 310 | 278 | 261 | 248 | 233 | 224 | | EBRUARY | 281 | 981 | 526 | 168 | .32 | 8.8 | 30 | 315 | 282 | 266 | 252 | 238 | 228 | | MARCH | 357 | 1048 | 541 | 143 | .26 | 9.1 | 60 | 321 | 287 | 271 | 257 | 243 | 234 | | PRIL | 348 | 1020 | 659 | 146 | .22 | 11.0 | 90
| 327 | 292 | 274 | 260 | 245 | 236 | | MAY | 389 | 1331 | 760 | 222 | • 29 | 12.7 | 120 | 334 | 296 | 278 | 264 | 249 | 240 | | IUNE | 316 | 1109 | 578 | 195 | •34 | 9.7 | 183 | 360 | 314 | 294 | 280 | 265 | 256 | | | 263 | 557 | 395 | 68 | . 17 | 6.6 | | | | | | | | | IULY | | | | | | | | | | | | | | | UGUST | 252 | 432 | 349 | 47 | .13 | 5.9 | | | | | | | | | UGUST | | | 349
335 | 47
44 | .13 | 5.9
5.6 | | | | | | | | | NUGUST
SEPTEMBER
NNUAL | 252
259
325
 | 432
460
672
 | 335
495
TY OF IN | 44
83
 | .13
.17 | 5.6
100 |
MA(| | | ABILITY | | |
LOW | | MAGNIT ISCHARGE, YEARS, A | 252
259
325
TUDE AND
BASE
IN CFS, | 432
460
672
PROBABILI
D ON PERI-
FOR INDI-
L EXCEEDA | 335 495 TY OF IN OD OF RECATED RENCE PROB | 83 ISTANTANE CORD 191 CURRENCE BABILITY | .13
.17
.17
.10US PEAK 10–55
 | 5.6
100
FLOW | PERIOD
(CON- | BASE
DISCH | D ON PER ARGE, IN INTERV EXCEEDAN | CFS, FO | ECORD 1 R INDICA EARS, AN BILITY, | 910-55
TED RECUID ANNUAL |
RRENCE | | UGUST
EPTEMBER
NNUAL
MAGNIT | 252
259
325
TUDE AND
BASE | 432
460
672
PROBABILI
D ON PERI | 335 495 TY OF IN OD OF RECATED RE | 83 ISTANTANE CORD 191 CURRENCE | .13
.17
.17
.18
.19
.19
.19
.19
.19
.19 | 5.6
100
FLOW | PERIOD
(CON-
SECU-
TIVE | BASE
DISCH | D ON PER ARGE, IN INTERV EXCEEDAN | CFS, FO
AL, IN Y
CE PROBA | ECORD 1 R INDICA EARS, AN BILITY, 25 | 910-55 TED RECUID ANNUAL IN PERCE | RRENCE | | UGUST
EPTEMBER
NNUAL
MAGNIT
ISCHARGE,
YEARS, A | 252
259
325
TUDE AND
BASE
IN CFS,
ND ANNUA | 432
460
672
PROBABILI
D ON PERI-
FOR INDI-
L EXCEEDA
5
20% | 495 TY OF IN OD OF RE CATED RE NCE PROE | 83 ISTANTANE CORD 191 CURRENCE BABILITY, 25 4% | .13
.17
COUS PEAK 0
0-55
INTERVAL IN PERCEI | 5.6
100
FLOW
IN | PERIOD
(CON-
SECU- | BASE
DISCH | D ON PER
ARGE, IN
INTERV
EXCEEDAN | CFS, FO | ECORD 1 R INDICA EARS, AN BILITY, | 910-55
TED RECU
D ANNUAL
IN PERCE | RRENCE | | UGUST
EPTEMBER
NNUAL
MAGNIT
ISCHARGE,
YEARS, A | 252
259
325
TUDE AND
BASE
IN CFS,
ND ANNUA | 432
460
672
PROBABILI
D ON PERI-
FOR INDI-
L EXCEEDA
5
20% | 495 TY OF IN OD OF RE CATED RE NCE PROE | 83 ISTANTANE CORD 191 CURRENCE BABILITY, 25 4% | .13
.17
COUS PEAK 0
0-55
INTERVAL IN PERCEI | 5.6
100
FLOW
, IN
NT | PERIOD
(CON-
SECU-
TIVE | BASE
DISCH | D ON PER ARGE, IN INTERV EXCEEDAN | CFS, FO
AL, IN Y
CE PROBA | ECORD 1 R INDICA EARS, AN BILITY, 25 | 910-55 TED RECUID ANNUAL IN PERCE | RRENCE
NT
100 | | UGUST
EPTEMBER
NNUAL
MAGNIT
ISCHARGE,
YEARS, A | 252
259
325
TUDE AND
BASE
IN CFS,
ND ANNUA
2
50% | 432
460
672
PROBABILI
D ON PERI-
FOR INDI-
L EXCEEDA
5
20% | 495 TY OF IN OD OF RE CATED RE NCE PROE | 83 ISTANTANE CORD 191 CURRENCE BABILITY, 25 4% | .13
.17
COUS PEAK 0
0-55
INTERVAL IN PERCEI | 5.6
100
FLOW
, IN
NT | PERIOD
(CON-
SECU-
TIVE
DAYS) | DISCH | D ON PER | CFS, FO
AL, IN Y
ICE PROBA | ECORD 1 R INDICA EARS, AN BILITY, 25 4% | 910-55 TED RECUID ANNUAL IN PERCE | PRENCE NT 100 17 | | UGUST
EPTEMBER
NNUAL
MAGNIT
ISCHARGE,
YEARS, A
1.25
80% | 252
259
325
TUDE AND
BASE
IN CFS,
ND ANNUA
2
50% | 432
460
672
PROBABILI
D ON PERI
FOR INDI-
L EXCEEDA
5
20% | 495 TY OF IN OD OF RE CATED RE NCE PROE | 83 ISTANTANE CORD 191 CURRENCE BABILITY, 25 4% | .13
.17
COUS PEAK 0
0-55
INTERVAL IN PERCEI | 5.6
100
FLOW
, IN
NT | PERIOD (CON- SECU- TIVE DAYS) | DISCH | D ON PER
ARGE, IN
INTERV
EXCEEDAN
5
20% | CFS, FO
AL, IN Y
ICE PROBA
10
10% | R INDICA
EARS, AN
BILITY,
25
4% | 910-55
TED RECU
D ANNUAL
IN PERCE
50
2% | RRENCE
NT 100
1% | | UGUST
EPTEMBER
NNUAL
MAGNIT
ISCHARGE,
YEARS, A
1.25
80% | 252
259
325
TUDE AND
BASE
IN CFS,
ND ANNUA
2
50% | 432
460
672
PROBABILI
D ON PERI
FOR INDI-
L EXCEEDA
5
20% | 495 TY OF IN OD OF RE CATED RE NCE PROE | 83 ISTANTANE CORD 191 CURRENCE BABILITY, 25 4% | .13
.17
COUS PEAK 0
0-55
INTERVAL IN PERCEI | 5.6
100
FLOW
, IN
NT | PERIOD
(CON-
SECU-
TIVE
DAYS) | DISCH | D ON PER IARGE, IN INTERV EXCEEDAN 5 20% 2150 1890 | 10 OF R 1 CFS, FO 1 CFS, FO 10 10% 2660 2300 | R INDICA
EARS, AN
BILITY,
25
4% | 910-55 TED RECUID ANNUAL IN PERCE-50 2% 3960 3360 | RRENCE
NT 100
17
4600
3860
2660 | | UGUST
EPTEMBER
NNUAL
MAGNIT
ISCHARGE,
YEARS, A
1.25
80% | 252
259
325
TUDE AND
BASE
IN CFS,
ND ANNUA
2
50% | 432
460
672
PROBABILI
D ON PERI
FOR INDI-
L EXCEEDA
5
20% | 495 TY OF IN OD OF RE CATED RE NCE PROE | 83 ISTANTANE CORD 191 CURRENCE BABILITY, 25 4% | .13
.17
COUS PEAK 0
0-55
INTERVAL IN PERCEI | 5.6
100
FLOW
, IN
NT | PERIOD
(CON-
SECU-
TIVE
DAYS) | BASE DISCH 2 50% 1480 1320 1160 | ID ON PER
IARGE, IN
INTERV
EXCEEDAN
5
20%
 | 10 OF R 1 CFS, FO AL, IN Y CE PROBA 10 10 2660 2300 1820 | R INDICA
EARS, AN
BILITY,
25
4%
3380
2880
2150 | 910-55
TED RECU
D ANNUAL
IN PERCE
50
2%
 | RRENCE
NT 100
19
4600
3860
2660
1760 | | MAGNIT ISCHARGE, YEARS, A 1.25 80% | 252
259
325
TUDE AND
BASE
IN CFS,
ND ANNUA
2
50% | 432
460
672
PROBABILI
D ON PERI
FOR INDI-
L EXCEEDA
5
20% | 495 TY OF IN OD OF RE CATED RE NCE PROE | 83 ISTANTANE CORD 191 CURRENCE BABILITY, 25 4% | .13
.17
COUS PEAK 0
0-55
INTERVAL IN PERCEI | 5.6
100
FLOW
, IN
NT | PERIOD
(CON-
SECU-
TIVE
DAYS) | DISCH | D ON PER | 10D OF R 1 CFS, FO AL, IN Y 10E PROBA 10 10% 2660 2300 1820 1420 | R INDICA
EARS, AN
BILITY,
25
4%
3380
2880
2150
1570 | 910-55 TED RECUID ANNUAL IN PERCE 50 2% 3960 3360 2400 1670 | RRENCE | DISCHARGE, IN CFS, WHICH WAS EQUALED OR EXCEEDED FOR INDICATED PERCENT OF TIME 50% 417 60% 385 70% 360 75% 347 80% 332 85% 317 90% 302 95% 280 ## 14209000 OAK GROVE FORK ABOVE POWERPLANT INTAKE, OR--Continued ## STATISTICAL SUMMARIES (AFTER THE COMPLETION OF TIMOTHY LAKE OUTLET STRUCTURE) MONTHLY AND ANNUAL MEAN DISCHARGES 1957-82 MAGNITUDE AND PROBABILITY OF ANNUAL LOW FLOW BASED ON PERIOD OF RECORD 1958-82 | | MINIMUM | MAX IMUM | MEAN | STAN-
DARD
DEVIA-
TION | COEFFI-
CIENT OF
VARI- | PERCENT
OF
ANNUAL | PERIOD
(CON-
SECU- | | INTERVAL | , IN YEA | RS, AND | TED RECUF
ANNUAL NO
IN PERCEN | - NC | |---------------------------------------|------------------------------|------------|-------------------|--|----------------------------------|-----------------------------|---|--|--
--|---|--|--------------| | MONTH | (CFS) | (CFS) | (CFS) | (CFS) | ATION | RUNOFF | TIVE
DAYS) | 2
50% | 5
20 % | 10
10% | 20
5% | 50
2% | 100
1% | | OCTOBER | 236 | 517 |
399 | 76 | . 19 | 6.9 | 1 | 256 | 233 | 224 | 217 | 210 | | | NOVEMBER | 359 | 613 | 493 | 71 | .14 | 8.5 | 3 | 260 | 237 | 227 | 219 | 211 | | | DECEMBER | 325 | 1047 | 585 | 142 | .24 | 10.1 | 7 | 262 | 239 | 229 | 222 | 215 | | | JANUARY | 255 | 1036 | 599 | 154 | . 26 | 10.3 | 14 | 266 | 240 | 230 | 224 | 218 | | | EBRUARY | 250 | 959 | 584 | 149 | . 26 | 10.1 | 30 | 272 | 245 | 234 | 227 | 221 | | | MARCH | 327 | 1377 | 550 | 194 | .35 | 9.5 | 60 | 281 | 253 | 242 | 235 | 229 | | | APRIL | 311 | 825 | 548 | 122 | .22 | 9.5 | 90 | 296 | 263 | 251 | 242 | 234 | | | 4AY | 292 | 1104 | 603 | 224 | •37 | 10.4 | 120 | 312 | 275 | 260 | 250 | 241 | | | JUNE | 265 | | | | | | | | | | | | | | | | 1126 | 459 | 191 | .42 | 7.9 | 183 | 356 | 316 | 298 | 286 | 274 | | | JULY | 241 | 517 | 329 | 71 | .22 | 5.7 | | | | | | | | | AUGUST | 225 | 429 | 303 | 52 | •17 | 5.2 | | | | | | | | | SEPTEMBER | 247 | 517 | 340 | 75 | .22 | 5.9 | | | | | | | | | ANNUAL | 335 | 709 | 482 | 88 | .18 | 100 | | | | | | | | | Olscharge, | BASE
IN CFS, | D ON PERIO | OD OF RE | CORD
CURRENCE | OUS PEAK |
, IN | | BASE | D ON PER

ARGE, IN | OD OF R | ECORD 1

R INDICA | TED RECUR | | | Olscharge, | BASE
IN CFS, | D ON PERIO | OD OF RE | CORD
CURRENCE | INTERVAL
IN PERCE |
, IN | PERIOD
(CON-
SECU- | BASE

DISCH | D ON PER
ARGE, IN
INTERV | OD OF R CFS, FO | ECORD 1

R INDICA
EARS, AN | 957 - 82
 | RENCE | | DISCHARGE,
YEARS, A | BASE
IN CFS, | FOR INDIC | OD OF RE | CORD
COURRENCE | INTERVAL
IN PERCE |
, IN
NT | PERIOD
(CON- | BASE

DISCH | D ON PER
ARGE, IN
INTERV | OD OF R CFS, FO | ECORD 1

R INDICA
EARS, AN | 957-82

TED RECUR
D ANNUAL | RENCE | | DISCHARGE,
YEARS, A | BASE
IN CFS,
AND ANNUA | FOR INDIO | OD OF RE | CORD
COURRENCE
BABILITY,
25 | INTERVAL
IN PERCE | , IN
NT
 | PERIOD (CON- SECU- TIVE DAYS) | BASE DISCH | D ON PER ARGE, IN INTERV. EXCEEDAN 5 20% | CFS, FO
AL, IN Y
CE PROBA | ECORD 1 R INDICA EARS, AN BILLTY, 25 4% | 957-82 TED RECUF D ANNUAL IN PERCEN 50 2% | RRENCE
NT | | DISCHARGE,
YEARS, A
1.25
80% | BASE IN CFS, AND ANNUA 2 50% | FOR INDIO | OD OF RE | CORD
COURRENCE
BABILITY,
25 | INTERVAL
IN PERCE | , IN
NT
 | PERIOD
(CON-
SECU-
TIVE
DAYS) | BASE DISCH 2 50% | D ON PER ARGE, IN INTERV EXCEEDAN 5 20% | CFS, FO
AL, IN Y
CE PROBA
10% | R INDICA
EARS, AN
BILLTY,
25
4% | 957-82 TED RECUFD ANNUAL IN PERCEN 50 2% 3580 | RRENCE
IT | | DISCHARGE,
YEARS, A | BASE IN CFS, AND ANNUA 2 50% | FOR INDIO | OD OF RE | CORD
COURRENCE
BABILITY,
25 | INTERVAL
IN PERCE | , IN
NT
 | PERIOD (CON- SECU- TIVE DAYS) | BASE DISCH 2 50% 1350 1170 | D ON PER ARGE, IN INTERV EXCEEDAN 5 20% 1990 1710 | CFS, FO
AL, IN Y
CE PROBA
10
10%
2460
2130 | R INDICA
EARS, AN
BILITY,
25
4% | 957-82 TED RECUF D ANNUAL IN PERCEN 50 2% 3580 3200 | RRENCE
NT | | DISCHARGE,
YEARS, A
1.25
80% | BASE IN CFS, AND ANNUA 2 50% | FOR INDIO | OD OF RE | CORD
COURRENCE
BABILITY,
25 | INTERVAL
IN PERCE | , IN
NT
 | PERIOD (CON- SECU- TIVE DAYS) 1 3 7 | BASE DISCH 2 50% 1350 1170 996 | D ON PER ARGE, IN INTERV EXCEEDAN 5 20% 1990 1710 1400 | CFS, FO
AL, IN Y
CE PROBA
10
10%
2460
2130
1710 | ECORD 1 R INDICA EARS, AN BILITY, 25 4% 3090 2720 2140 | 957-82 TED RECURD ANNUAL IN PERCEN 2% 3580 3200 2490 | RRENCE
IT | | DISCHARGE,
YEARS, A
1.25
80% | BASE IN CFS, AND ANNUA 2 50% | FOR INDIO | OD OF RE | CORD
COURRENCE
BABILITY,
25 | INTERVAL
IN PERCE | , IN
NT
 | PERIOD (CON- SECU- TIVE DAYS) 1 3 7 | DISCH 2 50% 1350 1170 996 851 | D ON PER ARGE, IN INTERV. EXCEEDAN | CFS, FO AL, IN Y CE PROBA 10 10 2460 2130 1710 1320 | R INDICA
EARS, AN
BILLTY,
25
4%
3090
2720
2140
1580 | 957-82 TED RECUFD ANNUAL IN PERCEN 50 2% | RRENCE
NT | | DISCHARGE,
YEARS, A
1.25
80% | BASE IN CFS, AND ANNUA 2 50% | FOR INDIO | OD OF RE | CORD
COURRENCE
BABILITY,
25 | INTERVAL
IN PERCE | , IN
NT
 | PERIOD (CON-
SECU-
TIVE DAYS) 1 3 7 15 30 | BASE DISCH2 50% 1350 1170 996 851 739 | D ON PER | CFS, FO
AL, IN Y
CE PROBA
10
10%
2460
2130
1710
1320
1080 | R INDICA EARS, AN BILITY, 25 41 3090 2720 2140 1580 1280 | 957-82 TED RECUFD ANNUAL IN PERCEN 50 2% | RRENCE
NT | | DISCHARGE,
YEARS, A
1.25
80% | BASE IN CFS, AND ANNUA 2 50% | FOR INDIO | OD OF RE | CORD
COURRENCE
BABILITY,
25 | INTERVAL
IN PERCE | , IN
NT
 | PERIOD (CON-
SECU-
TIVE DAYS) | BASE DISCH2 50% 1170 996 851 739 662 | D ON PER | CFS, FO AL, IN Y CE PROBA-10 10% | R INDICA EARS, AN BILITY, 25 4\$ 3090 2720 2140 1580 1280 1080 | 957-82 TED RECUFD ANNUAL IN PERCEN 50 2% 3580 3200 2490 1790 1430 1210 | RRENCE
NT | | DISCHARGE,
YEARS, A
1.25
80% | BASE IN CFS, AND ANNUA 2 50% | FOR INDIO | OD OF RE | CORD
COURRENCE
BABILITY,
25 | INTERVAL
IN PERCE | , IN
NT
 | PERIOD (CON-
SECU-
TIVE DAYS) 1 3 7 15 30 | BASE DISCH2 50% 1350 1170 996 851 739 | D ON PER | CFS, FO
AL, IN Y
CE PROBA
10
10%
2460
2130
1710
1320
1080 | R INDICA EARS, AN BILITY, 25 41 3090 2720 2140 1580 1280 | 957-82 TED RECUFD ANNUAL IN PERCEN 50 2% | RRENCE
IT | | DISCHARGE,
YEARS, A
1.25
80% | BASE IN CFS, AND ANNUA 2 50% | FOR INDIO | CATED RE | CCURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRENCE
COURRE | INTERVAL
IN PERCE
50
2% | , IN
NT

1% | PERIOD (CON-
SECU-
TIVE DAYS) | DISCH 2 50% 1350 1170 996 851 739 662 621 | D ON PER ARGE, IN INTERV. EXCEEDAN 1990 1710 1400 1120 934 814 749 | CFS, FO AL, IN Y CE PROBA 10 10% 2460 2130 1710 1320 1080 926 842 | R INDICA EARS, AN BILITY, 25 4\$ 3090 2720 2140 1580 1280 1080 | 957-82 TED RECUFD ANNUAL IN PERCEN 50 2% 3580 3200 2490 1790 1430 1210 | RRENCE
NT | | DISCHARGE,
YEARS, A
1.25
80% | BASE IN CFS, AND ANNUA 2 50% | FOR INDIG | CATED RE NCE PROE | CCURRENCE SABILITY, 25 4% | INTERVAL IN PERCE 50 2% | , IN
NT
100
1%
 | PERIOD (CON-
SECU-
TIVE DAYS) | BASE DISCH 2 50% 1350 1170 996 851 739 662 621 OF RECO | D ON PER ARGE, IN INTERV EXCEEDAN 5 20 1990 1710 1400 1120 934 814 749 RD 1957- | CFS, FO AL, IN Y CE PROBA 10 10% 2460 1710 1320 1080 926 842 | R INDICA EARS, AN BILITY, 25 4% | 957-82 TED RECUFD ANNUAL IN PERCEN 50 2% 3580 3200 2490 1790 1430 1210 | RRENCE
NT | | DISCHARGE,
YEARS, A
1.25
80% | BASE IN CFS, AND ANNUA 2 50% | FOR INDIG | CATED RE NCE PROE | CCURRENCE SABILITY, 25 4% | INTERVAL IN PERCE 50 2% OF DAILY | , IN NT 100 1% MEAN FLOW | PERIOD (CON- SECU- TIVE DAYS) 1 3 7 15 30 60 90 FOR PERIOD | BASE DISCH 2 50% 1350 1170 996 851 739 662 621 OF RECO | D ON PER ARGE, IN INTERV EXCEEDAN 5 20 1990 1710 1400 1120 934 814 749 RD 1957- | CFS, FO AL,
IN Y CE PROBA 10 10% 2460 1710 1320 1080 926 842 | R INDICA EARS, AN BILITY, 25 4% | 957-82 TED RECUFD ANNUAL IN PERCEN 50 2% 3580 3200 2490 1790 1430 1210 | RRENCE
NT | #### 14209500 CLACKAMAS RIVER ABOVE THREE LYNX CREEK, OR LOCATION.--Lat 45°07'30", long 122°04'20", in NE[±] sec.21, T.5 S., R.6 E., Clackamas County, Hydrologic Unit 17090011, Mount Hood National Forest, on right bank 0.1 mi upstream from Three Lynx Creek, 0.25 mi downstream from powerplant, 17 mi southeast of Estacada, and at mile 47.8. DRAINAGE AREA .-- 479 mi2. PERIOD OF RECORD.--April 1909 to December 1913, October 1921 to September 1982. Prior to October 1911 (monthly discharge only), published in WSP 1318. GAGE.--Water-stage recorder. Datum of gage is 1,091.69 ft National Geodetic Vertical Datum of 1929 (levels by Portland General Electric Co.). Apr. 23, 1909, to Jan. 4, 1914, nonrecording gage at about same site and datum. Nov. 1, 1921, to Dec. 27, 1924, water-stage recorder at present site at datum 0.91 ft higher. REMARKS.--Minor regulation since May 1956 by Timothy Lake. AVERAGE DISCHARGE.--65 years, 1,988 ft^3/s , 56.36 in/yr, 1,440,000 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 68,200 ft³/s Dec. 22, 1964, gage height, 21.7 ft, from floodmark, from rating curve extended above 34,100 ft³/s on basis of slope-area measurement at gage height 15.06 ft; minimum recorded, 292 ft³/s Sept. 25, 1980; minimum daily, 427 ft³/s Oct. 5, 1958. | | | | | | 5 | TATISTIC | AL SUMMARIES | i | | | | | | |---------------------|-----------|------------------|-----------|---------------------------------|------------------------------|-------------------------|--------------------------|------------------|------------------|-----------|-------------------|-----------------------|---------------| | М | ONTHLY AN | ND ANNUAL | MEAN DI | SCHARGES | 1912-82 | | МА | | | | OF ANNU
RECORD | AL LOW FI
1913-82 | -OW | | | MINIMUM | MAXIMUM | MEAN | STAN-
DARD
DEVIA-
TION | COEFFI-
CIENT OF
VARI- | PERCENT
OF
ANNUAL | PERIOD
(CON-
SECU- | DISC | INTERVA | L, IN YE | ARS, AND | ATED RECU
ANNUAL I | ION- | | MONTH | (CFS) | (CFS) | (CFS) | (CFS) | ATION | RUNOFF | TIVE
DAYS) | 2
50 % | 5
20 % | 10
10% | 20
5% | 50
2 % | 100
1% | | OCTOBER | 605 | 2511 | 1028 | 407 | .40 | 4.3 | 1 | 628 | 556 | 519 | 490 | 457 | 435 | | NOVEMBER | 573 | 4347 | 2118 | 1059 | •50 | 8.8 | 3 | 654 | 596 | 569 | 548 | 525 | 511 | | DECEMBER | 786 | 8271 | 2924 | 1510 | .52 | 12.2 | 7 | 667 | 607 | 579 | 557 | 534 | 520 | | JANUARY | 739 | 7157 | 2897 | 1482 | .51 | 12.1 | 14 | 679 | 617 | 588 | 566 | 543 | 528 | | FEBRUARY | 734 | 6205 | 2748 | 1224 | .45 | 11.5 | 30 | 695 | 630 | 600 | 577 | 553 | 538 | | MARCH | 1313 | 6559 | 2373 | 842 | .35 | 9.9 | 60 | 723 | 651 | 619 | 595 | 570 | 554 | | APRIL | 1180 | 4477 | 2644 | 739 | . 28 | 11.0 | 90 | 755 | 675 | 639 | 612 | 585 | 569 | | MAY | 1065 | 5548 | 2797 | 981 | .35 | 11.7 | 120 | 803 | 706 | 668 | 640 | 614 | 600 | | JUNE | 725 | 4879 | 1896 | 923 | .49 | 7.9 | 183 | 1050 | 869 | 801 | 753 | 709 | 684 | | JÜLY | 603 | 1778 | 980 | 256 | . 26 | 4.1 | | | | | | | | | AUGUST | 600 | 987 | 768 | 103 | .13 | 3.2 | | | | | | | | | SEPTEMBER | 577 | 1242 | 775 | 125 | .16 | 3.2 | | | | | | | | | ANNUAL | 1062 | 3128 | 1992 | 427 | .21 | 100 | | | | | | | | | DISCHARGE
YEARS, | , IN CFS, | | CATED RE | CURRENCE | | | PERIOD
(CON- | | HARGE, II | N CFS, FO | YEARS, AI | ATED RECUND ANNUAL | | | 1 • 25
80% | 2
50% | 5
20 % | 10
10% | 25
4% | 50
2% | 100
1% | SECU-
TIVE | 2 |
5 | 10 |
25 |
50 | 100 | | | | | | | | | DAYS) | 50 % | 20% | 10% | 4% | 2% | 1% | | 11500 | 17400 | 25300 3 | 30400 3 | 6600 4 | 1000 45 | 300 | 1 | 14100 | 20700 | 24800 | 29700 | 33200 | 36500 | | WEIGHTE | O SKEW = | 310 | | | | | 3 | 10700 | 15800 | 19200 | 23700 | 27100 | 30600 | | | | • > . • | | | | | ź | 7940 | 11100 | 13200 | 15800 | 17600 | 19400 | | | | | | | | | 15 | 5970 | 7950 | 9170 | 10600 | 11600 | 12600 | | | | | | | | | 30 | 4790 | 6060 | 6770 | 7550 | 8070 | 8530 | | | | | | | | | 60 | 3850 | 4740 | 5240 | 5790 | 6150 | 6480 | | | | | | | | | | 3450 | 4170 | 4560 | 4980 | 5250 | | | | | | | | | | 90 | 5450 | 4170 | | 4700 | 9290 | 5490 | | | | | DURATIO | N TABLE | OF DAILY | MEAN FLOW | FOR PERIOD | | | | | | 5 4 90 | | | | DISCHA | | | | | | OF RECO | ORD 1912- | -82 | | | 5490
 | ## 14210000 CLACKAMAS RIVER AT ESTACADA, OR LOCATION.--Lat 45°18'00", long 122°21'10", in NEt sec.19, T.3 S., R.4 E., Clackamas County, Hydrologic Unit 17090011, on left bank 0.2 mi downstream from River Mill Dam, 1.5 mi northwest of Estacada, and at mile 23.1. DRAINAGE AREA .-- 671 mi2. 6680 5170 4440 3910 3450 3080 2450 1980 1560 1190 1070 989 911 839 755 PERIOD OF RECORD.--April 1908 to September 1982. Monthly discharge only April 1908, published in WSP 1318. Published as "near Cazadero" January 1909 to September 1957. GAGE.--Water-stage recorder. Datum of gage is 296.93 ft National Geodetic Vertical Datum of 1929 (levels by Portland General Electric Co.). See WSP 1738 for history of changes prior to Oct. 1, 1957. Oct. 1, 1957, to Feb. 16, 1965, water-stage recorder at same site at datum 2.00 ft higher. REMARKS.--Large diurnal fluctuations and some regulation caused by powerplants at River Mill Dam and, since 1958, North Fork Dam. Minor regulation since 1956 by Timothy Lake. Two small diversions above station for Oregon City and Estacada municipal water supply. AVERAGE DISCHARGE.--74 years, 2,747 ft³/s, 55.59 in/yr, 1,990,000 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.—Maximum discharge, 86,900 ft³/s Dec. 22, 1964, gage height, 18.36 ft; minimum, 50 ft³/s Mar. 10, 1961, from rating curve extended below 260 ft³/s; minimum daily, 285 ft³/s Oct. 4, 5, 1958, caused by filling of North Fork dam forebay. ### STATISTICAL SUMMARIES (BEFORE THE CONSTRUCTION OF NORTH FORK DAM) MONTHLY AND ANNUAL MEAN DISCHARGES 1909-57 MAGNITUDE AND PROBABILITY OF ANNUAL LOW FLOW BASED ON PERIOD OF RECORD 1910-57 | | | | uet. | STAN-
DARD
DEVIA- | COEFFI-
CIENT OF | PERCENT
OF | PERIOD
(CON- | DISC | INTERVAL | ., IN YE | OR INDIC/
ARS, AND
ABILITY, | | 10N- | |---------------------------------------|------------------------------|--|------------------|---|--|-------------------------|---|--|---|---
--|---|---| | MONTH | (CFS) | MAXIMUM
(CFS) | MEAN
(CFS) | TION
(CFS) | VARI-
ATION | ANNUAL
RUNOFF | SECU-
TIVE
DAYS) | 2
50% | 5
20 % | 10
10% | 20
5% | 50
2% | 100 | | OCTOBER | 701 | 3776 | 1348 | 690 | .51 | 4.2 | 1 | 773 | 686 | 642 | 607 |
568 | 543 | | NOVEMBER | 702 | 8708 | 3086 | 1805 | •58 | 9.6 | 3 | 785 | 701 | 659 | 625 | 588 | 564 | | DECEMBER | 1083 | 10450 | 3812 | 2093 | .55 | 11.8 | 7 | 794 | 707 | 664 | 630 | 592 | 568 | | JANUARY | 999 | 9656 | 3868 | 2019 | .52 | 12.0 | 14 | 809 | 719 | 674 | 637 | 598 | 572 | | FEBRUARY | 1363 | 6709 | 3633 | 1525 | .42 | 11.2 | 30 | 834 | 738 | 691 | 653 | 613 | 586 | | MARCH | 1656 | 6257 | 3417 | 1205 | .35 | 10.6 | 60 | 873 | 766 | 715 | 675 | 632 | 605 | | APRIL | 1539 | 6028 | 3726 | 1005 | .27 | 11.5 | 90 | 922 | 798 | 741 | 697 | 651 | 623 | | MAY | 1363 | | | 1255 | | | | 999 | | | | | | | JUNE | | 7486 | 3674 | | .34 | 11.4 | 120 | | 841 | 775 | 726 | 679 | 650 | | | 927 | 6103 | 2560 | 1275 | .50 | 7.9 | 183 | 1390 | 1100 | 977 | 891 | 807 | 757 | | JULY | 720 | 3301 | 1313 | 488 | .37 | 4.1 | | | | | | | | | AUGUST | 694 | 1457 | 935 | 160 | .17 | 2.9 | | | | | | | | | SEPTEMBER | 669 | 1993 | 939 | 232 | .25 | 2.9 | | | | | | | | | ANNUAL | 1662 | 3916 | 2687 | 576 | .21 | 100 | | | | | | | | | | BASE | D ON PERI | OD OF RE | CORD 190 | | | MA
 | BASE | ED ON PER | RIOD OF F | OF ANNUA | 909-57 | | | OISCHARGE,
YEARS, A | BASE
IN CFS, | FOR INDI | OD OF RE | CORD 190 | 9-57
INTERVAL | , IN
NT | PERIOD
(CON- | BASE | ED ON PER
HARGE, IN | CFS, FO | | 1909-57
TED RECU | IRRENCE | | DISCHARGE, | BASE
IN CFS, | FOR INDI | OD OF RE | CORD 190 | 9-57
INTERVAL | . IN |
PERIOD | BASE | ED ON PER
HARGE, IN | CFS, FO | RECORD 1 | 1909-57
TED RECU | IRRENCE | | OISCHARGE,
YEARS, A
1.25
80% | BASE IN CFS, IND ANNUA 2 50% | FOR INDI | OD OF RE | CORD 190
CURRENCE
BABILITY,
25
4% | INTERVAL, IN PERCEI | IN
NT | PERIOD
(CON-
SECU-
TIVE | BASE
DISCH | HARGE, IN
INTERN
EXCEEDAN | I CFS, FO | RECORD 1 | TED RECUID ANNUAL IN PERCE | IRRENCE
NT | | OISCHARGE,
YEARS, A
1.25
80% | BASE IN CFS, IND ANNUA 2 50% | FOR INDI | OD OF RE | CORD 190
CURRENCE
BABILITY,
25
4% | INTERVAL
IN PERCEI | IN
NT | PERIOD
(CON-
SECU-
TIVE | BASE
DISCH | HARGE, IN
INTERN
EXCEEDAN | I CFS, FO | RECORD 1 | TED RECUID ANNUAL IN PERCE | IRRENCE
NT | | OISCHARGE,
YEARS, A
1.25
80% | BASE IN CFS, IND ANNUA 2 50% | FOR INDI | OD OF RE | CORD 190
CURRENCE
BABILITY,
25
4% | INTERVAL
IN PERCEI | IN
NT | PERIOD
(CON-
SECU-
TIVE
DAYS) | BASE
DISCH | HARGE, IN
INTERN
EXCEEDAN
5
20% | I CFS, FC
(AL, IN NICE PROB) | RECORD 1 OR INDICA YEARS, AN ABILITY, 25 4% | 1909-57 TED RECUID ANNUAL IN PERCE | IRRENCE
NT
100 | | 1.25
80% | BASE IN CFS, IND ANNUA 2 50% | FOR INDI | OD OF RE | CORD 190
CURRENCE
BABILITY,
25
4% | INTERVAL
IN PERCEI | IN
NT | PERIOD (CON- SECU- TIVE DAYS) | BASE
DISCH | HARGE, IN
INTERN
EXCEEDAN
5
20% | I CFS, F(
VAL, IN NICE PROB) | DR INDICAYEARS, ANABILITY, 25 4% | 1909–57 ITED RECUID ANNUAL IN PERCE 50 2% | IRRENCE
: NT
100
1%
54300
42900 | | 1.25
80% | BASE IN CFS, IND ANNUA 2 50% | FOR INDI | OD OF RE | CORD 190
CURRENCE
BABILITY,
25
4% | INTERVAL
IN PERCEI | IN
NT | PERIOD
(CON-
SECU-
TIVE
DAYS) | DISCH | HARGE, IN
INTERV
EXCEEDAN
5
20% | 10 OF 6 1 CFS, F(/AL, IN \ 10 10 10 10 10 10 10 10 10 10 10 10 10 1 | PRECORD 1 PRECOR | 1909–57 ATED RECLI ID ANNUAL IN PERCE 50 2% 48900 38000 | IRRENCE
NT
100
1%
54300
42900
26300 | | 1.25
80% | BASE IN CFS, IND ANNUA 2 50% | FOR INDI | OD OF RE | CORD 190
CURRENCE
BABILITY,
25
4% | INTERVAL
IN PERCEI | IN
NT | PERIOD (CON- SECU- TIVE DAYS) 1 3 7 | DISCH | HARGE, IN INTER EXCEEDAN 5 20% 29200 22000 15400 | 10 OF 10 (AL, IN) 10 10% 10 26900 18200 | RECORD 1 DR INDICA YEARS, AN ABILITY, 25 4% 43300 33200 21500 | 1909–57 ATED RECUID ANNUAL IN PERCE 50 2% 48900 38000 24000 | 100
1%
54300
42900
26300
18600 | | 1.25
80% | BASE IN CFS, IND ANNUA 2 50% | FOR INDI | OD OF RE | CORD 190
CURRENCE
BABILITY,
25
4% | INTERVAL
IN PERCEI | IN
NT | PERIOD
(CON-
SECU-
TIVE
DAYS)
 | BASE | HARGE, IN INTERVEXCEEDAN 5 20% 29200 22000 15400 11100 8480 | 1 CFS, FG (AL, IN VICE PROB/ 10 10% 35500 26900 18200 13000 9610 | DR INDICA
YEARS, AN
ABILITY,
25
4%
43300
33200
21500
15300
10900 | 1909-57 ITED RECLID ANNUAL IN PERCE 50 2% 48900 38000 24000 117000 11800 | 100
1%
54300
42900
26300
18600 | | 1.25
80% | BASE IN CFS, IND ANNUA 2 50% | FOR INDI | OD OF RE | CORD 190
CURRENCE
BABILITY,
25
4% | INTERVAL
IN PERCEI | , IN
NT | PERIOD (CON- SECU- TIVE DAYS) 1 3 7 15 | DISCH 2 50% 19600 14800 11000 8200 6550 | HARGE, INTERVENCED AND PER 1 NTERVENCED AND | 1 CFS, FG
(AL, IN NICE PROB/
10 10%
35500
26900
18200
13000 | A3300
33200
215300 | 1909–57
ITED RECUID ANNUAL
IN PERCE
50
2%
48900
38000
24000
17000 | 100
1%
54300
42900
26300
18600 | | 1.25
80% | BASE IN CFS, IND ANNUA 2 50% | FOR INDI | CATED RENCE PROE | CURRENCE SABILITY, 25 4% | 19–57
INTERVAL
IN PERCEI
50
2%
66400 749 | , IN
NT
100
1% | PERIOD (CON- SECU- TIVE DAYS) 1 3 7 15 30 60 | DISCH 2 50% 19600 14800 11000 8200 6550 5260 4720 | HARGE, IN INTERN EXCEEDAN 5 20% | 10 CFS, F(AL, IN NICE PROB) 10 10% 35500 26900 18200 9610 7290 6350 | DR INDICA
YEARS, AN
ABILITY,
25
4%
43300
33200
21500
15300
10900
8130 | 1909-57 ITED RECLID ANNUAL IN PERCE 50 2% 48900 38000 24000 11000 11800 8690 | 100
1%
54300
42900
26300
18600
9200 | | 1.25
80% | BASE IN CFS, IND ANNUA 2 50% | FOR INDI
IL EXCEEDA
5
20%
37700 4
213 | CATED RENCE PROE | CORRO 190
COURRENCE
SABILITY,
25
4% | 99-57 INTERVAL, IN PERCEI 50 2% 66400 749 OF DAILY N | IN NT | PERIOD (CON-
SECU-
TIVE DAYS) 1 3 7 7 15 30 60 90 | DISCH 2 50% 19600 11800 8200 6550 5260 4720 OF RECC | HARGE, IN INTERNEXCEEDAN 29200 22000 22000 150400 11100 8480 6550 5770 DRD 1909- | 1 CFS, FC (AL, IN) (ICE PROB/ 10 10% 35500 26900 18200 18200 9610 7290 6350 | DR INDICA
YEARS, AN
ABILITY,
25
4%
43300
33200
21500
15300
10900
8130
6980 | 1909-57 ITED RECLID ANNUAL IN PERCE 50 2% 48900 38000 24000 11000 11800 8690 | 100
1%
54300
42900
26300
18600
9200 | ## 14210000 CLACKAMAS RIVER AT ESTACADA, OR--Continued ## STATISTICAL SUMMARIES (AFTER THE COMPLETION OF NORTH FORK DAM) MONTHLY AND ANNUAL MEAN DISCHARGES 1959-82 MAGNITUDE AND PROBABILITY OF ANNUAL LOW FLOW BASED ON PERIOD OF RECORD 1960-82 | | MINIMUM | MAXIMUM | MEAN | STAN-
DARD
DEVIA- | COEFFI- | | PERIOD
(CON- | 0130 | INTERVA | L, IN YE | OR INDICA
ARS, AND
ABILITY, | ANNUAL NO |)N- | |------------------------|-------------------------------------|------------------------|---|------------------------------|--|------------------|---|---|---|---
--|--|--------------| | MONTH | (CFS) | (CFS) | MEAN
(CFS) | TION
(CFS) | VARI-
ATION | ANNUAL
RUNOFF | SECU-
TIVE
DAYS) | 2
50% | 5
20% | 10
10% | 20
5% | 50
2% | 100
1% | | OCTOBER | 767 | 2712 | 1391 | 537 | .39 | 4.0 | 1 | 550 | 393 | 325 | 275 | | | | NOVEMBER | 1268 | 6263 | 3163 | 1488 | .47 | 9.2 | 3 | 654 | 535 | 477 | 432 | | | | DECEMBER | 1030 | 11170 | 4894 | 2398 | .49 | 14.2 | 7 | 728 | 643 | 605 | 575 | | | | JANUARY | 1036 | 8821 | 4766 | 2205 | .46 | 13.8 | 14 | 765 | 687 | 654 | 630 | | | | FEBRUARY | 977 | 8938 | 4207 | 1972 | .47 | 12.2 | 30 | 805 | 725 | 691 | 665 | | | | MARCH | 2210 | 8921 | 3524 | 1429 | .41 | 10.2 | 60 | 865 | 774 | 733 | 702 | | | | APRIL | 1867 | 5177 | 3515 | 941 | • 27 | 10.2 | 90 | 930 | 831 | 783 | 746 | | | | MAY | 1796 | 6396 | 3660 | 1198 | •33 | 10.6 | 120 | 1010 | 900 | 850 | 812 | | | | JUNE | 1222 | 5143 | 2293 | 952 | .42 | 6.7 | 183 | 1410 | 1210 | 1120 | 1060 | | | | JULY | 820 | 2018 | 1157 | 301 | .26 | 3.4 | | | | | | | | | AUGUST | 701 | 1208 | 899 | 142 | .16 | 2.6 | | | | | | | | | SEPTEMBER | 714 | 1602 | 994 | 198 | .20 | 2.9 | | | | | | | | | ANNUAL | 1454 | 4407 | 2866 | 646 | .23 | 100 | | | | | | | | | DISCHARGE, | BASE
, IN CFS, | PROBABILI
D ON PERI | OD OF RE | CORD CURRENCE | INTERVAL | | | BASI | ED ON PER | RIOD OF F | OF ANNUAL RECORD 19 OR INDICA | 959-82

TED RECUF | _ | | DISCHARGE,
YEARS, / | BASE
, IN CFS,
AND ANNUA
2 | FOR INDI | OD OF RE CATED RE NCE PROB | CORD
CURRENCE
ABILITY, | INTERVAL
IN PERCE | | PERIOD
(CON-
SECU- | BASI
DISCH | HARGE, INTERN | RIOD OF F | DR INDICA
(EARS, AND
ABILITY, | 959-82
TED RECUF
D ANNUAL
IN PERCEN | RRENCE | | OISCHARGE,
YEARS, A | BASE
, IN CFS,
AND ANNUA | FOR INDI | OD OF RE | CORD
CURRENCE | INTERVAL
IN PERCE | , IN
NT | PERIOD
(CON- | BASI | HARGE, IN | RIOD OF F | RECORD 19
DR INDICA
(EARS, ANI | 959-82

TED RECUF
D ANNUAL | RRENCE | | OISCHARGE,
YEARS, / | BASE
, IN CFS,
AND ANNUA
2 | FOR INDI | OD OF RE CATED RE NCE PROB | CORD
CURRENCE
ABILITY, | INTERVAL
IN PERCE | , IN | PERIOD
(CON-
SECU-
TIVE
DAYS) | DISCH | HARGE, IN
INTERN
EXCEEDAN
5
20% | N CFS, FC
/AL, IN N
NCE PROB/
10 | RECORD 19 OR INDICA (EARS, ANI ABILITY, 25 4% | 959-82
TED RECUF
D ANNUAL
IN PERCEN
50
2% | RRENCE
IT | | 1.25
80% | BASE , IN CFS, AND ANNUA 2 50% | FOR INDI | OD OF RE CATED RE NCE PROB | CORD
CURRENCE
ABILITY, | INTERVAL
IN PERCE | , IN
INT | PERIOD (CON- SECU- TIVE DAYS) | DISCH | HARGE, IN
INTERN
EXCEEDAN
5
20% | 100 OF F | OR INDICA
(EARS, ANI
ABILITY,
25
4% | 959-82 TED RECUF D ANNUAL IN PERCEN 50 2% | RRENCE
IT | | OISCHARGE,
YEARS, / | BASE , IN CFS, AND ANNUA 2 50% | FOR INDI | OD OF RE CATED RE NCE PROB | CORD
CURRENCE
ABILITY, | INTERVAL
IN PERCE | , IN
INT | PERIOD
(CON-
SECU-
TIVE
DAYS) | DISCH | HARGE, IN
INTERVEXCEEDAN
5
20% | 10 10%
10%
40300
31600 | PRECORD 19 OR INDICA (EARS, ANI ABILITY, 25 4% 46600 37700 | 959-82 TED RECUF D ANNUAL IN PERCEN 50 2% | 100
1% | | 1.25
80% | BASE , IN CFS, AND ANNUA 2 50% | FOR INDI | OD OF RE CATED RE NCE PROB | CORD
CURRENCE
ABILITY, | INTERVAL
IN PERCE | , IN
INT | PERIOD (CON-
SECU-
TIVE DAYS) | DISCH
2
50%
23200
17800
13200 | HARGE, IN INTERVENCE EXCEEDAN 5 20% 34200 26300 18500 | 10 OF F
N CFS, FG
/AL, IN N
NCE PROB/
10 10%
40300
31600
21600 | PRECORD 19 OR INDICATE ARS, ANI ABILITY, 25 45 46600 37700 25000 | 959-82 TED RECUF D ANNUAL IN PERCEN 50 2% | 100
1% | | 1.25
80% | BASE , IN CFS, AND ANNUA 2 50% | FOR INDI | OD OF RE CATED RE NCE PROB | CORD
CURRENCE
ABILITY, | INTERVAL
IN PERCE | , IN
INT | PERIOD (CON-
SECU-
TIVE DAYS) 1 3 7 15 | DISCH
2 50%
23200 17800 13200 9420 | HARGE, IN INTERVENCE EXCEEDAN 5 20% 34200 26300 18500 12400 | 10 10% 10% 1000 14000 14000 | A6600
37700
25000
15700 | 959-82 TED RECUF D ANNUAL IN PERCEN 50 2% | 100
1% | | 1.25
80% | BASE , IN CFS, AND ANNUA 2 50% | FOR INDI | OD OF RE CATED RE NCE PROB | CORD
CURRENCE
ABILITY, | INTERVAL
IN PERCE | , IN
INT | PERIOD (CON-
SECU-
TIVE DAYS) 1 3 7 15 30 | DISCH
250%
23200
17800
13200
9420
7240 | HARGE, IN INTERVEXCEEDAN 5 20% 34200 26300 18500 12400 9120 | 10 OF F | 25 4 4 4 4 6 6 0 0 3 7 7 0 0 1 1 2 0 0 1 1 2 0 0 1 1 2 0 0 1 1 2 0 0 1 1 2 0 0 1 1 2 0 0 1 1 2 0 0 0 1 1 2 0 0 0 1 1 2 0 0 0 1 1 2 0 0 0 1 1 2 0 0 0 1 1 2 0 0 0 1 1 2 0 0 0 1 1 2 0 0 0 1 1 2 0 0 1 | 959-82 TED RECUF D ANNUAL IN PERCEN 50 2% | 100
1% | | 1.25
80% | BASE , IN CFS, AND ANNUA 2 50% | FOR INDI | OD OF RE CATED RE NCE PROB | CORD
CURRENCE
ABILITY, | INTERVAL
IN PERCE | , IN
INT | PERIOD (CON-
SECU-
TIVE DAYS) 1 3 7 15 30 60 | DISCH
2 50%
23200 17800 13200 9420 | HARGE, IN INTERVENCE EXCEEDAN 5 20% 34200 26300 18500 12400 | 10 10% 10% 1000 14000 14000 | A6600
37700
25000
15700 | 959-82 TED RECUF D ANNUAL IN PERCEN 50 2% | 100
1% | | 1.25
80% | BASE , IN CFS, AND ANNUA 2 50% | FOR INDI | OD OF RE CATED RE NCE PROB | CORD
CURRENCE
ABILITY, | INTERVAL
IN PERCE | , IN
INT | PERIOD (CON-
SECU-
TIVE DAYS) 1 3 7 15 30 | DISCH
250%
23200
17800
13200
9420
7240 | HARGE, IN INTERVEXCEEDAN 5 20% 34200 26300 18500 12400 9120 | 10 OF F | 25 4 4 4 4 6 6 0 0 3 7 7 0 0 1 1 2 0 0 1 1 2 0 0 1 1 2 0 0 1 1 2 0 0 1 1 2 0 0 1 1 2 0 0 1 1 2 0 0 0 1 1 2 0 0 0 1 1 2 0 0 0 1 1 2 0 0 0 1 1 2 0 0 0 1 1 2 0 0 0 1 1 2 0 0 0 1 1 2 0 0 0 1 1 2 0 0 1 1
2 0 0 1 1 2 0 0 1 | TED RECUF
D ANNUAL
IN PERCEN
50
2% | 100
13 | | 1.25
80% | BASE , IN CFS, AND ANNUA 2 50% | FOR INDI | OD OF RE CATED RE NCE PROB 10 10% DURATIO | CURRENCE ABILITY, 25 4% | INTERVAL
IN PERCE
50
2% | , IN NT 100 1% | PERIOD (CON-
SECU-
TIVE DAYS) 1 3 7 15 30 60 | DISCH
250%
23200
17800
13200
9420
7240
5750
0F RECC | HARGE, IN INTERN EXCEEDAN 5 20% 34200 26300 112400 9120 7200 6380 DRD 1959- | 40300
31600
10400
1090
40300
31600
14000
10100
8050
7090 | A6600 15700 15700 11200 9030 7900 | FED RECUFD ANNUAL IN PERCEN | 100
13 | | 1.25
80% | BASE , IN CFS, AND ANNUA 2 50% | FOR INDI | OD OF RE CATED RE NCE PROB 10 10% DURATIO | CURRENCE ABILITY, 25 4% | INTERVAL IN PERCE 50 2% OF DAILY CH WAS EQ | , IN NT 100 1% | PERIOD (CON- SECU- TIVE DAYS) 1 3 7 15 30 60 90 FOR PERIOD | DISCH
250%
23200
17800
13200
9420
7240
5750
0F RECC | HARGE, IN INTERN EXCEEDAN 5 20% 34200 26300 112400 9120 7200 6380 DRD 1959- | 40300
31600
10400
1090
40300
31600
14000
10100
8050
7090 | A6600 15700 15700 11200 9030 7900 | FED RECUFD ANNUAL IN PERCEN | 100
1% | ## 14211000 CLACKAMAS RIVER NEAR CLACKAMAS, OR LOCATION.--Lat 45°23'36", long 122°31'54", in NE‡SW‡ sec.14, T.2 S., R.2 E., Clackamas County, Hydrologic Unit 17090011, on left bank 0.8 mi upstream from Johnson Creek, 2.1 mi southeast of Clackamas, and at mile 4.8. DRAINAGE AREA.--930 mi² at gage, 936 mi² at Gladstone Bridge 3.6 mi downstream, where high-flow discharge measurements are made. PERIOD OF RECORD.--September 1911 to April 1912 (published as "at Park Place"), October 1962 to September 1982. GAGE.--Water-stage recorder. Datum of gage is 50.68 ft National Geodetic Vertical Datum of 1929 (levels by Corps of Engineers). Sept. 15, 1911, to Apr. 22, 1912, nonrecording gage at site 3.6 mi downstream at different datum. Oct. 1, 1962, to Sept. 10, 1969, water-stage recorder at site 300 ft downstream at present datum. REMARKS.--Diurnal fluctuations and some regulation by powerplants and several storage dams upstream, operated by Portland General Electric Co. Small diversions above station for Estacada municipal water supply. All records given herein are for gage site. AVERAGE DISCHARGE.--20 years, 3,636 ft3/s, 53.09 in/yr, 2,634,000 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.—Maximum discharge, 120,000 ft 3 /s Dec. 22, 1964, gage height, 27.0 ft, from floodmarks; minimum, 336 ft 3 /s Sept. 1, 11, 1969. STATISTICAL SUMMARIES | | | | | | | | | BAS | ED ON PE | RIOD OF I | RECORD 19 | 964-82
 | | |----------------------------------|--|--------------------|--|--|----------------------------------|---------------------------------|--|--|--|--|---|--|-----------| | | MINIMUM | MAXIMUM | MEAN | STAN-
DARD
DEVIA-
TION | COEFFI-
CIENT OF
VARI- | PERCENT
OF
ANNUAL | PERIOD
(CON-
SECU- | DISC | INTERVA | L, IN YE | OR INDICAT
ARS, AND A
ABILITY, I | ANNUAL NO |)N- | | HTNOM | (CFS) | (CFS) | (CFS) | (CFS) | ATION | RUNOFF | TIVE
DAYS) | 2
50 % | 5
20 % | 10
10% | 20
5 % | 50
2% | 100
1% | | OCTOBER | 820 | 3501 | 1580 | 704 | .45 | 3.6 | 1 | 669 | 550 | 494 | 451 | | | | NOVEMBER
DECEMBER | 1349 | 8410 | 3890 | 2068 | .53 | 8.9 | 3 | 741
777 | 637 | 584
639 | 542
604 | | | | JANUARY | 1113
1187 | 15290
12230 | 6867
6957 | 3329
3147 | .48
.45 | 15.7
15.9 | 7
14 | 817 | 683
724 | 678 | 642 | | | | EBRUARY | 1118 | 11250 | 5390 | 2366 | .44 | 12.3 | 30 | 865 | 765 | 716 | 677 | | | | MARCH | 2566 | 11410 | 4502 | 1984 | .44 | 10.3 | 60 | 936 | 829 | 777 | 736 | | | | NPRIL | 2137 | 6493 | 4283 | 1148 | .27 | 9.8 | 90 | 1000 | 888 | 832 | 788 | | | | MAY | 2219 | 6785 | 4246 | 1403 | .33 | 9.7 | 120 | 1100 | 976 | 924 | 885 | | | | JUNE | 1446 | 5716 | 2680 | 1179 | .44 | 6.1 | 183 | 1580 | 1340 | 1230 | 1160 | | | | JULY | 854 | 2187 | 1304 | 345 | .26 | 3.0 | | | | | | | | | AUGUST | 711 | 1285 | 989 | 181 | .18 | 2.3 | | | | | | | | | SEPTEMBER | 689 | 1378 | 1060 | 193 | .18 | 2.4 | | | | | | | | | Alburat | 1715 | 5718 | 3640 | 912 | .25 | 100 | | | | | | | | | | TUDE AND | PROBABILI |
TY OF IN | ISTANTANE | OUS PEAK | FLOW |
MA | | | | OF ANNUAL | | | | MAGNIT
DISCHARGE,
YEARS, A | TUDE AND
BASE
. IN CFS, | FOR INDI | TY OF IN
OD OF RE
CATED RE
NCE PROB | ISTANTANE
CORD
CURRENCE | INTERVAL
IN PERCE |
, IN
NT |
PERIOD
(CON- | BASI | ED ON PER
HARGE, II | RIOD OF F | | 963-82

TED RECUR
O ANNUAL | RENCE | | MAGNIT | TUDE AND
BASE
IN CFS,
IND ANNUA | FOR INDIAL EXCEEDA | TY OF IN
OD OF RE
CATED RE
NCE PROB | ISTANTANE
CORD
CURRENCE
BABILITY, | INTERVAL
IN PERCE | , IN
NT
 | PERIOD
(CON-
SECU- | BASI
DISCI | HARGE, II | RIOD OF F
N CFS, FO
VAL, IN N
NCE PROB | RECORD 19 OR INDICAT YEARS, AND ABILITY, I | 963-82
FED RECUR
O ANNUAL
IN PERCEN | RENCE | | MAGNIT
DISCHARGE,
YEARS, A | TUDE AND
BASE
. IN CFS, | FOR INDI | TY OF IN
OD OF RE
CATED RE
NCE PROB | ISTANTANE
CORD
CURRENCE | INTERVAL
IN PERCE |
, IN
NT |
PERIOD
(CON- | BASI | ED ON PER
HARGE, II | RIOD OF F | RECORD 19

OR INDICAT
YEARS, AND | 963-82

TED RECUR
O ANNUAL | RENCE | | MAGNIT | TUDE AND
BASE
IN CFS,
IND ANNUA | FOR INDIAL EXCEEDA | TY OF IN
OD OF RE
CATED RE
NCE PROB | ISTANTANE
CORD
CURRENCE
BABILITY, | INTERVAL
IN PERCE | , IN
NT
 | PERIOD
(CON-
SECU-
TIVE | BASI
DISCI | HARGE, INTERNEXCEEDAN | N CFS, FO
VAL, IN N
NCE PROB | RECORD 19 OR INDICAT YEARS, AND ABILITY, I | 963-82 FED RECUR O ANNUAL IN PERCEN 50 | RENCE | | MAGNIT | TUDE AND
BASE
IN CFS,
IND ANNUA | FOR INDIAL EXCEEDA | TY OF IN
OD OF RE
CATED RE
NCE PROB | ISTANTANE
CORD
CURRENCE
BABILITY, | INTERVAL
IN PERCE | , IN
NT
 | PERIOD
(CON-
SECU-
TIVE | BASI
DISCI | HARGE, INTERNEXCEEDAN | N CFS, FO
VAL, IN N
NCE PROB | RECORD 19 OR INDICAT YEARS, AND ABILITY, I | 963-82 FED RECUR O ANNUAL IN PERCEN 50 | RENCE | | MAGNIT | TUDE AND BASE IN CFS, AND ANNUA 2 50% | FOR INDIAL EXCEEDA | TY OF IN
OD OF RE
CATED RE
NCE PROB | ISTANTANE
CORD
CURRENCE
BABILITY, | INTERVAL
IN PERCE | , IN
NT
 | PERIOD
(CON-
SECU-
TIVE
DAYS) | DISCI | HARGE, IN
INTERN
EXCEEDAN
5
20% | N CFS, FC
/AL, IN N
NCE PROB/
10 | RECORD 19 | P63-82 TED RECUR D ANNUAL IN PERCEN 50 2% | RENCE | | DISCHARGE,
YEARS, / | TUDE AND BASE IN CFS, AND ANNUA 2 50% | FOR INDIAL EXCEEDA | TY OF IN
OD OF RE
CATED RE
NCE PROB | ISTANTANE
CORD
CURRENCE
BABILITY, | INTERVAL
IN PERCE | , IN
NT
 | PERIOD (CON- SECU- TIVE DAYS) | DISCI | HARGE, INTERNEXCEEDAN | N CFS, FO
(AL, IN N
NCE PROB)
10
10% | RECORD 19 | P63-82 TED RECUR ANNUAL IN PERCEN 50 2% | RENCE | | MAGNITODISCHARGE, YEARS, A | TUDE AND BASE IN CFS, AND ANNUA 2 50% | FOR INDIAL EXCEEDA | TY OF IN
OD OF RE
CATED RE
NCE PROB | ISTANTANE
CORD
CURRENCE
BABILITY, | INTERVAL
IN PERCE | , IN
NT
 | PERIOD (CON-
SECU-
TIVE DAYS) | BASI
DISCI
2
50%
32000
25100 | HARGE, IN
INTER
EXCEEDAN
5
20% | N CFS, FC
/AL, IN N
NCE PROB/
10
10% | RECORD 19 OR INDICAT YEARS, AND ABILITY, 1 25 4% 58400 51600 | P63-82 FED RECUR O ANNUAL IN PERCEN 50 2% | RENCE | | MAGNITODISCHARGE, YEARS, A | TUDE AND BASE IN CFS, AND ANNUA 2 50% | FOR INDIAL EXCEEDA | TY OF IN
OD OF RE
CATED RE
NCE PROB | ISTANTANE
CORD
CURRENCE
BABILITY, | INTERVAL
IN PERCE | , IN
NT
 | PERIOD (CON-SECU-TIVE DAYS) | DISCI | HARGE,
IN
INTERN
EXCEEDAN
5
20%
45200
36700
26200 | N CFS, FC
/AL, IN N
NCE PROB/
10
10\$
51900
43700
29700 | DR INDICAT
YEARS, AND
ABILITY, I
25
4%
58400
51600
33100 | P63-82 FED RECUR PANNUAL N PERCEN 50 2% | RENCE | | MAGNITONISCHARGE, YEARS, A | TUDE AND BASE IN CFS, AND ANNUA 2 50% | FOR INDIAL EXCEEDA | TY OF IN
OD OF RE
CATED RE
NCE PROB | ISTANTANE
CORD
CURRENCE
BABILITY, | INTERVAL
IN PERCE | , IN
NT
 | PERIOD (CON-
SECU-
TIVE DAYS) 1 3 7 7 15 30 60 | DISCI 2 50% 32000 25100 19100 13700 10300 7860 | 45200
36700
26200
17200
17200
17200
17200 | N CFS, F(AL, IN N NCE PROB/
10 10%
51900
43700
29700
13600
13100 | DR INDICAT
YEARS, AND
ABILITY, I
 | P63-82 FED RECUR PANNUAL N PERCEN 50 2% | RENCE | | MAGNITONISCHARGE, YEARS, A | TUDE AND BASE IN CFS, AND ANNUA 2 50% | FOR INDIAL EXCEEDA | TY OF IN OD OF RE | ISTANTANE
CORD
CURRENCE
IAB IL ITY, | INTERVAL
IN PERCE
50
2% | , IN
NT

100
1%
 | PERIOD (CON-
SECU-
TIVE DAYS) | DISCI 2 50\$ 32000 25100 19100 13700 10300 7860 6980 | HARGE, II
INTER:
EXCEEDAN
5
20%
45200
36700
26200
17400
12600
9940
8740 | N CFS, F(AL, IN NCE PROB/
10 10\$
51900 43700 29700 13600 11100 9730 | DR INDICAT
YEARS, AND
ABILITY, I
25
4%
58400
51600
33100
20400
14300 | P63-82 TED RECUR D ANNUAL N PERCEN 50 2% | RENCE | | MAGNITO | TUDE AND BASE IN CFS, AND ANNUA 2 50% | FOR INDIAL EXCEEDA | TY OF IN OD OF RE | ISTANTANE
CORD
CURRENCE
IAB IL ITY, | INTERVAL
IN PERCE
50
2% | , IN
NT

100
1%
 | PERIOD (CON-
SECU-
TIVE DAYS) 1 3 7 7 15 30 60 | DISCI 2 50\$ 32000 25100 19100 13700 10300 7860 6980 | HARGE, II
INTER:
EXCEEDAN
5
20%
45200
36700
26200
17400
12600
9940
8740 | N CFS, F(AL, IN NCE PROB/
10 10\$
51900 43700 29700 13600 11100 9730 | DR INDICAT
YEARS, AND
ABILITY, I
 | P63-82 TED RECUR D ANNUAL N PERCEN 50 2% | RENCE | | MAGNITO | TUDE AND BASE IN CFS, AND ANNUA 2 50% | FOR INDI | TY OF IN OD OF RECATED RENCE PROB | ISTANTANE CORD CURRENCE IABILITY, 25 4% | INTERVAL IN PERCE 50 2% | , IN
NT
100
1%
 | PERIOD (CON-
SECU-
TIVE DAYS) | DISCI 2 50% 32000 25100 13700 10300 7860 6980 OF RECC | HARGE, III INTER: EXCEEDAY 45200 36700 17400 12600 9940 8740 DRD 1963- | N CFS, FG
(AL, IN N
NCE PROB)
10
10
51900
43700
19000
13600
11100
9730 | DR INDICAT
YEARS, AND
ABILITY, I
25
4%
58400
51600
33100
20400
14300
12300
10800 | P63-82 TED RECUR D ANNUAL N PERCEN 50 2% | RRENCE | 139 ## 14211500 JOHNSON CREEK AT SYCAMORE, OR LOCATION.--Lat 45°28'40", long 122°30'24", in lot 2, SW\ sec.13, T.1 S., R.2 E., Multnomah County, Hydrologic Unit 17090012, on right bank 0.3 mi southwest of Sycamore station, 2.5 mi east of city limits of Portland, and at mile 10.2. DRAINAGE AREA .-- 26.5 mi2. 247 151 107 79 45 26 14 6.0 3.2 2.4 1.9 1.5 1.1 .7 PERIOD OF RECORD. -- July 1940 to September 1982. GAGE.--Water-stage recorder and V-notch weir. Datum of gage is 228.47 ft National Geodetic Vertical Datum of 1929. REMARKS.--Slight diurnal fluctuation at low flow caused by recreational ponds upstream. Small diversions for irrigation above station. AVERAGE DISCHARGE.--42 years, $54.6 \text{ ft}^3/\text{s}$, 26.29 in/yr, 39,560 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 2,620 ft³/s Dec. 22, 1964, gage height, 14.68 ft; minimum, 0.08 ft³/s Aug. 21, | | | | | | | | | | | | E ANNIIA | I I OW FI | OW | |---|---|---|--|--|---|---|--|---|--|--|---|---|--| | МС | NTHLY AN | ID ANNUAL | MEAN DIS | CHARGES | 1941-82 | | MAG | SNITUDE A
BASED | | OD OF RE | | | | | |
MINIMUM | MAX I MUM | MEAN | STAN-
DARD
DEVIA-
TION | COEFFI-
CIENT OF
VARI- | PERCENT
OF
ANNUAL | PERIOD
(CON-
SECU- | 1 | NTERVAL, | IN YEAR | RS, AND | TED RECU
ANNUAL N
IN PERCE | 0N- | | MONTH | (CFS) | (CFS) | (CFS) | (CFS) | ATION | RUNOFF | TIVE
DAYS) | 2
50% | 5
20% | 10
10% | 20
5% | 50
2% | 100
1% | | OCTOBER | 1.3 | 65 | 10 | 15 | 1.48 | 1.6 | 1 | .6 | .3 | .2 | .2 | | | | OVEMBER | 1.6 | 239 | 71 | 63 | .88 | 10.8 | 3 | •6 | .4 | .3 | •2 | | | | DECEMBER | 4.3 | 302 | 135 | 73 | -54 | 20.5 | 7 | •7 | .4 | .3 |
.2 | | | | ANUARY | 9.0 | 308 | 148 | 84 | .57 | 22.5 | 14 | .8 | .5 | .3 | •3 | | | | EBRUARY | 16 | 320 | 119 | 62 | •52 | 18.1 | 30 | .9 | .6 | .4 | .4 | | | | MARCH | 20 | 196 | 87 | 44 | •50 | 13.2 | 60 | 1.2 | .8 | •6 | .5 | | | | PRIL | 9.5 | 130 | 48 | 30 | .63 | 7.2 | 90 | 1.5 | 1.0 | .8 | .7 | | | | IAY | 3.3 | 90 | 25 | 23 | .93 | 3.7 | 120 | 2.1 | 1.4 | 1.1 | .9 | | | | IUNE | 1.5 | 53 | 9.3 | | | 1.4 | 183 | 5.1 | 3.1 | 2.3 | 1.9 | 1.4 | 1 | | JULY | .6 | 7.1 | 2.3 | | | •3 | | | | | | | | | UGUST
EPTEMBER | .4 | 8.0 | 1.8 | | | •3 | | | | | | | | | | •6 | 11 | 2.8 | 2.8 | 1.01 | . 4 | | | | | | | | | ET TEMOLIK | | | | | | | | | | | | | | | ANNUAL | | 91

PROBABILI
D ON PERI | | | .30

OUS PEAK 1
1-82 | 100
 |
MAG | NITUDE A | | BILITY O | | |
LOW | | MAGNIT | TUDE AND
BASE
IN CFS, | PROBABILI
D ON PERI
FOR INDI
L EXCEEDA | TY OF INS | STANTANE
CORD 194
CURRENCE
ABILITY, | OUS PEAK I
1-82
INTERVAL,
IN PERCEI | FLOW | PERIOD
(CON- | BASED

DISCHAI | ON PERI
RGE, IN
INTERVA | OD OF RE

CFS, FOR
L, IN YE | CORD 19 | 941-82

TED RECUI | RRENCE | | MAGNIT
DISCHARGE,
YEARS, A | TUDE AND
BASE
IN CFS, | PROBABILI
D ON PERI
FOR INDI
L EXCEEDA | TY OF INSOD OF REC | STANTANE
CORD 194
CURRENCE
ABILITY, | OUS PEAK I
1-82
INTERVAL
IN PERCEI |
FLOW

, IN
NT | PERIOD
(CON-
SECU- | BASED DISCHAI | ON PERI | OD OF RE
CFS, FOR
L, IN YE
E PROBAB | CORD 19 INDICAT ARS, ANI | 941-82
TED RECUI
D ANNUAL
IN PERCEI | RRENCE | | MAGNIT | TUDE AND
BASE
IN CFS, | PROBABILI
D ON PERI
FOR INDI
L EXCEEDA | TY OF INS | STANTANE
CORD 194
CURRENCE
ABILITY, | OUS PEAK I
1-82
INTERVAL,
IN PERCEI | FLOW | PERIOD
(CON- | BASED

DISCHAI | ON PERI
RGE, IN
INTERVA | OD OF RE

CFS, FOR
L, IN YE | CORD 19 | 941-82

TED RECUI
D ANNUAL | RRENCE | | MAGNIT | TUDE AND
BASE
IN CFS, | PROBABILI
D ON PERI
FOR INDI
L EXCEEDA | TY OF IN:
OD OF REC
CATED REC
NCE PROB/ | STANTANE
CORD 194
CURRENCE
ABILITY,
25
4% | OUS PEAK (
1-82
INTERVAL,
IN PERCEI |
FLOW

, IN
NT | PERIOD
(CON-
SECU-
TIVE | BASED DISCHAI EX | ON PERI
RGE, IN
INTERVA
XCEEDANC | OD OF RE CFS, FOR L, IN YE E PROBAB | INDICA
ARS, ANI | 941-82 TED RECUID ANNUAL IN PERCEI | RRENCE | | MAGNIT | FUDE AND
BASE
IN CFS,
ND ANNUA
2
50% | PROBABILI
D ON PERI
FOR INDI
L EXCEEDA | TY OF IN:
OD OF REC
CATED REC
NCE PROB/ | STANTANE
CORD 194
CURRENCE
ABILITY,
25
4% | OUS PEAK (
1-82
INTERVAL,
IN PERCEI | FLOW , IN NT 100 1% | PERIOD
(CON-
SECU-
TIVE | BASED DISCHAI EX | ON PERI
RGE, IN
INTERVA
XCEEDANC | OD OF RE CFS, FOR L, IN YE E PROBAB | INDICA
ARS, ANI | 941-82 TED RECUID ANNUAL IN PERCEI | RRENCE
NT
100
1% | | MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNIT
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI | FUDE AND
BASE
IN CFS,
ND ANNUA
2
50% | PROBABILID ON PERI | TY OF IN:
OD OF REC
CATED REC
NCE PROB/ | STANTANE
CORD 194
CURRENCE
ABILITY,
25
4% | OUS PEAK (
1-82
INTERVAL,
IN PERCEI | FLOW , IN NT 100 1% | PERIOD
(CON-
SECU-
TIVE
DAYS) | BASED DISCHAI | ON PERI | OD OF RE CFS, FOR L, IN YE E PROBAB | INDICA
ARS, ANI
ALLITY, | 941-82 TED RECUID ANNUAL IN PERCEI 50 2\$ | RRENCE NT 100 1% | | MAGNITA DISCHARGE, YEARS, A 1.25 80% | TUDE AND BASE IN CFS, AND ANNUA 2 50% | PROBABILID ON PERI | TY OF IN:
OD OF REC
CATED REC
NCE PROB/ | STANTANE
CORD 194
CURRENCE
ABILITY,
25
4% | OUS PEAK (
1-82
INTERVAL,
IN PERCEI | FLOW , IN NT 100 1% | PERIOD
(CON-
SECU-
TIVE
DAYS) | BASED DISCHAI E: 2 50% | ON PERI | OD OF RE CFS, FOR L, IN YE E PROBAB 10 10% | CORD 19 LINDICATOR ARS, ANI | 941-82 TED RECUID ANNUAL IN PERCEI 50 25 | RRENCE NT 100 1% | | MAGNIT | TUDE AND BASE IN CFS, AND ANNUA 2 50% | PROBABILID ON PERI | TY OF IN:
OD OF REC
CATED REC
NCE PROB/ | STANTANE
CORD 194
CURRENCE
ABILITY,
25
4% | OUS PEAK (
1-82
INTERVAL,
IN PERCEI | FLOW , IN NT 100 1% | PERIOD (CON- SECU- TIVE DAYS) 1 3 | BASED DISCHAI 2 50% 919 640 | ON PERI | OD OF RE CFS, FOR L, IN YE E PROBAB 10 10 10 1550 984 | INDICATOR ARS, ANICILITY, 25 4% 1780 1090 | 941-82 TED RECUI D ANNUAL IN PERCEI 50 2% 1930 1160 | RRENCE NT 100 1% 2050 1210 | | MAGNIT | TUDE AND BASE IN CFS, AND ANNUA 2 50% | PROBABILID ON PERI | TY OF IN:
OD OF REC
CATED REC
NCE PROB/ | STANTANE
CORD 194
CURRENCE
ABILITY,
25
4% | OUS PEAK (
1-82
INTERVAL,
IN PERCEI | FLOW , IN NT 100 1% | PERIOD (CON- SECU- TIVE DAYS) 1 3 7 | DISCHAI 2 50% 919 640 443 | ON PERI | OD OF RE
CFS, FOR
L, IN YE
E PROBAB
10
10% | 1780
1090
1730 | 941-82 TED RECUID ANNUAL IN PERCEI 50 2\$ 1930 1160 768 | 2050
1210
799 | |
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNIT
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI
MAGNITI | TUDE AND BASE IN CFS, AND ANNUA 2 50% | PROBABILID ON PERI | TY OF IN:
OD OF REC
CATED REC
NCE PROB/ | STANTANE
CORD 194
CURRENCE
ABILITY,
25
4% | OUS PEAK (
1-82
INTERVAL,
IN PERCEI | FLOW , IN NT 100 1% | PERIOD (CON-
SECU-
TIVE DAYS) 1 3 7 15 30 60 | DISCHAI
E:
2
50%
919
640
443
308
233
176 | ON PERI RGE, IN INTERVA KCEEDANC 5 20% 1330 870 591 409 296 226 | OD OF RE CFS, FOR L, IN YE E PROBAB 10 10% 1550 984 662 460 324 250 | 1NDICA: ARS, ANI ILITY, 25 4% 1780 1090 730 511 349 271 | 941-82 TED RECUID ANNUAL IN PERCEI 50 2\$ 1930 1160 768 541 362 283 | 2050
1210
799
566
372
292 | | MAGNITA DISCHARGE, YEARS, A 1.25 80% | TUDE AND BASE IN CFS, AND ANNUA 2 50% | PROBABILID ON PERI | TY OF IN:
OD OF REC
CATED REC
NCE PROB/ | STANTANE
CORD 194
CURRENCE
ABILITY,
25
4% | OUS PEAK (
1-82
INTERVAL,
IN PERCEI | FLOW , IN NT 100 1% | PERIOD (CON-
SECU-
TIVE DAYS) 1 3 7 15 30 | BASED DISCHAI 2 50% 919 640 443 308 233 | ON PERI RGE, IN INTERVA KCEEDANC 5 20% 1330 870 591 409 296 | OD OF RE CFS, FOR L, IN YE E PROBAB 10 10% 1550 984 662 460 324 | 1780
1780
1780
1780
1780
1780
1780
1780 | 941-82 TED RECUID ANNUAL IN PERCEI 50 2\$ 1930 1160 768 541 362 | 100
1%
2050
1210
799
566
372 | | MAGNITI
ISCHARGE,
YEARS, A
1.25
80% | TUDE AND BASE IN CFS, AND ANNUA 2 50% | PROBABILI
D ON PERI
FOR INDI
L EXCEEDA
5
20% | TY OF IN. OD OF REC CATED REC NCE PROBA 10 10% 2250 DURATION | STANTANECORD 194 CURRENCE ABILITY, 25 4% 2720 | OUS PEAK I
1-82
INTERVAL
IN PERCEI
50
2%
3050 3 | FLOW , IN NT 100 1% 370 MEAN FLOW | PERIOD
(CON-
SECU-
TIVE
DAYS)
 | 919 640 443 308 233 176 154 | ON PERI PER | OD OF RE CFS, FOR L, IN YE E PROBAB 10 10% 1550 984 662 460 324 250 214 | 1780
1090
1780
1090
1780
1780
1780
1780
1780
1780
1780
178 | 941-82 TED RECUID ANNUAL IN PERCEI 50 2\$ 1930 1160 768 541 362 283 | 2050
1210
799
566
372
292 | | MAGNIT | TUDE AND BASE IN CFS, AND ANNUA 2 50% | PROBABILI
D ON PERI
FOR INDI
L EXCEEDA
5
20% | TY OF IN. OD OF REC CATED REC NCE PROBA 10 10% 2250 DURATION | STANTANECORD 194 CURRENCE ABILITY, 25 4% 2720 | OUS PEAK I
1-82
INTERVAL
IN PERCEI
50
2%
3050 3 | FLOW , IN NT 100 1% 370 MEAN FLOW | PERIOD
(CON-
SECU-
TIVE
DAYS)
 | 919 640 443 308 233 176 154 | ON PERI PER | OD OF RE CFS, FOR L, IN YE E PROBAB 10 10% 1550 984 662 460 324 250 214 | 1780
1090
1780
1090
1780
1780
1780
1780
1780
1780
1780
178 | 941-82 TED RECUID ANNUAL IN PERCEI 50 2\$ 1930 1160 768 541 362 283 | 2050
1210
799
566
372
292 | ### 14211720 WILLAMETTE RIVER AT PORTLAND, OR LOCATION.--Lat 45°31'07", long 122°40'00", in NWŁNEŁ sec.3, T.1 S., R.1 E., Multnomah County, Hydrologic Unit 17090012, in pier at east end of drawspan on upstream side of Morrison Bridge in Portland and at mile 12.8. DRAINAGE AREA. -- 11,100 mi², approximately. PERIOD OF RECORD.--October 1972 to September 1982. Gage-height records collected in this vicinity since 1879 are in reports of the National Weather Service. GAGE.--Acoustic velocity meter (AVM) with water-stage and velocity-index recorder. Datum of gage is 1.55 ft National Gaodetic Vertical Datum of 1929 (levels by National Weather Service). REMARKS.--Flow regulated by many resevoirs upstream. Many diversions for irrigation above station. AVERAGE DISCHARGE.--10 years, 32,760 ft3/s, 23,730,000 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD. --Maximum discharge, 283,000 ft 3 /s Jan. 18, 1974, gage height, 23.84 ft; minimum daily discharge, 4,200 ft 3 /s July 10, 1978. EXTREMES OUTSIDE PERIOD OF RECORD.--Floods of June 7, 1894, and June 1, 1948, reached stages of 33.0 ft and 30.0 ft, respectively, from information by National Weather Service. ### STATISTICAL SUMMARIES | | | | TIENE OF | 0011111020 | 1973-82 | | 1-1 | | | BABILITY (
RIOD OF RE | | | | |-----------------------------------|--|---|--|---|-------------------|--------------------------|--|--|--|---|--|--|-----------| | | MINIMUM | MAXIMUM | WEAN | STAN-
DARD
DEVIA- | COEFFI- | PERCENT | PERIOD
(CON-
SECU- | | INTERVA | N CFS, FOR | RS, AND A | NNUAL NO |)N- | | МОМТН | (CFS) | (CFS) | MEAN
(CFS) | TION
(CFS) | VARI-
ATION | ANNUAL
RUNOFF | TIVE
DAYS) | 2
50% | 5
20 % | 10
10 % | 20
5% | 50
2% | 100
1% | | OCTOBER | 11810 | 22150 | 15900 | 3297 | •21 | 4.0 | 1 | | | | | | | | OVEMBER | 14550 | 98410 | 37100 | 24990 | .67 | 9.4 | 3 | | | | | | | | ECEMBER | 8894 | 129200 | 78690 | 39560 | .50 | 20.0 | 7 | | | | | | | | ANUARY | 87 9 5 | 119200 | 67810 | 35180 | .52 | 17.2 | 14 | | | | | | | | EBRUARY | 8050 | 94040 | 48800 | 26000 | .53 | 12.4 | 30 | | | | | | | | IARCH | 17980 | 77790 | 41340 | 18450 | .45 | 10.5 | 60 | | | | | | | | PRIL | 17630 | 58760 | 34400 | 13320 | .39 | 8.7 | 90 | | | | | | | | MAY | 11150 | 34740 | 24050 | 7529 | .31 | 6.1 | 120 | | | | | | | | JUNE | 8351 | 29300 | 16360 | 6748 | -41 | 4.2 | 183 | | | | | | | | ULY | 6541 | 11810 | 8982 | 1614 | . 18 | 2.3 | | | | | | | | | VUGUST | 6136 | 9478 | 8251 | 1021 | - 12 | 2.1 | NOTE: | LESS TH | AN 10 YE | ARS OF DAT | IA AVAILA | ABLE. | | | SEPTEMBER | 8580 | 17350 | 11920 | 2395 | .20 | 3.0 | ANNUAL
MAGNI | | 54490
PROBABILI
D ON PERI | | | .35
OUS PEAK I | 100

FLOW |
M | | | BABILITY O | | | .ow | | MAGN1 | TUDE AND
BASE | PROBABILI
D ON PERI | TY OF IN
OD OF RE | ISTANTANE
CORD | | FLOW | PERIOD (CON- | BAS | ED ON PE
HARGE, I | | CORD 19 R INDICAT | 73-82
ED RECUR | RENCE | | MAGNI | TUDE AND
BASE
, IN CFS,
AND ANNUA | PROBABILI
D ON PERI
FOR INDI
L EXCEEDA | TY OF IN
OD OF RE
CATED RE
NCE PROB | ISTANTANE
CORD
CURRENCE
BABILITY, | OUS PEAK I | FLOW , IN NT | PERIOD
(CON-
SECU- | BAS
DISC | ED ON PE | N CFS, FOR | CORD 19 R INDICAT EARS, AND | 73-82
ED RECUR
ANNUAL
N PERCEN | RENCE | | MAGNITISCHARGE | TUDE AND
BASE
, IN CFS, | PROBABILI
D ON PERI
FOR INDI | TY OF IN
OD OF RE
CATED RE | ISTANTANE
CORD
COURTENCE
BABILITY, | OUS PEAK I | FLOW | PERIOD
(CON- | BAS | ED ON PE
HARGE, I | N CFS, FOF | CORD 19 R INDICAT | 73-82
ED RECUR | RENCE | | MAGNI | TUDE AND
BASE
, IN CFS,
AND ANNUA |
PROBABILI
D ON PERI
FOR INDI
L EXCEEDA | TY OF IN
OD OF RE
CATED RE
NCE PROB | ISTANTANE
CORD
CURRENCE
BABILITY, | OUS PEAK I | FLOW , IN NT | PERIOD
(CON-
SECU-
TIVE | DISC | HARGE, I
INTER
EXCEEDA | RIOD OF RE
N CFS, FOF
VAL, IN YE
NCE PROBAE | R INDICATEARS, AND | FED RECUR
ANNUAL
N PERCEN | RENCE | | MAGNI | TUDE AND
BASE
, IN CFS,
AND ANNUA | PROBABILI
D ON PERI
FOR INDI
L EXCEEDA | TY OF IN
OD OF RE
CATED RE
NCE PROB | ISTANTANE
CORD
CURRENCE
BABILITY, | OUS PEAK I | FLOW , IN NT | PERIOD
(CON-
SECU-
TIVE | DISC | HARGE, I
INTER
EXCEEDA | RIOD OF RE
N CFS, FOF
VAL, IN YE
NCE PROBAE | R INDICATEARS, AND | FED RECUR
ANNUAL
N PERCEN | RRENCE | | MAGNI | FUDE AND BASE IN CFS, AND ANNUA 2 50% | PROBABILI
D ON PERI
FOR INDI
L EXCEEDA | TY OF IN
OD OF RE
CATED RE
NCE PROB | ISTANTANE
CORD
CURRENCE
BABILITY, | OUS PEAK I | FLOW , IN NT | PERIOD
(CON-
SECU-
TIVE
DAYS) | DISC | HARGE, I
INTER
EXCEEDA | N CFS, FOR
VAL, IN YE
NCE PROBAE | R INDICAT
R INDICAT
EARS, AND
BILITY, I
25
4% | FED RECUR
ANNUAL
N PERCEN | RENCE | | MAGNI OISCHARGE YEARS, 1.25 80% | FUDE AND BASE IN CFS, AND ANNUA 2 50% | PROBABILI
D ON PERI
FOR INDI
L EXCEEDA | TY OF IN
OD OF RE
CATED RE
NCE PROB | ISTANTANE
CORD
CURRENCE
BABILITY, | OUS PEAK I | FLOW , IN NT | PERIOD
(CON-
SECU-
TIVE
DAYS) | DISC
2
50% | HARGE, I
INTER
EXCEEDA
5
20% | N CFS, FOF
VAL, IN YE
NCE PROBAE
10
10% | R INDICAT
EARS, AND
BILITY, I | ED RECUR
ANNUAL
N PERCEN
50
2% | RRENCE | | MAGNITISCHARGE YEARS, / | FUDE AND BASE IN CFS, AND ANNUA 2 50% | PROBABILI
D ON PERI
FOR INDI
L EXCEEDA | TY OF IN
OD OF RE
CATED RE
NCE PROB | ISTANTANE
CORD
CURRENCE
BABILITY, | OUS PEAK I | FLOW , IN NT | PERIOD
(CON-
SECU-
TIVE
DAYS) | DISC
2
50%
170000
165000 | ED ON PE HARGE, I INTER EXCEEDA 5 20% 229000 222000 | N CFS, FOR
VAL, IN YE
NCE PROBAE
10
10% | R INDICAT
EARS, AND
BILITY, I | ED RECUR
ANNUAL
N PERCEN
50
2% | RRENCE | | MAGNI OISCHARGE YEARS, 1.25 80% | FUDE AND BASE IN CFS, AND ANNUA 2 50% | PROBABILI
D ON PERI
FOR INDI
L EXCEEDA | TY OF IN
OD OF RE
CATED RE
NCE PROB | ISTANTANE
CORD
CURRENCE
BABILITY, | OUS PEAK I | FLOW , IN NT | PERIOD
(CON-
SECU-
TIVE
DAYS) | DISC
2
50%
170000
165000
153000 | ED ON PE
HARGE, I
INTER
EXCEEDA
5
20%
229000
222000
196000 | N CFS, FOR VAL, IN YE NCE PROBAE 10 10% 256000 248000 212000 | ECORD 19 R INDICAT EARS, AND BILITY, I 25 4% | ED RECUR
ANNUAL
N PERCEN
50
2% | RRENCE | | MAGNITISCHARGE YEARS, / | FUDE AND BASE IN CFS, AND ANNUA 2 50% | PROBABILI
D ON PERI
FOR INDI
L EXCEEDA | TY OF IN
OD OF RE
CATED RE
NCE PROB | ISTANTANE
CORD
CURRENCE
BABILITY, | OUS PEAK I | FLOW , IN NT | PERIOD (CON-SECU-TIVE DAYS) | DISC
2
50%
170000
165000
153000
127000 | ED ON PE
HARGE, I
INTER
EXCEEDA
5
20%
229000
222000
196000
154000 | N CFS, FOF
VAL, IN YE
NCE PROBAE
10
10%
256000
248000
212000
162000 | R INDICAT
REARS, AND
BILITY, I | ED RECUR
ANNUAL
N PERCEN
50
2% | RRENCE | | MAGNI I SCHARGE YEARS, / | FUDE AND BASE IN CFS, AND ANNUA 2 50% | PROBABILI
D ON PERI
FOR INDI
L EXCEEDA | TY OF IN
OD OF RE
CATED RE
NCE PROB | ISTANTANE
CORD
CURRENCE
BABILITY, | OUS PEAK I | FLOW , IN NT | PERIOD (CON-
SECU-
TIVE DAYS) | DISC 2 50% 170000 165000 127000 105000 | HARGE, I INTER EXCEEDA 5 20% 222000 196000 154000 108000 108000 | N CFS, FOR VAL, IN YENCE PROBAE 10 10\$ 256000 248000 212000 162000 133000 | R INDICATEARS, AND BILITY, I | ED RECUR
ANNUAL
N PERCEN
50
2% | RENCE | | MAGNITISCHARGE YEARS, / | FUDE AND BASE IN CFS, AND ANNUA 2 50% | PROBABILI
D ON PERI
FOR INDI
L EXCEEDA | TY OF IN OD OF RE | ISTANTANE
CORD
CURRENCE
BABILITY, | OUS PEAK I | FLOW , IN NT 1000 1% | PERIOD (CON-
SECU-
TIVE DAYS) 1 3 7 15 30 60 | DISC
2
50%
170000
165000
153000
127000
105000
81700
69900 | HARGE, I INTER EXCEEDA 5 20% 229000 222000 196000 127000 108000 96700 | N CFS, FORVAL, IN YENCE PROBAE 10 10% 256000 248000 212000 152000 113000 119000 110000 | R INDICATEARS, AND BILITY, I | ED RECUR
ANNUAL
N PERCEN
50
2% | RENCE | | MAGNI DISCHARGE YEARS, / | FUDE AND BASE IN CFS, AND ANNUA 2 50% | PROBABILI
D ON PERI
FOR INDI
L EXCEEDA
5
20% | TY OF IN OD OF RE | ISTANTANE ICORD ICOURRENCE SABILITY, 25 4% | OUS PEAK I | FLOW , IN 100 1% | PERIOD (CON-
SECU-
TIVE DAYS) 1 3 7 7 15 30 60 90 | DISC
2
50%
170000
165000
127000
127000
105000
81700
69900
OF REC | ED ON PE HARGE, I INTER EXCEEDA 5 20% 229000 196000 154000 127000 108000 96700 0RD 1973 | N CFS, FOF
VAL, IN YENCE PROBAE
10
10%
256000
248000
212000
162000
135000
119000
110000 | R INDICAT | ED RECUR
ANNUAL
N PERCEN
50
2% | RENCE | 9160 8270 7260 112000 81900 60400 46900 38700 32700 25100 19300 15500 12700 11500 10200 ### BEAR CREEK BASIN 141 ## 14248700 BEAR CREEK NEAR SVENSEN, OR LOCATION.--Lat 46°06'48", long 123°37'55", in NE‡NE‡ sec.11, T.7 N., R.8 W., Clatsop County, Hydrologic Unit 17080006, on right bank 0.5 mi upstream from the Astoria Reservoir Dam, 3.8 mi southeast of Svensen, and at mile 5.4. DRAINAGE AREA. -- 3.33 mi². 53 40 34 29 25 21 16 12 8.9 6.8 6.2 5.6 5.0 4.5 3.8 PERIOD OF RECORD.--August 1965 to September 1975. GAGE.--Water-stage recorder. Altitude of gage is 700 ft, from topographic map. REMARKS.--Flow regulated by Wickiup Lake and Middle Lake. No diversions above station. AVERAGE DISCHARGE.--10 years (water years 1966-75), $17.9 \text{ ft}^3/\text{s}$, 73.00 in/yr, 12,970 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 342 ft³/s Jan. 11, 1972, gage height, 3.42 ft; minimum, 1.2 ft³/s Sept. 8, 9, 1967. | MONTH | MINIMUM
(CFS) | MAXIMUM
(CFS) | MEAN
(CFS) | STAN-
DARD
DEVIA-
TION
(CFS) | COEFFI-
CIENT OF
VARI-
ATION | PERCENT
OF
ANNUAL
RUNOFF | PERIOD
(CON-
SECU-
TIVE
DAYS) | DISCHARGE, IN CFS, FOR INDICATED RECURRENCE
INTERVAL, IN YEARS, AND ANNUAL NON-
EXCEEDANCE PROBABILITY, IN PERCENT | | | | | | |------------------------|---|-------------------------------------|---------------------------|--|---------------------------------------|-----------------------------------|---|--|--|--|---|--|------------| | | | | | | | | | 2
50% | 5
20% | 10
10% | 20
5% | 50
2% | 100
1% | | OCTOBER | 5.0 | 12 | 7.5 | 2.2 | | 3.5 | 1 | | | | | | | | IOVEMBER | 7.9 | 34 | 16 | 8.5 | •53 | 7.5 | 3 | | | | | | | | DECEMBER | 16 | 49 | 34 | 12 | • 34 | 15.8 | 7 | | | | | | | | JANUARY | 26 | 69 | 45 | 14 | •31 | 20.7 | 14 | | | | | | | | FEBRUARY | 17 | 39 | 30 | 6.2 | .20 | 14.2 | 30 | | | | | | | | MARCH | 14 | 47 | 27 | 10.0 | .37 | 12.6 | 60 | | | | | | | | APRIL | 11 | 29 | 19 | 5.6 | .30 | 8.7 | 90 | | | | | | | | YAY | 8.8 | 17 | 12 | 2.7 | • 23 | 5.4 | 120 | | | | | | | | JUNE | 6.3 | 15 | 8.9 | 3.1 | .34 | 4.2 | 183 | | | | | | | | JULY
NUGUST | 3.6
4.0 | 8.7
6.8 | 5.9
4. 9 | 1.5 | .25
.18 | 2.7
2.3 | NOTE. | LECC TUA | 1 40 VEA | RS OF DAT | A AVAII A | DI C | | | SEPTEMBER | | 9.1 | 5.3 | 1.8 | .34 | 2.5 | NO IE: | LESS INA | N IO IEA | 45 OF DAI | A AVAILA | DLC. | | | NNUAL | 12 | 24 | 18 | 4.2 | .23 | 100 | | | | | | | | | MAGN1 | | PROBABILI
ON PERIO | | | | FLOW | MA | | | ABILITY O | | | .OW | | OISCHARGE, | BASED
, IN CFS,
AND ANNUA | FOR INDIC | O OF RECO | ORD 1966-
CURRENCE | INTERVAL | , IN
NT | PERIOD
(CON- | BASE
DISCH | D ON PERARGE, IN INTERV | | CORD 196 | 6-75 ED RECUR | RENCE | | DI SCHARGE, | BASED
, IN CFS, | ON PERIOR | O OF RECO | ORD 1966-
CURRENCE | INTERVAL | | PERIOD
(CON-
SECU-
TIVE | DISCH. | D ON PER ARGE, IN INTERVIEXCEEDANG | CFS, FOR
L, IN YECE PROBAB | CORD 196 INDICAT ARS, AND ILITY, I | 6-75 ED RECUR ANNUAL N PERCEN | RENCE | | 1.25
80% | BASED
, IN CFS,
AND ANNUA
2
50% | FOR INDIC
L EXCEEDAL
5
20% | O OF RECO | ORD 1966-
CURRENCE
BILITY, | INTERVAL
IN PERCE | , IN
NT
100 | PERIOD
(CON-
SECU- | BASE
DISCH | D ON PER ARGE, IN INTERV | CFS, FOR | CORD 196 INDICAT ARS, AND | 6-75 ED RECUR ANNUAL N PERCEN | RENCE | |) SCHARGE,
YEARS, / | BASED
, IN CFS,
AND ANNUA
2
50% | FOR INDIC
L EXCEEDAL
5
20% | O OF RECO | ORD 1966-
CURRENCE
BILITY, | INTERVAL
IN PERCE | , IN
NT
100 | PERIOD
(CON-
SECU-
TIVE | DISCH. | D ON PER ARGE, IN INTERVIEXCEEDANG | CFS, FOR
L, IN YECE PROBAB | CORD 196 INDICAT ARS, AND ILITY, I | 6-75 ED RECUR ANNUAL N PERCEN | RENCE | | 1.25
80% | BASED
, IN CFS,
AND ANNUA
2
50% | FOR INDIC
L EXCEEDAN
5
20% | O OF RECO | ORD 1966-
CURRENCE
BILITY, | INTERVAL
IN PERCE | , IN
NT
100 | PERIOD
(CON-
SECU-
TIVE
DAYS) | DISCH | D ON PER ARGE, IN INTERVIEXCEEDANG 5 20% | CFS, FOR
AL, IN YE
E PROBAB | CORD 196 INDICAT ARS, AND ILLITY, I 25 4% | ED RECUF
ANNUAL
N PERCEN
50
2% | 100
17 | | 1.25
80% | BASED
, IN
CFS,
AND ANNUA
2
50% | FOR INDIC
L EXCEEDAN
5
20% | O OF RECO | ORD 1966-
CURRENCE
BILITY, | INTERVAL
IN PERCE | , IN
NT
100 | PERIOD
(CON-
SECU-
TIVE
DAYS) | DISCH. | D ON PER ARGE, IN INTERVIEXCEEDANG 5 20% | CFS, FOR
L, IN YE
E PROBAB
10% | CORD 196 INDICAT ARS, AND ILLITY, I | ED RECUF
ANNUAL
N PERCEN
2% | 100
17 | | 1.25
80% | BASED
, IN CFS,
AND ANNUA
2
50% | FOR INDIC
L EXCEEDAN
5
20% | O OF RECO | ORD 1966-
CURRENCE
BILITY, | INTERVAL
IN PERCE | , IN
NT
100 | PERIOD
(CON-
SECU-
TIVE
DAYS) | DISCH. 2 50% | D ON PER ARGE, IN INTERV EXCEEDANG 5 20% 152 116 | CFS, FOR AL, IN YE CE PROBAB 10 10% | CORD 196 CORD 196 CINDICAT ARS, AND ILLITY, I 25 4% | ED RECUF
ANNUAL
N PERCEN
2% | 100
17 | | 1.25
80% | BASED
, IN CFS,
AND ANNUA
2
50% | FOR INDIC
L EXCEEDAN
5
20% | O OF RECO | ORD 1966-
CURRENCE
BILITY, | INTERVAL
IN PERCE | , IN
NT
100 | PERIOD (CON-
SECU-
TIVE
DAYS) | DISCH. 2 50% 107 86 70 | D ON PER ARGE, IN INTERV EXCEEDANG 5 20% 152 116 91 | CFS, FOR AL, IN YE AL, IN YE PROBAB 10 10% 187 137 | CORD 196 CORD 196 CINDICAT ARS, AND ILLITY, I 25 4% | ED RECUF
ANNUAL
N PERCEN
2% | 100
17 | | 1.25
80% | BASED
, IN CFS,
AND ANNUA
2
50% | FOR INDIC
L EXCEEDAN
5
20% | O OF RECO | ORD 1966-
CURRENCE
BILITY, | INTERVAL
IN PERCE | , IN
NT
100 | PERIOD (CON-
SECU-
TIVE DAYS) | DISCH. 2 50% 107 86 70 59 | D ON PER ARGE, IN INTERV EXCEEDANC 5 20% 152 116 91 76 | 10D OF RE
CFS, FOR
AL, IN YE
CE PROBAB
10%
10%
187
137
105
87 | CORD 196 INDICAT ARS, AND ILITY, I 25 4% | 6-75 ED RECUR ANNUAL N PERCEN 50 2% | RENCE | | 1.25
80% | BASED
, IN CFS,
AND ANNUA
2
50% | FOR INDIC
L EXCEEDAN
5
20% | O OF RECO | ORD 1966-
CURRENCE
BILITY, | INTERVAL
IN PERCE | , IN
NT
100 | PERIOD (CON-
SECU-
TIVE DAYS) 1 3 7 7 15 30 | DISCH. 2 50% 107 86 70 59 48 | D ON PER ARGE, IN INTERV EXCEEDANC 5 20% 152 116 91 76 60 | CFS, FOR AL, IN YE E PROBAB 10 10 10 10 10 10 10 10 10 10 10 10 10 | CORD 196 | 6-75 ED RECUR ANNUAL N PERCEN 50 2% | 100
17 | | 1.25
80% | BASED
, IN CFS,
AND ANNUA
2
50% | FOR INDIC
L EXCEEDAN
5
20% | CATED RECO | DRD 1966-
CURRENCE
BILITY,
25
44 | INTERVAL
IN PERCE | , IN
NT
100
1% | PERIOD (CON-
SECU-
TIVE DAYS) | DISCH. 2 50% 107 86 70 48 41 37 | ARGE, IN INTERV. EXCEEDANCE 5 20% | CFS, FOR AL, IN YEE PROBAB 10 10% 187 137 105 87 67 57 | CORD 196 | 6-75 ED RECUR ANNUAL N PERCEN 50 2% | 100
17 | | 1.25
80% | BASED
, IN CFS,
AND ANNUA
2
50% | FOR INDIG | DOF RECONCE PROBA- 10 10% | URRENCE BILITY, 25 4% | INTERVAL
IN PERCE
50
2% | , IN
NT
100
1% | PERIOD (CON-
SECU-
TIVE DAYS) 1 3 7 15 30 60 90 | DISCH. 2 50% 107 86 70 59 48 41 37 | D ON PER ARGE, IN INTERV. EXCEEDANC 5 20% 152 116 91 76 60 51 46 RD 1966-7 | 10 OF RE CFS, FOR AL, IN YE E PROBAB 10 10% 187 137 105 87 67 57 51 | CORD 196 | 6-75 ED RECUR ANNUAL N PERCEN 50 2% | 100
1,8 | 142 YOUNGS RIVER BASIN ## 14251500 YOUNGS RIVER NEAR ASTORIA, OR LOCATION.--Lat 46°04'02", long 123°47'20", in NW½ sec.27, T.7 N., R.9 W., Clatsop County, Hydrologic Unit 17080006, on left bank 50 ft upstream from crest of Youngs River Fails, 2.7 mi southwest of Olney, and 9 mi south of Astoria. DRAINAGE AREA .-- 40.1 mi2. PERIOD OF RECORD. -- August 1927 to September 1958. GAGE.--Water-stage recorder. Datum of gage is 63.27 ft National Geodetic Vertical Datum of 1929. Prior to Mar. 12, 1934, at site 1.2 mi upstream at different datum. REMARKS.--No regulation. Youngs River-Lewis and Clark Water District has diverted water 4 ml above station for domestic use below station since 1941. AVERAGE DISCHARGE.--31 years (water years 1928-58), 178 ft³/s, 128,900 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 4,750 ft³/s Feb. 10, 1949, gage height, 13.66 ft, from rating curve extended above 2,300 ft³/s; minimum, 3.3 ft³/s Sept. 22, 1951. ## STATISTICAL SUMMARIES (BEFORE THE CONSTRUCTION OF THE DIVERSION STRUCTURE) | MONTHLY | AND ANNUAL | MEAN DISCHARGES | 1928-41 | MAGNITUDE A | |---------|------------|-----------------|---------|-------------| | | | | | | MAGNITUDE AND PROBABILITY OF ANNUAL LOW FLOW BASED ON PERIOD OF RECORD 1929-41 998 751 582 751 553 437 399 1140 881 675 1290 1050 790 626 | | | | | STAN-
DARD
DEVIA- | CIENT OF | PERCENT
OF | PERIOD
(CON- | 1 | ARGE, IN
INTERVAL,
EXCEEDANC | IN YEAR | S, AND AN | NNUAL NO | DN - | |---------------------------------------|---------------------------------|-------------------------------------|-------------------------------------|-----------------------------------|--------------------------------|--------------------|---|-----------------|---|--------------------------------------|-----------------------------|---|-----------------| | MONTH | MINIMUM
(CFS) | MAXIMUM
(CFS) | MEAN
(CFS) | TION
(CFS) | VARI-
ATION | ANNUAL
RUNOFF | SECU-
TIVE
Days) | 2
50% | 5
20% | 10
10% | 20
5% | 50
2% | 100 | | OCTOBER | 8.2 | 234 | 81 | 80 | .99 | 4.0 | 1 | 5.3 | 4.4 | 3.9 | 3.6 | | | | NOVEMBER | 7.9 | 638 | 258 | 212 | .82 | 12.8 | 3 | 5.4 | 4.4 | 4.0 | 3.7 | | | | DECEMBER | 16 8 | 1159 | 381 | 260 | .68 | 19.0 | 7 | 5.5 | 4.6 | 4.2 | 3.9. | | _ | | JANUARY | 148 | 611 | 356 | 145 | -41 | 17.7 | 14 | 5.9 | 4.9 | 4.4 | 4.1 | | | | FEBRUARY | 100 | 58 8 | 305 | 162 | .53 | 15.2 | 30 | 6.5 | 5.5 | 5.1 | 4.9 | | _ | | MARCH | 88 | 430 | 279 | 111 | .40 | 13.9 | 60 | 8.2 | 6.6 | 5.9 | 5.3 | | | | APRIL | 44 | 348 | 177 | 105 | .59 | 8.8 | 90 | 10 | 7.9 | 6.9 | 6.2 | | - | | MAY | 22 | 153 | 83 | 41 | .49 | 4.1 | 120 | 13 | 9.4 | 8.2 | 7.5 | | - | | JUNE | 18 | 95 | 46 | 28 | .61 | 2.3 | 183 | 27 | 21 | 19 | 18 | | - | | JULY | 8.7 | 35 | 18 | 7.2 | .40 | .9 | | | | | | | | | AUGUST | 5.7 | 14 | 9.0 | 2.6 | . 29 | . 4 | | | | | | | | | SEPTEMBER | 4.9 | 63 | 17 | 17 | .99 | .9 | | | | | | | | | ANNUAL | 102 | 233 | 167 | 43 | .26 | 100 | OISCHARGE,
YEARS, A | BASE
IN CFS,
ND ANNUA | L EXCEEDAI | OD OF REC | CORD 1928
CURRENCE | I-58
INTERVAL,
IN PERCEN | , I N
NT | PERIOD
(CON- | BASEC
DISCHA | AND PROBA
O ON PERI
ARGE, IN
INTERVA | OD OF REC | INDICATE | 28-41
ED RECUF
ANNUAL | RENCI | | DISCHARGE,
YEARS, A | BASE
IN CFS,
ND ANNUA | FOR INDIC
L EXCEEDAL | OD OF REC
CATED REC
NCE PROBA | CURRENCE
ABILITY, | INTERVAL,
IN PERCEN | , IN
NT | PERIOD
(CON-
SECU- | BASEC
DISCHA | ARGE, IN
INTERVA | OD OF RECEIVED | INDICATE ARS, AND | 28-41 ED RECUP ANNUAL PERCEN | RRENCI | | ISCHARGE,
YEARS, A | BASE
IN CFS,
ND ANNUA | FOR INDIC | OD OF REC | CORD 1928
CURRENCE | I-58
INTERVAL,
IN PERCEN | , I N
NT | PERIOD
(CON-
SECU-
TIVE | BASEC
DISCHA | ARGE, IN
INTERVA | OD OF RECCES, FOR L, IN YE. E PROBAB | INDICATE ARS, AND ILITY, IN | 28-41
ED RECUF
ANNUAL
N PERCEN | RRENCI | | YEARS, A | BASE IN CFS, ND ANNUA 2 50% | FOR INDIC
L EXCEEDAL
5
20% | CATED REC
NCE PROBA | CURRENCE
ABILITY, | INTERVAL,
IN PERCEN | , IN
NT | PERIOD
(CON-
SECU- | BASEC
DISCHA | ARGE, IN
INTERVA | OD OF RECEIVED | INDICATE ARS, AND | 28-41 ED RECUP ANNUAL PERCEN | RRENC | | OISCHARGE,
YEARS, A | BASE
IN CFS,
ND ANNUA | FOR INDIC
L EXCEEDAL
5
20% | CATED REC
NCE PROBA | CURRENCE
ABILITY, | INTERVAL,
IN PERCEN | , IN
NT | PERIOD
(CON-
SECU-
TIVE
DAYS) | DISCHA E 2 50% | O ON PERI | OD OF REC | INDICATE ARS, AND ILITY, IN | 28-41
ED RECUF
ANNUAL
N PERCEN | RRENC | | DISCHARGE,
YEARS, A
1.25
80% | IN CFS,
ND ANNUA
2
50% | FOR INDIC
L EXCEEDAL
5
20% | CATED REC
NCE PROBA | CORD 1928 CURRENCE ABILITY, 25 4% | INTERVAL,
IN PERCEN | , IN
NT | PERIOD
(CON-
SECU-
TIVE | BASEC
DISCHA | ARGE, IN
INTERVA | OD OF RECCES, FOR L, IN YE. E PROBAB | INDICATE ARS, AND ILITY, IN | 28-41
ED RECUF
ANNUAL
N PERCEN | RRENC | DURATION TABLE OF DAILY MEAN FLOW FOR PERIOD OF RECORD 1928-41 15 30 60 | _ | | | DISC | HARGE, | IN CFS, | WHICH WAS | EQUALED | OR EXCE | EDED FOR | INDICATED | PERCENT | OF TIME | | | | |---|-----|-----|------|-------------|---------|-----------|---------|---------|----------|-----------|---------|---------|-----|-----|-----| | _ | 5% | 10% | 15% | 20% | 25% | 30% | 40% | 50% | 60% | 70% | 75% | 80% | 85% | 90% | 95% | | | 660 | 437 | 330 | 25 3 | 199 | 156 | 108 | 73 | 43 | 23 | 17 | 12 | 9.7 | 8.0 | 6.5 | # YOUNGS RIVER BASIN # 14251500 YOUNGS RIVER NEAR ASTORIA, OR--Continued # STATISTICAL SUMMARIES (AFTER THE COMPLETION OF THE DIVERSION STRUCTURE) MONTHLY AND ANNUAL MEAN DISCHARGES 1942-58 MAGNITUDE AND PROBABILITY OF ANNUAL LOW FLOW BASED ON PERIOD OF RECORD 1943-58 143 | | MANIMONA | MAVIMIM | 14541 | STAN-
DARD
DEVIA- | COEFFI-
CIENT OF | PERCENT
OF | PERIOD
(CON- | J | NTERVAL, | , IN YEA | R INDICAT
RS, AND A
BILITY, I | |)N- | |---------------------------------------|--------------------------------|------------------------|------------------|---|----------------------------------|---------------------------------|---|---|--
--|---|--|-----------| | MONTH | MINIMUM
(CFS) | MAXIMUM
(CFS) | MEAN
(CFS) | TION
(CFS) | VARI-
ATION | ANNUAL
RUNOFF | SECU-
TIVE
DAYS) | 2
50% | 5
20% | 10
10% | 20
5% | 50
2% | 100
1% | | OCTOBER | 5.8 | 280 | 109 | 89 | .82 | 4.8 | 1 | 5.9 | 4.5 | 4.0 | 3.6 | | | | NOVEMBER | 21 | 598 | 291 | 141 | . 48 | 12.8 | 3 | 6.0 | 4.6 | 4.1 | 3.7 | | | | DECEMBER | 115 | 746 | 433 | 154 | .36 | 19.1 | 7 | 6.2 | 4.8 | 4.2 | 3.8 | | | | JANUARY | 130 | 879 | 405 | 207 | .51 | 17.9 | 14 | 6.6 | 5.1 | 4.5 | 4.1 | | | | FEBRUARY | 187 | 716 | 412 | 132 | .32 | 18.2 | 30 | 7.5 | 5.7 | 5.0 | 4.5 | | | | MARCH | 143 | 6 05 | 276 | 125 | .45 | 12.2 | 6 0 | 9.5 | 7.0 | 6.0 | 5.3 | | | | APRIL | 71 | 332 | 178 | 80 | .45 | 7.9 | 90 | 12 | 8.4 | 7.1 | 6.3 | | | | MAY | 27 | | | | | | | 17 | 11 | 9.2 | 7.6 | | | | | | 184 | 73 | 40 | .55 | 3.2 | 120 | | | | | | | | JUNE | 16 | 96 | 44 | 20 | .46 | 1.9 | 183 | 35 | 25 | 20 | 17 | | | | JULY | 8.1 | 50 | 22 | 13 | .58 | 1.0 | | | | | | | | | AUGUST | 5.0 | 21 | 11 | 4.5 | .41 | .5 | | | | | | | | | SEPTEMBER | 5.9 | 31 | 13 | 7.7 | . 57 | •6 | | | | | | | | | ANNUAL | 116 | 293 | 188 | 40 | .21 | 100 | | | | | | | | | DISCHARGE, | BASE
,
IN CFS, | | OD OF RE | CORD | INTERVAL |
, IN | | BASED | ON PERI | OD OF RE | OF ANNUAL
ECORD 19
R INDICAT | 42-58

ED RECUR | | | DISCHARGE, | BASE
,
IN CFS, | D ON PERI | OD OF RE | CORD | INTERVAL
IN PERCE |
, IN | PERIOD
(CON-
SECU- | BASED

DISCHA | ON PERI | OD OF RECEIVED | ECORD 19 | 42-58
ED RECUR
ANNUAL | RENCE | | DISCHARGE,
YEARS, | BASE
IN CFS, | FOR INDI | OD OF RE | CORD
COURRENCE
BABILITY, | INTERVAL
IN PERCE | , IN
NT | PERIOD
(CON- | BASED

DISCHA | ON PERI | OD OF RECEIVED | ECORD 19 R INDICATEARS, AND | 42-58
ED RECUR
ANNUAL | RENCE | | DISCHARGE,
YEARS, / | BASE
, IN CFS,
AND ANNUA | FOR INDIA
L EXCEEDA | OD OF RE | CORD
CURRENCE
BABILITY, | INTERVAL
IN PERCE | , IN
NT
 | PERIOD
(CON-
SECU-
TIVE
DAYS) | BASED DISCHA E 2 50% | ON PERI | CFS, FOR | ECORD 19 R INDICAT EARS, AND BILITY, 1 25 4% | 42-58 ED RECUR ANNUAL N PERCEN 50 2% | RENCE | | DISCHARGE,
YEARS, /
1.25
80% | BASE , IN CFS, AND ANNUA 2 50% | FOR INDIA
L EXCEEDA | OD OF RE | CORD
CURRENCE
BABILITY, | INTERVAL
IN PERCE | , IN
NT
 | PERIOD
(CON-
SECU-
TIVE
DAYS) | BASED DISCHA E 2 50% | ON PERI | CFS, FORL, IN YEE PROBAR | ECORD 19 R INDICAT EARS, AND BILITY, 1 25 4% 2960 | 42-58 ED RECUR ANNUAL N PERCEN 50 2% | RENCE | | DISCHARGE,
YEARS, / | BASE , IN CFS, AND ANNUA 2 50% | FOR INDIA
L EXCEEDA | OD OF RE | CORD
CURRENCE
BABILITY, | INTERVAL
IN PERCE | , IN
NT
 | PERIOD
(CON-
SECU-
TIVE
DAYS) | BASED DISCHA E 2 50% 1900 1400 | ON PERI
RGE, IN
INTERVA
XCEEDANC
5
20%
2340
1720 | CFS, FORL, IN YEE PROBAR | 2960
2180 | 42-58 ED RECUR ANNUAL N PERCEN 50 2% | 100
1% | | DISCHARGE,
YEARS, /
1.25
80% | BASE , IN CFS, AND ANNUA 2 50% | FOR INDIA
L EXCEEDA | OD OF RE | CORD
CURRENCE
BABILITY, | INTERVAL
IN PERCE | , IN
NT
 | PERIOD (CON- SECU- TIVE DAYS) 1 3 7 | BASED DISCHA E 2 50% 1900 1400 1050 | ON PERI
 | OD OF RECEIVED TO THE PROBABLE | 2960
2180
1560 | 42-58 ED RECUR ANNUAL N PERCEN 50 2% | 100
1% | | DISCHARGE,
YEARS, /
1.25
80% | BASE , IN CFS, AND ANNUA 2 50% | FOR INDIA
L EXCEEDA | OD OF RE | CORD
CURRENCE
BABILITY, | INTERVAL
IN PERCE | , IN
NT
 | PERIOD (CON-
SECU-
TIVE DAYS) | BASED DISCHA E 2 50% 1900 1400 1050 777 | ON PERI
RGE, IN
INTERVA
XCEEDANG
5
20%
 | OD OF RECEIVED TO THE PROBABLE | 2960
2180
1170 | 42-58 ED RECUR ANNUAL N PERCEN 50 2% | 100
1% | | DISCHARGE,
YEARS, /
1.25
80% | BASE , IN CFS, AND ANNUA 2 50% | FOR INDIA
L EXCEEDA | OD OF RE | CORD
CURRENCE
BABILITY, | INTERVAL
IN PERCE | , IN
NT
 | PERIOD (CON-
SECU-
TIVE DAYS) | BASED DISCHA E 2 50% 1900 1400 1050 777 611 | ON PERI
RGE, IN
INTERVA
XCEEDANC
5
20%
2340
1720
1280
960
766 | OD OF RICCOMP. CFS, FOIL, IN YIE PROBABLE 10 10 10 1930 1410 1060 844 | 25 4% | 42-58 ED RECUR ANNUAL N PERCEN 50 2% | 100
1% | | DISCHARGE,
YEARS, /
1.25
80% | BASE , IN CFS, AND ANNUA 2 50% | FOR INDIA
L EXCEEDA | OD OF RE | CORD
CURRENCE
BABILITY, | INTERVAL
IN PERCE | , IN
NT
 | PERIOD (CON-
SECU-
TIVE DAYS) | BASED DISCHA E 2 50% 1900 1400 1050 777 611 477 | ON PERI
RGE, IN
INTERVA
XCEEDANC
5
20%
2340
1720
1280
960
766
602 | OD OF RICCES, FOIL, IN YEE PROBAGE 10 10% 2620 1930 1410 106844 677 | 25 4% 2960 2180 1560 1170 922 764 | 42-58 ED RECUR ANNUAL N PERCEN 50 2% | 100
1% | | DISCHARGE,
YEARS, /
1.25
80% | BASE , IN CFS, AND ANNUA 2 50% | FOR INDIA
L EXCEEDA | OD OF RE | CORD
CURRENCE
BABILITY, | INTERVAL
IN PERCE | , IN
NT
 | PERIOD (CON-
SECU-
TIVE DAYS) | BASED DISCHA E 2 50% 1900 1400 1050 777 611 | ON PERI
RGE, IN
INTERVA
XCEEDANC
5
20%
2340
1720
1280
960
766 | OD OF RICCOMP. CFS, FOIL, IN YIE PROBABLE 10 10 10 1930 1410 1060 844 | 25 4% | 42-58 ED RECUR ANNUAL N PERCEN 50 2% | 100
1% | | DISCHARGE,
YEARS, /
1.25
80% | BASE , IN CFS, AND ANNUA 2 50% | FOR INDIA
L EXCEEDA | CATED RENCE PROE | CORD
CURRENCE
BABILITY,
25
4% | INTERVAL
IN PERCE
50
2% | , IN
NT
100
1% | PERIOD (CON-
SECU-
TIVE DAYS) | DISCHA E 2 50\$ 1900 1400 1050 777 611 477 460 | ON PERI
RGE, IN
INTERVM
XCEEDANC
5
20%
 | CFS, FOIL, IN YEE PROBAI
10 10%
2620
1930
1410
1060
844
677
612 | 25 4% 2960 2180 1560 1170 922 764 | 42-58 ED RECUR ANNUAL N PERCEN 50 2% | 100
1% | | DISCHARGE,
YEARS, /
1.25
80% | BASE , IN CFS, AND ANNUA 2 50% | FOR INDI-
L EXCEEDA | CATED RENCE PROE | CORD
CURRENCE
SABILITY,
25
4% | INTERVAL
IN PERCE
50
2% | , IN
NT
100
1%

 | PERIOD (CON- SECU- TIVE DAYS) 1 3 7 15 30 60 90 | DISCHA E 2 50% 1900 1400 1050 777 611 477 460 OF RECOR | ON PERI RGE, IN INTERVA XCEEDANC 5 20% 1720 1720 1280 960 766 602 561 D 1942-5 | OD OF RICE PROBAL 10 10 10 10 10 10 10 10 10 10 10 10 10 1 | 25
4%
2960
2180
1560
1170
922
764
666 | 42-58 ED RECUR ANNUAL N PERCEN 50 2% | 100
1% | | DISCHARGE,
YEARS, /
1.25
80% | BASE , IN CFS, AND ANNUA 2 50% | FOR INDI-
L EXCEEDA | CATED RENCE PROE | CORD
CURRENCE
SABILITY,
25
4% | INTERVAL IN PERCE 50 2% OF DAILY | , IN
NT
100
1%

 | PERIOD (CON- SECU- TIVE DAYS) | DISCHA E 2 50% 1900 1400 1050 777 611 477 460 OF RECOR | ON PERI RGE, IN INTERVA XCEEDANC 5 20% 1720 1720 1280 960 766 602 561 D 1942-5 | OD OF RICE PROBAL 10 10 10 10 10 10 10 10 10 10 10 10 10 1 | 25
4%
2960
2180
1560
1170
922
764
666 | 42-58 ED RECUR ANNUAL N PERCEN 50 2% | 100
1% | ## NEHALEM RIVER BASIN ## 14301000 NEHALEM RIVER NEAR FOSS, OR LOCATION.--Lat 45°42'15", long 123°45'15", in NW± sec.35, T.3 N., R.9 W., Tillamook County, Hydrologic Unit 17100202, on right bank 0.2 mi upstream from Cook Creek, 2.2 mi northeast of Foss, and at mile 13.5. DRAINAGE AREA .-- 667 mi2. 10900 PERIOD OF RECORD. -- October 1939 to September 1982. GAGE.--Water-stage recorder. Datum of gage is 32.60 ft National Geodetic Vertical Datum of 1929 (State Highway Department bench mark). Prior to Nov. 11, 1939, nonrecording gage. REMARKS.--No regulation. Several small diversions for irrigation and domestic use above station. AVERAGE DISCHARGE.--43 years, 2,727 ft³/s, 55.52 in/yr, 1,976,000 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 46,900
ft³/s Jan. 20, 1972, gage height, 23.11 ft; minimum, 34 ft³/s Aug. 29-31, 1967. ## STATISTICAL SUMMARIES 100 | М | ONTHLY AN | ID ANNUAL | MEAN DI | SCHARGES | 1940-82 | | МА | | | | OF ANNU | | LOW | |--|-----------|------------------|-----------|---------------------------------|--|--|---|--|---|--|---|---|---| | | MINIMUM | MAX I MUM | MEAN | STAN-
DARD
DEVIA-
TION | COEFFI-
CIENT OF
VARI- | PERCENT
OF
ANNUAL | PERIOD
(CON-
SECU- | DISC | INTERVA | L, IN YE | OR INDICARS, AND | ANNUAL I | NON- | | MONTH | (CFS) | (CFS) | (CFS) | (CFS) | ATION | RUNOFF | TIVE
DAYS) | 2
50% | 5
20% | 10
10% | 20
5 % | 50
2 % | 100
1% | | OCTOBER
NOVEMBER
DECEMBER
DECEMBER
JANUARY
FEBRUARY
MARCH
APRIL
MAY
JUNE
JULY
AUGUST
SEPTEMBER
ANNUAL | 1063
 | | | | .84
.62
.41
.50
.42
.44
.41
.46
.33
.33
.86
.24 | 2.6
11.1
19.6
19.6
18.1
13.4
8.2
3.8
1.7
.8
.4
.7 | 1
3
7
14
30
60
90
120
183 | | | | 49
50
53
57
65
77
91
115
231 | - | 37
38
40
44
50
60
72
91
170 | | | , IN CFS, | | ICATED R | ECURRENCE | INTERVAL | |
PERIOD
(CON- | | HARGE, INTERN | N CFS, F | RECORD OR INDICA YEARS, AN | ATED RECU | _ | | 1.25
80% | 2
50% | 5
20 % | 10
10% | 25
4% | 50
2 % | 100
1% | SECU-
TIVE | 2 |
5 | 10 |
25 | 50 | 100 | | 21700 | 27800 | 35200 | 39600 | 44900 4 |
18600 52 | 100 | DAYS) | 50%
 | 20% | 10% | 4% | 2 %
 | 1%
 | | WEIGHTE | SKEW = | 141 | | | | | 1
3
7
15
30
60
90 | 25300
21800
16700
13000
9810
7690
6960 | 31400
27200
20400
15800
11800
9480
8540 | 34900
30400
22300
17200
12800
10400
9290 | 39000
34100
24300
18500
13700
11400
10000 | 41700
36700
25600
19300
14200
12000
10400 | 44200
39100
26700
19900
14600
12500
10800 | | | | | DURATIO | ON TABLE | OF DAILY | MEAN FLOW | FOR PERIOD | OF REC | ORD 1940- | 82 | DISCH | ARGE, IN | CFS, WH | CH WAS EQ | UALED OR | EXCEEDED FO | R INDIC | ATED PERC | ENT OF | TIME | | | 7510 5610 4380 3440 2770 1820 1140 651 364 271 202 159 129 ## WILSON RIVER BASIN 145 ## 14301500 WILSON RIVER NEAR TILLAMOOK, OR LOCATION.--Lat 45°29'05", long 123°41'20", in SW\set sec.8, T.1 S., R.8 W., Tillamook County, Hydrologic Unit 17100203, on right bank 0.2 mi upstream from Negro Jack Creek, 8.0 mi east of Tillamook, and at mile 11.4. DRAINAGE AREA.--161 mi², at cableway, 2.0 mi downstream, where all discharge measurements are made. PERIOD OF RECORD.--October 1914 to September 1915, August to November 1916, July 1931 to September 1982. Prior to January 1915 monthly discharge only, published in WSP 1318. GAGE.--Water-stage recorder. Datum of gage is 71.89 ft National Geodetic Vertical Datum of 1929. Dec. 18, 1914, to Nov. 4, 1916, nonrecording gage at site 2.8 mi downstream at different datum. July 30, 1931, to Sept. 30, 1938, nonrecording gage at site 2.82 mi downstream at datum 28.83 ft lower. Oct. 1, 1938, to Oct. 17, 1968, water-stage recorder at site 2.1 mi downstream at datum 29.76 ft lower. REMARKS.--No regulation. Small diversions for domestic use above station. 5% 4550 10% 20% 1790 15% 2270 25% 1460 30% 1220 40% 852 50% 591 60% 375 70% 223 75% 174 80% 137 85% 110 90% 95% 75 AVERAGE DISCHARGE.--52 years (water years 1915, 1932-82), 1,203 ft³/s, 101.47 in/yr, 871,600 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.—Maximum discharge, 36,000 ft³/s Jan. 20, 1972, gage height, 16.91 ft; maximum gage height, 20.26 ft Dec. 22, 1964 (site and datum then in use); minimum discharge, 32 ft³/s Sept. 5, 1973, but may have been less for short period following a landslide Jan. 31, 1965. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood in February 1916 reached a stage of 20.8 ft, from floodmark, site and datum then in use. ## STATISTICAL SUMMARIES | | | | | CTAN | | | | | | | | | | |-------------------------|----------|------------------|-----------|---------------------------------|------------------------------|-------------------------|--------------------------|-------------|------------------|-----------|------------------|-------------------------------------|--------------| | | MUMININ | MAXIMUM | MEAN | STAN-
DARD
DEVIA-
TION | COEFFI-
CIENT OF
VARI- | PERCENT
OF
ANNUAL | PERIOD
(CON-
SECU- | DISC | | _, IN YE | OR INDICARS, AND | ANNUAL | NON- | | | (CFS) | (CFS) | (CFS) | (CFS) | ATION | RUNOFF | TIVE
DAYS) | 2
50% | 5
20 % | 10
10% | 20
5% | 50
2 % | 100
19 | | OCTOBER |
58 | 2230 | 621 | 527 | .85 | 4.3 | 1 | 68 | 55 | 49 | 44 | 38 | 35 | | NOVEMBER | 87 | 3975 | 1881 | 1025 | .54 | 13.0 | 3 | 69 | 56 | 49 | 44 | 39 | 3€ | | DECEMBER | 378 | 7988 | 2768 | 1265 | .46 | 19.1 | 7 | 71 | 58 | 51 | 46 | 41 | 38 | | JANUARY | 344 | 5776 | 2572 | 1225 | .48 | 17.8 | 14 | 75 | 61 | 54 | 49 | 43 | 4(| | EBRUARY | 642 | 4619 | 2251 | 886 | .39 | 15.5 | 30 | 82 | 66 | 58 | 53 | 47 | 43 | | MARCH | 595 | 3637 | 1813 | 734 | .40 | 12.5 | 60 | 97 | 75 | 65 | 58 | 51 | 47 | | APRIL | 426 | 2550 | 1184 | 457 | .39 | 8.2 | 90 | 115 | 86 | 74 | 66 | 57 | 53 | | 4AY | 202 | 1391 | 622 | 267 | .43 | 4.3 | 120 | 144 | 104 | 89 | 79 | 70 | 64 | | JUNE | 164 | 876 | 327 | 166 | .51 | 2.3 | 183 | 267 | 196 | 167 | 147 | 126 | 115 | | JULY | 79 | 304 | 166 | 59 | .36 | 1.1 | | | | | | | | | AUGUST | 44 | 240 | 108 | 35 | .33 | .7 | | | | | | | | | SEPTEMBER | 40 | 780 | 168 | 157 | .93 | 1.2 | | | | | | | | | ANNUAL | 524 | 1698 | 1203 | 256 | .21 | 100 | | | | | | | | | DISCHARGE,
YEARS, AN | BASE | FOR INDIC | OD OF RE | CORD 191 CURRENCE | INTERVAL,
IN PERCE | , IN
NT | PERIOD
(CON- | BASE | | CFS, FO | RECORD | 1915-82

ATED REC
ND ANNUA | URRENCE
L | | 1.25
80% | 2
50% | 5
20 % | 10
10% | 25
4% | 50 · | 100
1% | SECU-
TIVE | 2 | - -5 | 10 | 25 | 50 | 100 | | | | | | | | | DAYS) | 50 % | 20% | 10% | 4% | 2% | 195 | | 13400 1 | 7500 | 22900 26 | 5300 3 | 0600 3 | 3600 367 | 700 | | | | | | | | | | | | | | | | 1 | 13200 | 17200 | 19700 | 22900 | 25200 | 27400 | | WEIGHTED | SKEW = | .010 | | | | | 3 | 9770 | 12600 | 14600 | 17100 | 19100 | 21200 | | | | | | | | | 7 | 7080 | 9040 | 10300 | 12000 | 13200 | 14400 | | | | | | | | | 15 | 5190 | 6590 | 7460 | 8520 | 9270 | 10000 | | | | | | | | | 30 | 3970 | 4960 | 5540 | 6200 | 6660 | 7080 | | | | | | | | | 60 | 3150 | 3900 | 4330 | 4810 | 5130 | 5430 | | | | | | | | | 90 | 2870 | 3470 | 3760 | 4050 | 4220 | 4360 | | | | | | | | | | | | | | | | 146 TRASK RIVER BASIN ## 14302500 TRASK RIVER NEAR TILLAMOOK, OR LOCATION.--Lat 45°26'25", long 123°43'00", in NW±NW± sec.31, T.1 S., R.8 W., Tillamook County, Hydrologic Unit 17100203, on right bank 0.6 mi upstream from Gold Creek, 6.2 mi east of Tillamook, and at mile 10.4. DRAINAGE AREA. -- 145 ml2. PERIOD OF RECORD.--July 1931 to September 1955, October 1961 to June 1972. GAGE.--Water-stage recorder. Datum of gage is 58 ft National Geodetic Vertical Datum of 1929 (river-profile survey). REMARKS .-- No regulation. Water diverted from the J. W. Barney Reservoir since July 1, 1972. AVERAGE DISCHARGE.--34 years (water years 1932-55, 1962-72), 966 ft³/s, 90.47 in/yr, 699,900 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 23,000 ft³/s Dec. 22, 1964, gage height, 13.34 ft; minimum, 42 ft³/s Oct. 15-18, 1952, Sept. 28, 1967. EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage about 17 ft, probably Nov. 20, 1921, discharge, 30,000 ft³/s, from rating curve extended above 12,000 ft³/s. Flood of Dec. 21, 1955, reached a stage of 13.09 ft, from floodmark, discharge, 20,200 ft³/s. # STATISTICAL SUMMARIES MONTHLY AND ANNUAL MEAN DISCHARGES 1932-71 MAGNITUDE AND PROBABILITY OF ANNUAL LOW FLOW BASED ON PERIOD OF RECORD 1933-71 | | MINIMIN | MAVIMIN | MEAN | STAN-
DARD
DEVIA- | COEFFI-
CIENT OF | PERCENT
OF | PERIOD
(CON- | | ARGE, IN
INTERVAL
EXCEEDAN | , IN YEAR | RS, AND | ANNUAL NO | -NC | |-----------|------------------|------------------|---------------|-------------------------|---------------------|------------------|------------------------|----------|----------------------------------|-----------|----------|-----------|-----------| | MONTH | MINIMUM
(CFS) | MAXIMUM
(CFS) | MEAN
(CFS) | TION
(CFS) | VARI-
ATION | ANNUAL
RUNOFF | SECU-
TIVE
DAYS) | 2
50% | 5
20% | 10
10% | 20
5% | 50
2% | 100
1% | | OCTOBER | 50 | 1556 | 449 | 376 | .84 | 3.9 | 1 | 71 | 58 | 52 | 47 | 42 | | | NOVEMBER | 78 | 3289 | 1401 | 769 | .55 | 12.0 | 3 | 72 | 59 | 53 | 48 | 42 | | | DECEMBER | 714 | 5491 | 2172 | 988 | .45 | 18.7 | 7 | 74 | 61 | 54 | 49 . | 44 | | | JANUARY | 644 | 4377 | 2135 | 962 | .45 | 18.4 | 14 | 78 | 64 | 57 | 52 | 46 | | | FEBRUARY | 577 | 3452 | 1805 | 657 | .36 | 15.5 | 30 | 85 | 69 | 62 | 56 | 50 | | | MARCH | 464 | 2695 | 1493 | 547 | . 37 | 12.8 | 60 | 97 | 77 | 69 | 62 | 55 | | | APRIL | 383 | 1951 | 944 | 382 | .40 | 8.1 | 90 | 110 | 87 | 77 | 69 | 61 | | | MAY | 196 | 1113 | 531 | 210 | .40 |
4.6 | 120 | 134 | 102 | 89 | 80 | 71 | | | IUNE | 161 | 636 | 303 | 127 | .42 | 2.6 | 183 | 229 | 174 | 150 | 132 | 113 | | | IULY | 90 | 273 | 165 | 48 | •29 | 1.4 | | | | | | | | | NUGUST | 59 | 183 | 108 | 27 | .25 | .9 | | | | | | | | | SEPTEMBER | 55 | 492 | 127 | 84 | •66 | 1.1 | | | | | | | | | ANNUAL | 563 | 1273 | 966 | 167 | .17 | 100 | | | | | | | | MAGNITUDE AND PROBABILITY OF INSTANTANEOUS PEAK FLOW BASED ON PERIOD OF RECORD 1932-71 MAGNITUDE AND PROBABILITY OF ANNUAL HIGH FLOW BASED ON PERIOD OF RECORD 1932-71 | DISCHARGE
YEARS, | | | | | CE INTER | | PERIOD
(CON- | DISC | INTER | /AL, IN | YEARS, A | ATED RECUI
ND ANNUAL
IN PERCEI | | |---------------------|----------|------------------|-----------|----------|----------|-------------------|-----------------|----------------|-------|---------|----------|--------------------------------------|-----| | 1.25
80% | 2
50% | 5
20 % | 10
10% | 25
4% | 50
2% | 100
1 % | SECU-
TIVE | - - |
5 | 10 |
25 | 50 | 100 | | | | | | | | | DAYS) | 50% | 20% | 10% | 4% | 2% | 1% | | 9900 | 12300 | 15600 | 17700 | 20500 | 22500 | | | | | | | | | | | | | | | | | 1 | 9550 | 12200 | 14000 | 16500 | 18400 | | | WEIGHTE | D SKEW = | .263 | | | | | 3 | 7280 | 9290 | 10800 | 12800 | 14500 | | | | | | | | | | 7 | 5450 | 6950 | 7990 | 9340 | 10400 | | | | | | | | | | 15 | 4170 | 5250 | 5880 | 6590 | 7080 | | | | | | | | | | 30 | 3170 | 3970 | 4420 | 4910 | 5230 | | | | | | | | | | 60 | 2510 | 3070 | 3370 | 3700 | 3910 | | | | | | | | | | 90 | 2300 | 2720 | 2920 | 3100 | 3210 | | DURATION TABLE OF DAILY MEAN FLOW FOR PERIOD OF RECORD 1932-71 |
 | | DISC | HARGE, | N CFS, | WHICH WAS | EQUALED | OR EXCE | DED FOR | INDICATED | PERCENT | OF TIME | | | | |----------|------|------|--------|--------|-----------|---------|---------|---------|-----------|---------|---------|-----|-----|-----| |
5% | 10% | 15% | 20% | 25% | 30% | 40% | 50% | 60% | 70% | 75% | 80% | 85% | 90% | 95% | |
3550 | 2390 | 1810 | 1440 | 1180 | 990 | 719 | 502 | 330 | 205 | 163 | 133 | 112 | 93 | 78 | ## NESTUCCA RIVER BASIN 147 ## 14302900 NESTUCCA RIVER NEAR FAIRDALE. OR LOCATION.--Lat 45°18'40", long 123°25'05", in SW‡NW‡ sec.15, T.3 S., R.6 W., Yamhill County, Hydrologic Unit 17100203, on right bank 100 ft upstream from former Meadow Lake, 0.4 mi downstream from Walker Creek, 5.3 mi southwest of Fairdale, and at mile 49.3. DRAINAGE AREA .-- 6.18 mi2. 122 81 59 46 37 30 21 15 9.6 7.4 6.0 4.7 3.8 3.2 2.5 PERIOD OF RECORD.--June 1960 to September 1982. GAGE.--Water-stage recorder. Datum of gage is 1,778.99 ft National Geodetic Vertical Datum of 1929 (levels by city of McMinnville). REMARKS.--Flow regulated since March 1969 by McGuire Lake about 0.6 mi above station. Flow diverted from lake to Haskins Creek basin via trans-basin aqueduct. AVERAGE DISCHARGE.--22 years, 32.2 ft³/s, 70.76 in/yr, 23,330 acre-ft/yr, adjusted for storage and diversion. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 876 ft3/s Dec. 22, 1964, gage height, 10.43 ft; minimum, 0.76 ft3/s Aug. 9, 1976. #### STATISTICAL SUMMARIES | | ONTHLY AN | D ANNOAL | | | | | | | | | | | | |----------------------------------|--|---|--|---|--|--|---|--|--|--|---|--|--------------| | | MINIMUM | MAXIMUM | MEAN | STAN-
DARD
DEVIA-
TION | COEFFI-
CIENT OF
VARI- | PERCENT
OF
ANNUAL | PERIOD
(CON-
SECU- | 1 | NTERVAL, | IN YEAR | INDICATE
S, AND AN
ILITY, IN | NNUAL NO |)N- | | МОМТН | (CFS) | (CFS) | (CFS) | (CFS) | ATION | RUNOFF | TIVE
DAYS) | 2
50 % | 5
20 % | 10
10% | 20
5% | 50
2% | 100 | | OCTOBER | 3.8 | 31 | 16 | 8.4 | .52 | 4.4 | 1 | 2.2 | 1.5 | 1.2 | 1.0 | | | | NOVEMBER | 13 | 118 | 55 | 29 | .53 | 15.0 | 3 | 2.4 | 1.6 | 1.3 | 1.1 | | | | DECEMBER | 18 | 153 | 76 | 42 | .56 | 20.6 | 7 | 2.5 | 1.7 | 1.3 | 1.1 | | | | ANUARY | 4.4 | 132 | 59 | 38 | .64 | 16.1 | 14 | 2.9 | 1.8 | 1.4 | 1.1 | | | | EBRUARY | 8.4 | 111 | 46 | 29 | .63 | 12.4 | 30 | 3.1 | 2.0 | 1.6 | 1.4 | | | | MARCH | 13 | 80 | 43 | 24 | •55 | 11.7 | 60 | 3.6 | 2.3 | 1.8 | 1.5 | | | | APRIL | 7.2 | 63 | 32 | 16 | •49 | 8.7 | 90 | 4.5 | 2.9 | 2.3 | 1.9 | | | | YAN | 6.7 | 28 | 15 | 6.2 | .41 | 4.1 | 120 | 5.6 | 3.8 | 3.0 | 2.4 | | | | JUNE | 4.5 | 19 | 8.0 | 4.0 | •50 | 2.2 | 183 | 8.8 | 6.3 | 5.1 | 4.3 | | | | JULY | 2.2 | 9.5 | 5.0 | 2.4 | .49 | 1.4 | | | | | | | | | AUGUST | 2.1 | 9.1 | 4.5 | 2.6 | • 59 | 1.2 | | | | | | | | | SEPTEMBER | 1.2 | 16 | 8.1 | 5.1 | .62 | 2.2 | ANNUAL

MAGNIT | | 45
PROBABILI
D ON PERIO | | | | 100
 | MAG | | | |
F ANNUAL
CORD 197 | | .OW | | MAGNII | FUDE AND
BASE | PROBABILI | TY OF INS | STANTANE(CORD 196 | DUS PEAK F
1-82 | FLOW | MAG | BASED

DISCHAI | ON PERIORS RGE, IN O | OD OF REC | | 70-82

ED RECUF
ANNUAL | RENCE | | MAGNIT
DISCHARGE,
YEARS, A | FUDE AND
BASE
. IN CFS,
AND ANNUA | PROBABILI
D ON PERIO
FOR INDIO
L EXCEEDA | TY OF INS
DD OF REC
CATED REC
NCE PROBA | STANTANEC
CORD 196
CURRENCE
ABILITY, | DUS PEAK F
1-82
INTERVAL,
IN PERCEI | FLOW | PERIOD
(CON-
SECU- | BASED DISCHAI | ON PERIORS RGE, IN O | OD OF REC
CFS, FOR
L, IN YEA
E PROBAB | INDICATE ARS, AND | 70-82 ED RECUF
ANNUAL N PERCEN | RRENCE | | MAGNIT
DISCHARGE,
YEARS, A | TUDE AND
BASE
, IN CFS, | PROBABILI
D ON PERIO
FOR INDIG
L EXCEEDA | TY OF INS | STANTANEC
CORD 196
CURRENCE
ABILITY, | DUS PEAK F
1-82
INTERVAL,
IN PERCE | FLOW
, IN | PERIOD
(CON- | BASED

DISCHAI | ON PERIORS RGE, IN O | OD OF REC | CORD 197
INDICATE | 70-82

ED RECUF
ANNUAL | RENCE | | MAGNIT | FUDE AND
BASE
. IN CFS,
AND ANNUA | PROBABILI
D ON PERIO
FOR INDIO
L EXCEEDA | TY OF INS
DD OF REC
CATED REC
NCE PROBA | STANTANEC
CORD 196
CURRENCE
ABILITY, | DUS PEAK F
1-82
INTERVAL,
IN PERCEI | FLOW | PERIOD
(CON-
SECU-
TIVE
DAYS) | DISCHAI | ON PERIO | OD OF REC | INDICATE ARS, AND ILITY, IN | 70-82 ED RECUF ANNUAL N PERCEN 50 2% | RRENCE | | MAGNITONISCHARGE, YEARS, A | FUDE AND BASE IN CFS, AND ANNUA 2 50% | PROBABILI'D ON PERIO | TY OF INS
DD OF REC
CATED REC
NCE PROBA | STANTANEC
CORD 196
CURRENCE
ABILITY, | DUS PEAK F
1-82
INTERVAL,
IN PERCEI | FLOW | PERIOD
(CON-
SECU-
TIVE
DAYS) | BASED DISCHAI E: 2 50% | ON PERIOR RGE, IN O INTERVA XCEEDANC 5 20% | OD OF REC | INDICATE ARS, AND ILITY, IN 25 4% | 70-82 ED RECUF ANNUAL N PERCEN 50 2% | RRENCE
IT | | MAGNITONISCHARGE, YEARS, A | FUDE AND
BASE
IN CFS,
AND ANNUA | PROBABILI'D ON PERIO | TY OF INS
DD OF REC
CATED REC
NCE PROBA | STANTANEC
CORD 196
CURRENCE
ABILITY, | DUS PEAK F
1-82
INTERVAL,
IN PERCEI | FLOW | PERIOD (CON- SECU- TIVE DAYS) | DI SCHAI
E:
2
50% | ON PERIO | OD OF REC
CFS, FOR
L, IN YE,
E PROBAB
10
10% | INDICATE ARS, AND ILITY, IN 25 4% 503 370 | FORECUF
ANNUAL
N PERCEN
50
2% | RRENCE
IT | | MAGNITONISCHARGE, YEARS, A | FUDE AND BASE IN CFS, AND ANNUA 2 50% | PROBABILI'D ON PERIO | TY OF INS
DD OF REC
CATED REC
NCE PROBA | STANTANEC
CORD 196
CURRENCE
ABILITY, | DUS PEAK F
1-82
INTERVAL,
IN PERCEI | FLOW | PERIOD (CON- SECU- TIVE DAYS) 1 3 7 | DI SCHAI E: 2 50% 272 217 165 | ON PERIOR RGE, IN CONTROL STATEMENT OF THE CON | OD OF REC
CFS, FOR
L, IN YE,
E PROBAB
10
10%
440
330
260 | INDICATE ARS, AND ILITY, IN 25 4% 503 370 297 | FD RECUP
ANNUAL
N PERCEN
50
2% | RRENCE
IT | | MAGNITONISCHARGE, YEARS, A | FUDE AND BASE IN CFS, AND ANNUA 2 50% | PROBABILI'D ON PERIO | TY OF INS
DD OF REC
CATED REC
NCE PROBA | STANTANEC
CORD 196
CURRENCE
ABILITY, | DUS PEAK F
1-82
INTERVAL,
IN PERCEI | FLOW | PERIOD (CON-
SECU-
TIVE DAYS) | BASED DISCHAI 2 50% 272 217 165 136 | ON PERIO
INTERVAL
XCEEDANCE
5
20%
380
291
226
191 | OD OF REG
CFS, FOR
L, IN YEA
E PROBAB
10
10%
440
330
260
222 | INDICATE ARS, AND ILITY, IN 25 4% 503 370 297 254 | FOR THE CONTROL OF TH | RRENCE | | MAGNITONISCHARGE, YEARS, A | FUDE AND BASE IN CFS, AND ANNUA 2 50% | PROBABILI'D ON PERIO | TY OF INS
DD OF REC
CATED REC
NCE PROBA | STANTANEC
CORD 196
CURRENCE
ABILITY, | DUS PEAK F
1-82
INTERVAL,
IN PERCEI | FLOW | PERIOD (CON-
SECU-
TIVE DAYS) 1 3 7 7 15 30 | DISCHAI E: 2 50% 272 217 165 136 105 | ON PERIOD | OD OF REC
CFS, FOR
L, IN YEE
E PROBAB
10
10%
440
330
260
222
174 | INDICATE ARS, AND ILITY, IN 25 4% 503 370 297 254 202 | FD RECUP
ANNUAL
N PERCEN
50
2% | RRENCE
IT | | MAGNITONISCHARGE, YEARS, A | FUDE AND BASE IN CFS, AND ANNUA 2 50% | PROBABILI'D ON PERIO | TY OF INS
DD OF REC
CATED REC
NCE PROBA | STANTANEC
CORD 196
CURRENCE
ABILITY, | DUS PEAK F
1-82
INTERVAL,
IN PERCEI | FLOW | PERIOD (CON-
SECU-
TIVE DAYS) | DISCHAIL E; 2 50 272 217 165 136 105 83 | RGE, IN G
INTERVAL
XCEEDANCI
5
20%
380
291
226
191
149
113 | OD OF REC | DORD 197 INDICATE ARS, AND ILITY, IN 25 4% 503 370 297 254 202 138 | FOR THE CONTROL OF TH | RRENCE | | MAGNITONISCHARGE, YEARS, A | FUDE AND BASE IN CFS, AND ANNUA 2 50% | PROBABILI'D ON PERIO | TY OF INS
DD OF REC
CATED REC
NCE PROBA | STANTANEC
CORD 196
CURRENCE
ABILITY, | DUS PEAK F
1-82
INTERVAL,
IN PERCEI | FLOW | PERIOD (CON-
SECU-
TIVE DAYS) 1 3 7 7 15 30 | DISCHAI E: 2 50% 272 217 165 136 105 | ON PERIOD | OD OF REC
CFS, FOR
L, IN YEE
E PROBAB
10
10%
440
330
260
222
174 | INDICATE ARS, AND ILITY, IN 25 4% 503 370 297 254 202 | FOR THE CONTROL OF TH | RRENCE
IT | | MAGNITONISCHARGE, YEARS, A | FUDE AND BASE IN CFS, AND ANNUA 2 50% | PROBABILI'D ON PERIO | TY OF INS | STANTANEC
CORD 196
CURRENCE
ABILITY,
25
4% | DUS PEAK F
1-82
INTERVAL
IN PERCEI | FLOW IN IT IT IT IT IT IT IT IT IT | PERIOD (CON-
SECU-
TIVE DAYS) | DI SCHAIL E: 2 50 272 217 165 136 105 83 71 | 380 291 226 191 149 113 95 | OD OF REC | DORD 197 INDICATE ARS, AND ILITY, IN 25 4% 503 370 297 254 202 138 | FOR THE CONTROL OF TH | RRENCE | | MAGNITONISCHARGE, YEARS, A | FUDE AND BASE IN CFS, AND ANNUA 2 50% | PROBABILI' D ON PERIO FOR INDIO L EXCEEDA 5 20% 582 082 | TY OF INS | STANTANEC
CORD 196 COURRENCE
BILITY,
25
4% | DUS PEAK FI-82 INTERVAL, IN PERCEI | FLOW , IN NT 100 1% | PERIOD (CON-
SECU-
TIVE DAYS) | DI SCHAI E: 2 50% 272 217 165 136 105 83 71 OF RECORD | ON PERIOD PER | OD OF REC | ORD 197 INDICATE ARS, AND ILITY, IN 25 4% 503 370 297 254 202 138 113 | FOR THE CONTROL OF TH | RRENCE | # 14303000 NESTUCCA RIVER NEAR MCMINNVILLE, OR LOCATION.--Lat 45°19'30", long 123°27'00", in E-1/2 sec.8, T.3 S., R.6 W., Yamhill County, Hydrologic Unit 17100203, 0.2 mi downstream from Meadow Lake and 14 mi northwest of McMinnville. DRAINAGE AREA.--12 mi², approximately. 160 66 55 46 30 19 12 5.7 4.6 3.7 3.0 2.5 2.0 PERIOD OF RECORD. -- October 1928 to September 1944. GAGE. -- Water-stage recorder. Altitude of gage is 1,900 ft, from topographic map. REMARKS.--No diversion above station. Flow slightly regulated by dam at outlet of Meadow Lake. AVERAGE DISCHARGE.--16 years (water years 1929-44), 43.6 ft^3/s , 31,590 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 1,480 ft³/s Dec. 22, 1933, and Dec. 27, 1937, gage height, 5.1 ft, from rating curve extended above 800 ft³/s; minimum, 1.0 ft³/s Oct. 11, 1929. STATISTICAL SUMMARIES | | MINIMUM | MAXIMUM | MEAN | STAN-
DARD
DEVIA-
TION | COEFFI-
CIENT OF
VARI- | PERCENT
OF
ANNUAL | PERIOD
(CON-
SECU- | I | NTERVAL, | IN YEAR | R INDICAT
RS, AND A
BILITY, I | NNUAL NO |)N- | |---------------------------------|--|--|---|--|---|-------------------------|---|---|--
--|--|--|-----------| | MONTH | (CFS) | (CFS) | (CFS) | (CFS) | ATION | RUNOFF | TIVE
DAYS) | 2
50% | 5
20% | 10
1 0% | 20
5% | 50
2 % | 100
1% | | OCTOBER | 1.2 | 33 | 9.3 | 9.1 | .97 | 1.8 | 1 | 1.9 | 1.5 | 1.3 | 1.1 | | | | OVEMBER | 2.0 | 188 | 52 | 52 | 1.01 | 9.8 | 3 | 1.9 | 1.5 | 1.3 | 1.2 | | | | DECEMBER | 21 | 310 | 105 | 77 | .73 | 20.0 | 7 | 1.9 | 1.5 | 1.3 | 1.2 | | | | IANUARY | 26 | 224 | 91 | 49 | • 53 | 17.4 | 14 | 2.0 | 1.6 | 1.4 | 1.2 | | | | EBRUARY | 35 | 164 | 82 | 36 | . 44 | 15.7 | 30 | 2.1 | 1.7 | 1.5 | 1.3 | | | | MARCH | 24 | 139 | 79 | 38 | - 48 | 15.0 | 60 | 2.4 | 1.8 | 1.6 | 1.5 | | | | APRIL | 19 | 132 | 56 | 33 | • 59 | 10.6 | 90 | 2.8 | 2.1 | 1.8 | 1.7 | | | | MAY
June | 10 | 71 | 26 | 14 | .55 | 5.0 | 120 | 3.4 | 2.5 | 2.1 | 1.9 | | | | JULY | 5.6 | 34 | 13 | 7.2 | • 56 | 2.5 | 183 | 6.9 | 5.0 | 4.3 | 3.8 | | | | AUGUST | 3.2
1.5 | 10
4. 6 | 5.5
3.0 | 2.2
1.0 | .40
.33 | 1.1
.6 | | | | | | | | | SEPTEMBER | 1.4 | 12 | 3.3 | 2.6 | •33
•77 | .6 | | | | | | | | | | , • - | ' | ,,, | 2.0 | -,, | •0 | | | | | | | | | | 25 | 67 | 44 | 17 | 7.1 | 100 | | | | | | | | | ANNUAL
 | | 67

PROBABILI
D ON PERIO | | | | 100

FLOW |
MAG | | | | OF ANNUAL | | | | MAGNI
DISCHARGE
YEARS, | TUDE AND
BASE
, IN CFS, | PROBABILI
D ON PERIO
FOR INDIO
L EXCEEDA | TY OF INS
DD OF REC
CATED REC | STANTANEC
CORD 1929
CURRENCE
ABILITY, | DUS PEAK
9-44
INTERVAL
IN PERCE | FLOW
, IN
NT | PERIOD
(CON- | BASED
DISCHA | ON PERI

RGE, IN
INTERVA | OD OF RECEIVED | | 29-44
ED RECUR
ANNUAL | RENCE | | MAGNI | TUDE AND
BASE | PROBABILI
D ON PERIO | TY OF INS | STANTANEO
CORD 1929
CURRENCE | DUS PEAK
9-44
INTERVAL
IN PERCE | FLOW | PERIOD
(CON-
SECU-
TIVE | BASED DISCHA E | ON PERI RGE, IN INTERVA XCEEDANC | OD OF RECOMMENDED | ECORD 19:
R INDICATI
EARS, AND
BILITY, II | 29-44 ED RECUF ANNUAL N PERCEN | RENCE | | MAGNI | TUDE AND
BASE
, IN CFS,
AND ANNUA | PROBABILI
D ON PERIO
FOR INDIO
L EXCEEDAL
5
20% | TY OF INS
DD OF REC
CATED REC
NCE PROBA | STANTANEC
CORD 1929
CURRENCE
ABILITY, | DUS PEAK 19-44 INTERVAL IN PERCE | FLOW
, IN
NT | PERIOD
(CON-
SECU- | BASED
DISCHA
E | ON PERI
RGE, IN
INTERVA
XCEEDANC | OD OF RECEIVED | R INDICATI
EARS, AND
BILITY, II | 29-44 ED RECUF ANNUAL N PERCEN | RENCE | | MAGNI DISCHARGE YEARS, 1.25 80% | FUDE AND BASE , IN CFS, AND ANNUA 2 50% | PROBABILII
D ON PERIO
FOR INDIO
L EXCEEDA
5
20% | TY OF INS
DD OF REC
CATED REC
NCE PROBA | STANTANEO
CORD 1929
CURRENCE
ABILITY,
25
4% | DUS PEAK 19-44 INTERVAL IN PERCE | FLOW
, IN
NT | PERIOD
(CON-
SECU-
TIVE
DAYS) | DISCHA E 2 50% | ON PERI
RGE, IN
INTERVA
XCEEDANC
5
20% | OD OF RECEIVED | ECORD 19: R INDICATI EARS, AND BILITY, II 25 4% | 29-44 ED RECUF ANNUAL N PERCEN | RENCE | | MAGNI DISCHARGE YEARS, 1.25 80% | FUDE AND
BASE
, IN CFS,
AND ANNUA
2
50% | PROBABILII
D ON PERIO
FOR INDIO
L EXCEEDA
5
20% | TY OF INS
DD OF REC
CATED REC
NCE PROBA | STANTANEO
CORD 1929
CURRENCE
ABILITY,
25
4% | DUS PEAK 19-44 INTERVAL IN PERCE | FLOW
, IN
NT | PERIOD (CON- SECU- TIVE DAYS) | BASED DISCHA E 2 50% 613 449 | ON PERI RGE, IN INTERVA XCEEDANC 5 20% 934 685 | OD OF RECOMMENDED RECOMMEND OF RECOMMENDED RECOMMEND O | R INDICATE
EARS, AND
BILITY, II
25
4% | ED RECUR
ANNUAL
N PERCEN
50
2% | RENCE | | MAGNI DISCHARGE YEARS, 1.25 80% | FUDE AND BASE , IN CFS, AND ANNUA 2 50% | PROBABILII
D ON PERIO
FOR INDIO
L EXCEEDA
5
20% | TY OF INS
DD OF REC
CATED REC
NCE PROBA | STANTANEO
CORD 1929
CURRENCE
ABILITY,
25
4% | DUS PEAK 19-44 INTERVAL IN PERCE | FLOW
, IN
NT | PERIOD (CON- SECU- TIVE DAYS) 1 3 7 | BASED DISCHA E 2 50% 613 449 300 | ON PERI RGE, IN INTERVA XCEEDANC 5 20% 934 685 453 | OD OF RE
CFS, FOF
L, IN YE
E PROBAE
10
10%
 | 25
4%
1390
1060
738 | 29-44 ED RECUP ANNUAL N PERCEN 50 2% | 100
1% | | MAGNI DISCHARGE YEARS, 1.25 80% | FUDE AND BASE , IN CFS, AND ANNUA 2 50% | PROBABILII
D ON PERIO
FOR INDIO
L EXCEEDA
5
20% | TY OF INS
DD OF REC
CATED REC
NCE PROBA | STANTANEO
CORD 1929
CURRENCE
ABILITY,
25
4% | DUS PEAK 19-44 INTERVAL IN PERCE | FLOW
, IN
NT | PERIOD (CON- SECU- TIVE DAYS) 1 3 7 | BASED DISCHA E 2 50% 613 449 300 205 | ON PERI RGE, IN INTERVA XCEEDANC 5 20% 934 685 453 296 | OD OF RECEIVED | R INDICATI
EARS, AND
BILITY, II
25
4%
1390
1060
738
452 | 29-44 ED RECUF ANNUAL N PERCEN 50 2% | 100
1% | | MAGNI DISCHARGE YEARS, 1.25 80% | FUDE AND BASE , IN CFS, AND ANNUA 2 50% | PROBABILII
D ON PERIO
FOR INDIO
L EXCEEDA
5
20% | TY OF INS
DD OF REC
CATED REC
NCE PROBA | STANTANEO
CORD 1929
CURRENCE
ABILITY,
25
4% | DUS PEAK 19-44 INTERVAL IN PERCE | FLOW
, IN
NT | PERIOD (CON-
SECU-
TIVE DAYS) | BASED DISCHA E 2 50% 613 449 300 205 155 | ON PERI RGE, IN INTERVA XCEEDANC 5 20% 934 685 453 296 217 | OD OF RECOMPANY | R INDICATI
EARS, AND
BILITY, II
25
4%
1390
1060
738
452
311 | 29-44 ED RECUP ANNUAL N PERCEN 50 2% | 100
1% | | MAGNI DISCHARGE YEARS, 1.25 80% | FUDE AND BASE , IN CFS, AND ANNUA 2 50% | PROBABILII
D ON PERIO
FOR INDIO
L EXCEEDA
5
20% | TY OF INS
DD OF REC
CATED REC
NCE PROBA | STANTANEO
CORD 1929
CURRENCE
ABILITY,
25
4% | DUS PEAK 19-44 INTERVAL IN PERCE | FLOW
, IN
NT | PERIOD (CON-
SECU-
TIVE DAYS) | BASED DISCHA E 2 50% 613 449 300 205 155 121 | ON PERI RGE, IN INTERVA XCEEDANC 5 20% 934 685 453 296 217 162 | OD OF RECEIVED | R INDICAT: EARS, AND BILITY, II 25 4% 1390 1060 738 452 311 222 | 29-44 ED RECUF ANNUAL N PERCEN 50 2% | 100
1% | | MAGNI DISCHARGE YEARS, 1.25 80% | FUDE AND BASE , IN CFS, AND ANNUA 2 50% | PROBABILII
D ON PERIO
FOR INDIO
L EXCEEDA
5
20% | TY OF INS
DD OF REC
CATED REC
NCE PROBA | STANTANEO
CORD 1929
CURRENCE
ABILITY,
25
4% | DUS PEAK 19-44 INTERVAL IN PERCE | FLOW
, IN
NT | PERIOD (CON-
SECU-
TIVE DAYS) | BASED DISCHA E 2 50% 613 449 300 205 155 | ON PERI RGE, IN INTERVA XCEEDANC 5 20% 934 685 453 296 217 | OD OF RECOMPANY | R INDICATI
EARS, AND
BILITY, II
25
4%
1390
1060
738
452
311 | 29-44 ED RECUF ANNUAL N PERCEN 50 2% | 100
1% | | MAGNI SCHARGE YEARS, 1.25 80% | FUDE AND BASE , IN CFS, AND ANNUA 2 50% | PROBABILII
D ON PERIO
FOR INDIO
L EXCEEDA
5
20% | TY OF IN: DD OF REC CATED REC NCE PROB/ 10 103 1423 | STANTANEC
CORD 1929
CURRENCE
BILITY,
25
4% | DUS PEAK | FLOW , IN NT 100 1% | PERIOD (CON-
SECU-
TIVE DAYS) | DISCHA E 2 50% 613 449 300 205 155 121 106 | ON PERI RGE, IN INTERVA XCEEDANC 5 20% 934 685 453 296 217 162 137 | OD OF RE- CFS, FOFL, IN YEE PROBAE- 10 10% | R INDICAT: EARS, AND BILITY, II 25 4% 1390 1060 738 452 311 222 | 29-44 ED RECUF ANNUAL N PERCEN 50 2% | 100
1% | | MAGNI DISCHARGE YEARS, 1.25 80% | FUDE AND BASE , IN CFS, AND ANNUA 2 50% | PROBABILI' D ON PERIO FOR INDIC EXCEEDA 5 20% 1143 109 | TY OF INS | STANTANEC
CORD 1929
CURRENCE
BILITY,
25
4% | DUS PEAK 19-44 INTERVAL IN PERCE 50 2% | FLOW , IN NT 100 1% | PERIOD (CON-
SECU-
TIVE DAYS) | BASED DISCHA E 2 50% 613 449 300 205 155 121 106 OF RECOR | ON PERI RGE, IN INTERVA XCEEDANC 5 20% 934 685 453 296 217 162 137 D 1929-4 | OD OF RECEIVED | R INDICATI
EARS, AND
BILITY, II
25
4%
1390
1060
738
452
311
222
176 |
29-44 ED RECUF ANNUAL N PERCEN 50 2% | 100
1% | 149 ## 14303600 NESTUCCA RIVER NEAR BEAVER, OR LOCATION.--Lat 45°16'00", long 123°50'45", in SE±NE± sec.36, T.3 S., R.10 W., Tillamook County, Hydrologic Unit 17100203, on right bank 150 ft upstream from Saling Creek, 1.2 mi southwest of Beaver, and at mile 13.5. DRAINAGE AREA.--180 mi2. 3960 2730 2090 1670 1370 1140 788 PERIOD OF RECORD. -- October 1964 to September 1982. GAGE.--Water-stage recorder. Altitude of gage is 43 ft, from river profile map. REMARKS.--No regulation. Small diversions for irrigation above station. AVERAGE DISCHARGE.--18 years, 1,090 ft³/s, 82.23 in/yr, 789,700 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 29,400 ft³/s Jan. 11, 1972, gage height, 22.0 ft, from floodmark; minimum, 32 ft³/s Sept. 14, 1967. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of Nov. 20, 1962, reached a stage of 23.4 ft, discharge, 32,500 ft³/s caused by failure of Meadow Lake Dam. #### STATISTICAL SUMMARIES | M | ONTHLY AN | ID ANNUAL | MEAN DIS | SCHARGES | 1965-82 | | MA | | AND PROP
ED ON PE | | OF ANNUAL
RECORD 19 | | , , | |--|--|---|---|--|---|-------------------------|---|--|--|---|--|--|---------------------------| | | MINIMUM | MAXIMUM | MEAN | STAN-
DARD
DEVIA-
TION | COEFFI-
CIENT OF | | PERIOD
(CON-
SECU- | DISC | INTERVAL | ., IN YE | OR INDICATARS, AND A | ANNUAL NO |)N- | | MONTH | (CFS) | (CFS) | (CFS) | (CFS) | ATION | RUNOFF | TIVE
DAYS) | 2
50% | 5
20 % | 10
10% | 20
5% | 50
2% | 100
1% | | OCTOBER | 91 | 842 | 376 | 252 | .67 | 2.9 | 1 | 68 | 54 | 48 | 43 | | | | NOVEMBER | 209 | 3982 | 1390 | 872 | •63 | 10.6 | 3 | 69 | 55 | 49 | 44 | | | | DECEMBER | 257 | 4440 | 2796 | 1109 | -40 | 21.3 | 7 | 70 | 56 | 50 | 45 | | | | ANUARY | 273 | 4890 | 2611 | 1297 | .50 | 19.9 | 14 | 74 | 59 | 52 | 47 | | | | EBRUARY | 453 | 2981 | 1898 | 706 | .37 | 14.5 | 30 | 82 | 65 | 57 | 51 | | | | IARCH | 634 | 2833 | 1664 | 708 | .43 | 12.7 | 60 | 100 | 74 | 64 | 56 | | | | PRIL | 469 | 1638 | 1030 | 350 | .34 | 7.9 | 90 | 123 | 87 | 73 | 63 | | | | AY | 285 | 917 | 538 | 165 | .31 | 4.1 | 120 | 151 | 106 | 89 | 77 | | | | UNE | 183 | 917 | 351 | 206 | .59 | 2.7 | 183 | 251 | 187 | 160 | 141 | | | | IULY | 96 | 311 | 173 | 70 | - 40 | 1.3 | | | | | | | | | UGUST | 49 | 251 | 108 | 47 | .43 | .8 | | | | | | | | | EPTEMBER | 54 | 412 | 175 | 120 | •69 | 1.3 | ANNUAL
MAGNI | | 1643
PROBABILI
D ON PERI | | | | 100
 |
MA | | | | OF ANNUAL | |
.ow | | MAGNITO | TUDE AND
BASE
, IN CFS, | PROBABILI
D ON PERI
FOR INDI-
L EXCEEDA | TY OF IN
OD OF RE
CATED RE
NCE PROE | STANTANE
CORD 196
CURRENCE | EOUS PEAK
55-82
INTERVAL
IN PERCE | FLOW
, IN | PERIOD
(CON- | BASE | ED ON PER
HARGE, IN
INTER\ | RIOD OF F | | 965-82

TED RECUR
O ANNUAL | RENCE | | MAGNI | TUDE AND
BASE
, IN CFS,
AND ANNUA | PROBABILI
D ON PERI
FOR INDI-
L EXCEEDA | TY OF IN OD OF RE | NSTANTANE
CORD 196
CURRENCE
BABILITY, | EOUS PEAK
15-82
E INTERVAL
IN PERCE | FLOW , IN NT | PERIOD
(CON-
SECU- | BASE
DISCH | ARGE, INTERN | CFS, FO | RECORD 19 DR INDICAT YEARS, AND ABILITY, 1 | 965-82
FED RECUR
O ANNUAL
IN PERCEN | RENCE | | MAGNITISCHARGE, | TUDE AND
BASE
, IN CFS, | PROBABILI
D ON PERI
FOR INDI-
L EXCEEDA | TY OF IN
OD OF RE
CATED RE
NCE PROE | STANTANE
CORD 196
CURRENCE | EOUS PEAK
55-82
INTERVAL
IN PERCE | FLOW
, IN | PERIOD
(CON- | BASE | ED ON PER
HARGE, IN
INTER\ | RIOD OF F | RECORD 19
DR INDICAT
YEARS, AND | 965-82

TED RECUR
O ANNUAL | RENCE | | MAGNI | TUDE AND
BASE
, IN CFS,
AND ANNUA
2
50% | PROBABILI
D ON PERI
FOR INDI
L EXCEEDA | TY OF IN
OD OF RE
CATED RE
NCE PROB | NSTANTANE
CORD 196
CURRENCE
BABILITY, | EOUS PEAK
15-82
E INTERVAL
IN PERCE | FLOW , IN NT | PERIOD
(CON-
SECU-
TIVE
DAYS) | DISCH | HARGE, IN
INTERV
EXCEEDAN
5
20% | I CFS, FC
(AL, IN NICE PROB) | RECORD 19 DR INDICAT YEARS, AND ABILITY, 1 25 4% | P65-82 FED RECUR ANNUAL IN PERCEN 50 2% | RENCE | | MAGNITISCHARGE, YEARS, / | TUDE AND
BASE
, IN CFS,
AND ANNUA
2
50% | PROBABILI
D ON PERI
FOR INDI-
L EXCEEDA
5
20% | TY OF IN
OD OF RE
CATED RE
NCE PROB | STANTANE
CORD 196
CURRENCE
BABILITY,
25
4% | EOUS PEAK
15-82
E INTERVAL
IN PERCE | FLOW , IN NT | PERIOD
(CON-
SECU-
TIVE
DAYS) | DISCH | HARGE, IN
INTERN
EXCEEDAN
5
20% | I CFS, F(YAL, IN YICE PROB) 10 10 17400 | DR INDICAT
YEARS, AND
ABILITY, 1
25
4% | P65-82 TED RECUR O ANNUAL IN PERCEN 50 2% | RENCE | | MAGNITION MAGNITURE NAME NAME NAME NAME NAME NAME NAME NAM | TUDE AND
BASE
, IN CFS,
AND ANNUA
2
50% | PROBABILI
D ON PERI
FOR INDI
L EXCEEDA | TY OF IN
OD OF RE
CATED RE
NCE PROB | STANTANE
CORD 196
CURRENCE
BABILITY,
25
4% |
EOUS PEAK
15-82
E INTERVAL
IN PERCE | FLOW , IN NT | PERIOD
(CON-
SECU-
TIVE
DAYS) | DISCH | HARGE, IN
INTERN
EXCEEDAN
5
20% | 17400
13800 | DR INDICAT
YEARS, AND
ABILITY.
25
4% | P65-82 FED RECUR O ANNUAL IN PERCEN 50 2% | RRENCE
IT
100
1% | | MAGNI I SCHARGE, YEARS, 1.25 80% | TUDE AND
BASE
, IN CFS,
AND ANNUA
2
50% | PROBABILI
D ON PERI
FOR INDI-
L EXCEEDA
5
20% | TY OF IN
OD OF RE
CATED RE
NCE PROB | STANTANE
CORD 196
CURRENCE
BABILITY,
25
4% | EOUS PEAK
15-82
E INTERVAL
IN PERCE | FLOW , IN NT | PERIOD
(CON-
SECU-
TIVE
DAYS) | DISCH | HARGE, IN
INTERN
EXCEEDAN
5
20%
15100
11900
8270 | 10 OF F | DR INDICAT
YEARS, AND
ABILITY, I
25
4%
19900
15900
10500 | P65-82 FED RECUF O ANNUAL IN PERCEN 50 2% | RRENCE
IT
100
1% | | MAGNITION MAGNITURE NAME NAME NAME NAME NAME NAME NAME NAM | TUDE AND
BASE
, IN CFS,
AND ANNUA
2
50% | PROBABILI
D ON PERI
FOR INDI-
L EXCEEDA
5
20% | TY OF IN
OD OF RE
CATED RE
NCE PROB | STANTANE
CORD 196
CURRENCE
BABILITY,
25
4% | EOUS PEAK
15-82
E INTERVAL
IN PERCE | FLOW , IN NT | PERIOD
(CON-
SECU-
TIVE
DAYS)
 | DISCH
2
50%
11000
8820
6450
4950 | HARGE, IN INTERVEXCEEDAN 5 20% 15100 11900 8270 6210 | 1 CFS, F(
VAL, IN N
ICE PROB/
10 10%
17400
13800
9310
6930 | DR INDICAT
YEARS, AND
ABILITY, 1
25
4%
19900
15900
10500
7740 | P65-82 FED RECUR O ANNUAL IN PERCEN 50 2% | RRENCE
IT
100
1% | | MAGNITUSCHARGE, YEARS, 1.25 80% | TUDE AND
BASE
, IN CFS,
AND ANNUA
2
50% | PROBABILI
D ON PERI
FOR INDI-
L EXCEEDA
5
20% | TY OF IN
OD OF RE
CATED RE
NCE PROB | STANTANE
CORD 196
CURRENCE
BABILITY,
25
4% | EOUS PEAK
15-82
E INTERVAL
IN PERCE | FLOW , IN NT | PERIOD (CON-
SECU-
TIVE DAYS) 1 3 7 7 15 30 | DISCH | HARGE, IN INTERN EXCEEDAN 5 20% 15100 11900 8270 6210 4530 | 10% 17400 13800 9310 6930 4940 | DR INDICAT
YEARS, AND
ABILITY, 1
25
4%
19900
15900
10500
7740
5380 | P65-82 FED RECUF O ANNUAL IN PERCEN 50 2% | 100
1% | | MAGNITISCHARGE, YEARS, / | TUDE AND
BASE
, IN CFS,
AND ANNUA
2
50% | PROBABILI
D ON PERI
FOR INDI-
L EXCEEDA
5
20% | TY OF IN
OD OF RE
CATED RE
NCE PROB | STANTANE
CORD 196
CURRENCE
BABILITY,
25
4% | EOUS PEAK
15-82
E INTERVAL
IN PERCE | FLOW , IN NT | PERIOD (CON-
SECU-
TIVE DAYS) 1 3 7 15 30 60 | DISCH
2
50%
11000
8820
6450
4950
3770
3030 | 15100
11900
8270
6210
4530
3720 | 17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400 | 19900
15900
15900
15900
15900
15380
4410 | P65-82 FED RECUF O ANNUAL IN PERCEN 50 2% | 100
1% | | MAGNI I SCHARGE, YEARS, 1.25 80% | TUDE AND
BASE
, IN CFS,
AND ANNUA
2
50% | PROBABILI
D ON PERI
FOR INDI-
L EXCEEDA
5
20% | TY OF IN OD OF RE | ISTANTANE
CORD 196
CURRENCE
BABILITY,
25
4% | EOUS PEAK
15-82
INTERVAL
IN PERCE
50
2% | FLOW , IN IN 100 1% | PERIOD (CON-
SECU-
TIVE DAYS) | DISCH 2 50% 11000 8820 6450 4950 3770 3030 2660 | HARGE, IN INTER: EXCEEDAN 15100 11900 8270 6210 4530 3720 3320 | 10 10%
1 CFS, F(AL, IN NICE PROB/
10 10%
17400
13800
9310
6930
4940
4070
3630 | DR INDICAT
YEARS, AND
ABILITY, 1
25
4%
19900
15900
10500
7740
5380 | P65-82 FED RECUF O ANNUAL IN PERCEN 50 2% | RRENCE
IT
100
1% | | MAGNITISCHARGE, YEARS, / | TUDE AND
BASE
, IN CFS,
AND ANNUA
2
50% | PROBABILI
D ON PERI
FOR INDI-
L EXCEEDA
5
20% | TY OF IN OD OF RE | ISTANTANE
CORD 196
CURRENCE
BABILITY,
25
4% | EOUS PEAK
15-82
INTERVAL
IN PERCE
50
2% | FLOW , IN IN 100 1% | PERIOD (CON-
SECU-
TIVE DAYS) 1 3 7 15 30 60 | DISCH 2 50% 11000 8820 6450 4950 3770 3030 2660 | HARGE, IN INTER: EXCEEDAN 15100 11900 8270 6210 4530 3720 3320 | 10 10%
1 CFS, F(AL, IN NICE PROB/
10 10%
17400
13800
9310
6930
4940
4070
3630 | 19900
15900
15900
15900
15900
15380
4410 | P65-82 FED RECUF O ANNUAL IN PERCEN 50 2% | RRENCE
IT
100
1% | | MAGNITUSCHARGE, YEARS, 1.25 80% | TUDE AND
BASE
, IN CFS,
AND ANNUA
2
50% | PROBABILI
D ON PERI
FOR INDI-
L EXCEEDA
5
20%
18300 2 | TY OF IN OD OF RECOME OF THE OTHER OF THE OTHER | ISTANTANE ISTANTANE ICCURRENCE IC | EOUS PEAK
15–82 INTERVAL
IN PERCE 50 2% OF DAILY | FLOW , IN NT 100 1% | PERIOD (CON-
SECU-
TIVE DAYS) | DISCH 2 50% 11000 8820 6450 4950 3770 3030 2660 OF RECC | 15100
1900
15100
15100
16210
4530
3720
1805
1905
1906
1900
1900
1900
1900
1900
1900
1900 | 10 CFS, F(AL, IN NICE PROB) 10 10 13800 9310 9310 4940 4070 3630 82 | DR INDICAT
YEARS, AND
ABILITY, 1
25
4%
19900
10500
7740
5380
4410
3930 | P65-82 FED RECUF O ANNUAL IN PERCEN 50 2% | RRENCE
IT
100
1% | 350 224 181 143 113 92 74 543 ## SILETZ RIVER BASIN ## 14305500 SILETZ RIVER AT SILETZ, OR LOCATION.--Lat 44°42'55", long 123°53'10", in NW\SW\sec.11, T.10 S., R.10 W., Lincoln County, Hydrologic Unit 17100204, on right bank, 1.8 mi downstream from Baker Creek, 1.5 mi east of Siletz, and at mile 42.6. DRAINAGE AREA.--202 mi². At sites prior to October 1938, 204 mi². PERIOD OF RECORD.--October 1905 to November 1911, January to May 1912, January to June 1924, November 1924 to September 1982. Prior to December 1905, monthly discharge only published in WSP 1318. GAGE.--Water-stage recorder. Datum of gage is 102.32 ft National Geodetic Vertical Datum of 1929. Oct. 1, 1905, to Sept 30, 1938, nonrecording gage at various sites within 2.5 mi downstream at different datums. REMARKS.--Slight regulation from logponds. Small diversions above station for irrigation. AVERAGE DISCHARGE.--63 years (water years 1906-11, 1926-82), 1,561 ft³/s, 104.94 in/yr, 1,131,000 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD (1905-12, 1924-82).--Maximum discharge, 34,600 ft³/s Nov. 22, 1909, gage height, 24.6 ft, site and datum then in use; minimum observed, 48 ft³/s Sept. 25, 26, Oct. 4, 1965, Sept. 28, 29, 1967. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of Nov. 20, 1921, reached a stage of 31.6 ft, at site 2.5 mi downstream at different datum, from floodmark, discharge, 40,800 ft³/s, from rating curve extended above 17,000 ft³/s. ## STATISTICAL SUMMARIES MONTHLY AND ANNUAL MEAN DISCHARGES 1906-82 MAGNITUDE AND PROBABILITY OF ANNUAL LOW FLOW BASED ON PERIOD OF RECORD 1907-82 | | MINIMUM | MAXIMUM | MEAN | STAN-
DARD
DEVIA-
TION | COEFFI-
CIENT OF
VARI- | PERCENT
OF
ANNUAL | PERIOD
(CON-
SECU- | | ARGE, IN
INTERVAL
EXCEEDANG | , IN YEA | RS, AND | ANNUAL N | 0 N- | |-----------|---------|---------|---------------|---------------------------------|------------------------------|-------------------------|--------------------------|----------|-----------------------------------|------------|----------|----------|-------------| | MONTH | (CFS) | (CFS) | MEAN
(CFS) | (CFS) | ATION | RUNOFF | TIVE
DAYS) | 2
50% | 5
20 % | 10
10% | 20
5% | 50
2% | 100
1% | | OCTOBER | 74 | 3412 | 780 | 768 | .98 | 4.2 | 1 | 76 | 62 | 5 6 | 52 | 48 | 46 | | NOVEMBER | 72 | 6207 | 2464 | 1566 | .64 | 13.2 | 3 | 78 | 64 | 58 | 55 | 51 | 49 | | DECEMBER | 401 | 7828 | 3448 | 1466 | .43 | 18.5 | 7 | 80 | 66 | 61 | 57 | 54 | 52 | | JANUARY | 518 | 7664 | 3350 | 1556 | .46 | 17.9 | 14 | 85 | 70 | 64 | 60 | 56 | 54 | | FEBRUARY | 752 | 6055 | 2974 | 1223 | .41 | 15.9 | 30 | 95 | 77 | 70 | 64 | 59 | 5 6 | | MARCH | 557 | 4560 | 2260 | 983 | . 43 | 12.1 | 60 | 115 | 89 | 79 | 71 | 64 | 60 | | APRIL | 387 | 3560 | 1511 | 706 | .47 | 8.1 | 90 | 140 | 103 | 88 | 79 | 70 | 64 | | MAY | 233 | 2579 | 838 | 447 | .53 | 4.5 | 120 | 176 | 122 | 102 | 89 | 77 | 70 | | JUNE | 144 | 1602 | 483 | 336 | .70 | 2.6 | 183 | 327 | 231 | 194 | 169 | 145 | 131 | | JULY | 105 | 602 | 222 | 102 | •46 | 1.2 | | | | | | | | | AUGUST | 65 | 419 | 133 | 53 | .40 | .7 | | | | | | | | | SEPTEMBER | 59 | 1138 | 212 | 195 | •92 | 1.1 | | | | | | | | | ANNUAL | 660 | 2337 | 1545 | 352 | •23 | 100 | | | | | | | | MAGNITUDE AND PROBABILITY OF INSTANTANEOUS PEAK FLOW BASED ON PERIOD OF RECORD 1906-82 MAGNITUDE AND PROBABILITY OF ANNUAL HIGH FLOW BASED ON PERIOD OF RECORD 1906-82 | OISCHARGE
YEARS, | • | S, FOR IN
JAL EXCEE | | | | | PERIOD
(CON- | DISC | | N CFS, FO | YEARS, AI | ND ANNUAL | L | |---------------------|----------|------------------------|-----------|----------|----------|---------------|------------------------|------------------|------------------|-----------|------------------|------------------|-----------| | 1.25
80% | 2
50% | 5
20 % | 10
10% | 25
4% | 50
2% | 100
1%
 | SECU-
TIVE
DAYS) | 2
50 % | 5
20 % | 10
10% | 25
4 % | 50
2 % | 100
1% | | 16200 | 20700 | 25900 | 28900 | 32400 | 34700 | 36900 | | | | | | | | | | | | | | | | 1 | 16900 | 21900 | 25000 | 28600 | 31200 | 33800 | | WEIGHTE | D SKEW : | 279 | | | | | 3 | 13000 | 16300 | 18200 | 20500 | 22200 | 23800 | | | | | | | | | 7 | 9350 | 11500 | 12800 | 14300 | 15400 | 16400 | | | | | | | | | 15 | 6840 | 8320 | 9160 | 10100 | 10700 | 11300 | | | | | | | | | 30 | 5230 | 6320 | 6860 | 7420 | 7760 | 8050 | | | | | | | | | 60 | 4060 | 4990 | 5510 | 6070 | 6440 | 6780 | | | | | | | | | 90 | 3690 | 4460 | 4840 | 5220 | 5440 | 5630 | DURATION TABLE OF DAILY MEAN FLOW FOR PERIOD OF RECORD 1906-82 | | | DISC |
CHARGE, | IN CFS, | WHICH WAS | EQUALED | OR EXCE | EDED FOR | INDICATED | PERCENT | OF TIME | | | | |------|------|--------------|---------|---------|-----------|---------|---------|----------|-----------|-------------|-------------|-----|-----|-----| | 5% | 10% | 15% | 20% | 25% | 30% | 40% | 50% | 60% | 70% | 75 % | 80 % | 85% | 90% | 95% | | 5810 | 3950 | 295 0 | 2320 | 1900 | 1570 | 1090 | 750 | 467 | 279 | 213 | 168 | 133 | 108 | 87 | 151 ## 14306030 YAQUINA RIVER NEAR CHITWOOD, OR LOCATION.--Lat 44°39'29", long 123°50'15", in NE±SW± sec.31, T.10 S., R.9 W., Lincoln County, Hydrologic Unit 17100204, on left bank 200 ft below Thornton Creek and 1.1 mi west of Chitwood. DRAINAGE AREA .-- 71.0 mi2. PERIOD OF RECORD.--October 1972 to September 1982. GAGE.--Water-stage recorder. Datum of gage is 28.43 ft National Geodetic Vertical Datum of 1929. REMARKS. -- No regulation or diversion above station. AVERAGE DISCHARGE.--10 years, 251 ft³/s, 48.01 in/yr, 181,800 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 6,150 ft³/s Nov. 16, 1973, gage height, 14.43 ft; minimum, 2.8 ft³/s Sept. 27, 1974. ## STATISTICAL SUMMARIES | MONTHLY AND ANNUAL MEAN DISCHARGES 1973-82 | MAGNITUDE AND PROBABILITY OF ANNUAL LOW FLOW
BASED ON PERIOD OF RECORD 1974-82 | |--|---| | | | | | MINIMUM | MAXIMUM | MEAN | STAN-
DARD
DEVIA- | COEFFI-
CIENT OF | PERCENT
OF
ANNUAL | PERIOD
(CON-
SECU- | | INTERVAL | , IN YEAR | R INDICAT
RS, AND A | NNUAL N | ON- | |-----------|---------|---------|---------------|-------------------------|---------------------|-------------------------|--------------------------|-----------|-----------|-----------|------------------------|------------------|-----------| | MONTH | (CFS) | (CFS) | MEAN
(CFS) | TION
(CFS) | VARI-
ATION | RUNOFF | TIVE
DAYS) | 2
50% | 5
20% | 10
10% | 20
5% | 50
2 % | 100
1% | | OCTOBER | 7.8 | 83 | 33 | 25 | •77 | 1.1 | 1 | | | | | | | | NOVEMBER | 20 | 1140 | 292 | 344 | 1.18 | 9.7 | 3 | | | | | | | | DECEMBER | 23 | 1089 | 707 | 336 | .48 | 23.4 | 7 | | | | | | | | JANUARY | 34 | 979 | 571 | 331 | .58 | 18.9 | 14 | | | | | | | | FEBRUARY | 90 | 826 | 474 | 270 | .57 | 15.7 | 30 | | | | ' | | | | MARCH | 102 | 807 | 399 | 194 | - 49 | 13.2 | 60 | | | | | | | | APRIL ' | 112 | 515 | 283 | 130 | .46 | 9.4 | 90 | | | | | | | | 4A Y | 65 | 197 | 131 | 48 | .36 | 4.3 | 120 | | | | | | | | JUNE | 33 | 242 | 73 | 62 | .85 | 2.4 | 183 | | | | | | | | JULY | 14 | 65 | 26 | 14 | .55 | •9 | | | | | | | | | AUGUST | 8.0 | 20 | 12 | 3.6 | • 29 | .4 | NOTE: | LESS THAI | N 10 YEAF | RS OF DAT | TA AVAILA | BLE. | | | SEPTEMBER | 6.1 | 31 | 15 | 7.9 | .52 | .5 | | | | | | | | | ANNUAL | 85 | 445 | 251 | 100 | .40 | 100 | | | | | | | | | MAGNITUDE | AND PROBABILITY | 0F | INSTANTANEOUS PEAK FLOW | |-----------|-----------------|----|-------------------------| | | BASED ON PERIOD | OF | RECORD 1973-82 | #### MAGNITUDE AND PROBABILITY OF ANNUAL HIGH FLOW BASED ON PERIOD OF RECORD 1973-82 |)1SCHARGE,
YEARS, A | | | | | | | PERIOD
(CON- | | INTERV | I CFS, FOF
/AL, IN YE | ARS, AND | ANNUAL | | |------------------------|------------------|----------|-----------|-----------------|------------------|-----------|------------------------|----------|----------|--------------------------|----------|----------|-----| | 1.25
80% | 2
50 % | 5
20% | 10
10% | 25
4% | 50
2 % | 100
1% | SECU-
TIVE
DAYS) | 2
50% | 5
20% | 10
10% | 25
4% | 50
2% | 100 | | 2880 | 3560 | 4460 | 5040 | | | | | | | | | | | | | | | | | | | 1 | 3060 | 3770 | 4030 | | | | | WEIGHTED | SKEW = | .225 | | | | | 3 | 2360 | 2950 | 3210 | | | | | | | | | | | | 7 | 1820 | 2170 | 2290 | | | | | | | | | | | | 15 | 1280 | 1470 | 1550 | | | | | | | | | | | | 30 | 1020 | 1180 | 1240 | | | | | | | | | | | | 60 | 759 | 971 | 1070 | | | | | | | | | | | | 90 | 637 | 870 | 994 | | | | DURATION TABLE OF DAILY MEAN FLOW FOR PERIOD OF RECORD 1973-82 | | | DISC | HARGE, | IN CFS, | WHICH WAS | EQUALED | OR EXCE | EDED FOR | INDICATED | PERCENT | OF TIME | | | | |------|-----|------|--------|---------|-----------|---------|---------|----------|-----------|---------|---------|-----|-----|-----| | 5% | 10% | 15% | 20% | 25% | 30% | 40% | 50% | 60% | 70% | 75% | 80% | 85% | 90% | 95% | | 1080 | 707 | 502 | 375 | 290 | 232 | 147 | 91 | 47 | 27 | 20 | 16 | 13 | 9.9 | 7.7 | ## 14306036 MILL CREEK NEAR TOLEDO, OR LOCATION.--Lat 44°34'35", long 123°54'25", in NW±NE± sec.33, T.11 S., R.10 W., Lincoln County, Hydrologic Unit 17100204, on left bank 1,200 ft downstream from diversion dam, and 3.5 mi southeast of Toledo. DRAINAGE AREA. -- 4.18 mi2. PERIOD OF RECORD.--October 1959 to September 1973. GAGE.--Water-stage recorder. Altitude of gage is 80 ft, from topographic map. Prior to July 13, 1968, at site 1,200 ft upstream at different datum. REMARKS.--Except for average discharge, figures not adjusted for diversion for city of Toledo municipal supply. Occasional fluctuation caused by city of Toledo diversion dam, capacity, 250 acre-ft. COOPERATION.--Record of monthly diversion furnished by city of Toledo. AVERAGE DISCHARGE.--14 years, 21.2 ${\rm ft^3/s}$, 68.87 in/yr, 15,360 acre-ft/yr, adjusted for diversion. EXTREMES FOR PERIOD OF RECORD.—Maximum discharge, 609 ft³/s Jan. 27, 1965, gage height, 5.83 ft, site and datum then in use, from rating curve extended above 65 ft³/s on basis of slope-area measurement of peak flow; no flow Sept. 27, Oct. 3, 4, 1961, Sept. 26, 1962 ## STATISTICAL SUMMARIES | | MINIMUM | MAXIMUM | MEAN | STAN-
DARD
DEVIA- | COEFFI-
CIENT OF | OF | PERIOD
(CON-
SECU- | I
E | NTERVAL,
XCEEDANC | CFS, FOR
IN YEARS
E PROBABI | S, AND AN
ILITY, IN | INUAL N | 0 N - | |-----------|---------|------------------------|---------------|-------------------------|---------------------|------------------|--------------------------|----------|----------------------|-----------------------------------|------------------------|------------------|--------------| | MONTH | (CFS) | (CFS) | MEAN
(CFS) | TION
(CFS) | VARI-
ATION | ANNUAL
RUNOFF | TIVE
DAYS) | 2
50% | 5
20 % | 10
10% | | 50
2 % | 100
1% | | OCTOBER | 1.0 | 15 | 4.8 | 4.1 | .85 | 1.9 | 1 | .4 | .1 | .1 | .1 | | | | NOVEMBER | 5.7 | 63 | 28 | 16 | •56 | 11.1 | 3 | . 4 | .1 | .1 | .1 | | | | DECEMBER | 18 | 80 | 49 | 21 | . 42 | 19.2 | 7 | .5 | .3 | .2 | - 1 | | | | IANUARY | 14 | 93 | 58 | 28 | . 48 | 22.9 | 14 | •6 | .4 | .3 | .2 | | | | EBRUARY | 9.8 | 91 | 39 | 22 | .55 | 15.4 | 30 | .9 | .5 | .4 | .3 | | | | MARCH | 10.0 | 72 | 35 | 18 | .52 | 13.7 | 60 | 1.2 | .7 | .6 | .5 | | | | \PR!L | 8.7 | 38 | 19 | 9.9 | .52 | 7.5 | 90 | 1.4 | .9 | .7 | •6 | | | | MY | 4.5 | 19 | 9.7 | 4.3 | .45 | 3.8 | 120 | 1.8 | 1.2 | .9 | .8 | | | | IUNE | 1.8 | 18 | 5.4 | 4.2 | .78 | 2.1 | 183 | 3.4 | 2.6 | 2.2 | 2.0 | | | | IULY | .9 | 5.9 | 2.7 | 1.4 | .54 | 1.0 | | | | | | | | | NUGUST | •5 | 3.4 | 1.6 | .9 | .55 | .6 | | | | | | | | | SEPTEMBER | .4 | 4.8 | 1.9 | 1.4 | .72 | •7 | | | | | | | | | ANNUAL | 13 | 28 | 21 | 4.4 | .21 | 100 | | | | | | | | | MAGNI | | PROBABILI
D ON PERI | | | | FLOW | MAG | | | BILITY OF
OD OF REC | | | _DW | | DISCHARGE,
YEARS, A | | | | RECURRENC
OBABILITY | | | PERIOD
(CON- | | INTERV | AL, IN Y | R INDICAT
EARS, AND
BILITY. I | ANNUAL | | |------------------------|--------------|--------------|-----------|------------------------|----------|-----------|------------------------|------------|------------------|------------|-------------------------------------|----------|-----| | 1.25
80% | 2
50%
 | 5
20%
 | 10
10% | 25
4% | 50
2% | 100
1% | SECU-
TIVE
Days) | 2
50% | 5
20 % | 10
10% | 25
4% | 50
2% | 100 | | 287 | 363 | 464 | 529 | 610 | | | 1 | 246 | 714 | 770 | 450 | | | | WEIGHTED | SKEW = | .129 | | | | | 3 | 246
192 | 314
233 | 370
266 | 452
315 | | | | | | | | | | | 7
15 | 148
111 | 174
133 | 191
146 | 212
159 | | | | | | | | | | | 30
60 | 81
62 | 97
78 | 105 | 114 | | | | | | | | | | | 90 | 54 | 67 | 87
74 | 96
80 | | | DURATION TABLE OF DAILY MEAN FLOW FOR PERIOD OF RECORD 1961-73 |
 | | DISCHA | RGE, IN | CFS, | WHICH WAS | EQUALED | OR EXCEE | DED FOR | INDICATED | PERCEN | IT OF TIM | E | | | |--------|-----|--------|---------|------|-----------|---------|----------|---------|-----------|--------|-----------|-----|-----|-----| |
5% | 10% | 15% | 20% | 25% | 30% | 40% | 50% | 60% | 70% | 75% | 80% | 85% | 90% | 95% | |
86 | 56 | 41 | 31 | 24 | 20 | 14 | 8.7 | 5.0 | 3.2 | 2.5 | 2.0 | 1.5 | 1.1 | .7 | 153 # 14306100 NORTH FORK ALSEA RIVER AT ALSEA, OR LOCATION.--Lat 44°22'45", long 123°35'40", in SE½ sec.1, T.14 S., R.8 W., Benton County, Hydrologic Unit 17100205, on left bank at Alsea, 0.2 mi upstream from bridge on Lobster Valley Road, 0.7 mi upstream from confluence with South Fork, and at mile 49.4. DRAINAGE AREA .-- 63.0 mi2. 1080 724 522 403 325 267 PERIOD OF RECORD. -- October 1957 to September 1982. GAGE.--Water-stage recorder. Datum of gage is 272.31 ft National Geodetic Vertical Datum of 1929. $\label{eq:REMARKS.--No regulation.} \textbf{REMARKS.--No regulation.} \textbf{ Some diversions by pumping above station.}$ AVERAGE DISCHARGE.--25 years, 281 ft³/s, 60.57 in/yr, 203,600 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 14,100 ft³/s Dec. 22, 1964, gage height, 14.57 ft, from rating curve extended above 2,900 ft³/s on basis of slope-area measurement at gage height 11.80 ft; minimum, 8.3 ft³/s June 8, Sept. 19, 1979. ## STATISTICAL SUMMARIES | ,, | ONTHLY AN | ID ANNUAL | INDAN DIE | CHARGES | 1958-82 | | | BASE | | | | | |
--|--|---|--|---|--|---|--|---|---|---|--|--|-----------| | | MINIMUM | MAXIMUM | MEAN | STAN-
DARD
DEVIA-
TION | COEFFI-
CIENT OF
VARI- | PERCENT
OF
ANNUAL | PERIOD
(CON-
SECU- | | INTERVAL | , IN YEA | RS, AND | TED RECU
ANNUAL N
IN PERCE | 0N- | | MONTH | (CFS) | (CFS) | (CFS) | (CFS) | ATION | RUNOFF | TIVE
DAYS) | 2
50% | 5
20 % | 10
10% | 20
5% | 50
2 % | 100
1% | | OCTOBER NOVEMBER DECEMBER JANUARY FEBRUARY MARCH APRIL | 20
33
34
40
107
152
98 | 148
1137
1647
1327
1208
947
566 | 60
315
649
700
580
471
293 | 40
248
381
386
263
220
132 | .66
.79
.59
.55
.45
.47 | 1.8
9.3
19.2
20.7
17.2
13.9
8.7 | 1
3
7
14
30
60
90 | 16
17
17
18
20
23
25 | 14
14
15
16
17
19
21 | 13
13
14
15
16
18 | 12
13
13
14
16
17 | 12
12
13
14
15
16 | | | MAY
JUNE
JULY
AUGUST | 67
39
26
17 | 360
137
52
46 | 151
71
36
25 | 69
23
7.5
6.0 | .46
.33
.21
.24 | 4.5
2.1
1.1
.7 | 120
183 | 30
52 | 25
41
 | 23
36
 | 21
32 | 20
28
 | | | SEPTEMBER | 15 | 66 | 29 | 13 | . 44 | .9 | | | | | | | | | | | 483
PROBABILI | | | | 100
 |
MA G | | | | | L HIGH FI | | | MAGNI
DISCHARGE
YEARS, | TUDE AND
BASE
, IN CFS, | PROBABILI
D ON PERIO
FOR INDIO
L EXCEEDA | TY OF IN
OD OF RE
CATED RE | ISTANTANEC
CORD 1958
CURRENCE | OUS PEAK F
3-82
INTERVAL,
IN PERCEN | FLOW

, IN | PERIOD
(CON- | BASE
DISCH | D ON PER

ARGE, IN
INTERV | OD OF R CFS, FO | ECORD 1 | | RRENCE | | DISCHARGE | TUDE AND
BASE | PROBABILI
D ON PERI | TY OF INOD OF RE | ISTANTANE(
CORD 1958 | OUS PEAK F
3-82
INTERVAL,
IN PERCEN | FLOW | PERIOD | BASE
DISCH | D ON PER

ARGE, IN
INTERV | OD OF R CFS, FO | ECORD 1 | 958-82

TED RECUI
D ANNUAL | RRENCE | | MAGNI DISCHARGE YEARS, 1.25 80% | TUDE AND
BASE
, IN CFS,
AND ANNUA | PROBABILI
D ON PERIO
FOR INDIO
L EXCEEDA | TY OF IN
OD OF RE
CATED RE
NCE PROB | ISTANTANEC
CORD 1958
CURRENCE
ABILITY, | OUS PEAK F
3-82
INTERVAL,
IN PERCEN | FLOW IN | PERIOD
(CON-
SECU-
TIVE | BASE
DISCH | D ON PER ARGE, IN INTERV EXCEEDAN | CFS, FO
AL, IN Y
CE PROBA | ECORD 1 OR INDICA EARS, AN BILITY, 25 | 958-82 TED RECUID ANNUAL IN PERCEI | RRENCE | | MAGNI DISCHARGE YEARS, 1.25 80% | TUDE AND BASE , IN CFS, AND ANNUA 2 50% | PROBABILI
D ON PERIO
FOR INDIO
L EXCEEDA | TY OF INDOD OF RE | STANTANEC CORD 1958 CURRENCE BABILITY, 25 4% 0800 12 | DUS PEAK F
3-82
INTERVAL
IN PERCEN
50
2% | FLOW IN NT 100 1g | PERIOD (CON- SECU- TIVE DAYS) 1 3 7 15 30 60 | BASE DISCH 2 50% 3640 2750 1990 1370 1050 818 718 | D ON PER ARGE, IN INTERV EXCEEDAN 5 20% 5240 3900 2690 1790 1300 1050 915 | CFS, FO AL, IN Y CE PROBA 10 10% 6280 4670 3120 2050 1420 1160 1000 | R INDICA EARS, AN BILITY, 25 4\$ 7570 5640 3630 2380 1550 1280 | 958-82 TED RECUID ANNUAL IN PERCEID 2% | 100
19 | | MAGNI DISCHARGE YEARS, 1.25 80% | TUDE AND BASE , IN CFS, AND ANNUA 2 50% | PROBABILI
D ON PERIO
FOR INDIO
L EXCEEDA
5
20%
7000 | TY OF INDD OF RECATED RENCE PROB | ISTANTANEC CORD 1958 CURRENCE IABILITY, 25 4% 0800 12 | DUS PEAK F
3-82
INTERVAL,
IN PERCEN
50
2% | FLOW TOO THE TOO TOO TOO TOO TOO TOO TOO TOO TOO TO | PERIOD (CON-
SECU-
TIVE DAYS) | BASE DISCH 2 50% 3640 2750 1990 1370 1050 818 718 OF RECO | D ON PER ARGE, IN INTERV EXCEEDAN 5 20\$ 5240 3900 1790 1300 1050 915 RD 1958-: | CFS, FC AL, IN Y CE PROBA 10 10 10 4670 3120 2050 1420 1160 1000 | PR INDICA EARS, AN BILITY, 25 4% | 958-82 TED RECUID ANNUAL IN PERCEID 2% | 100
1% | 115 43 35 30 26 22 19 ## 14306400 FIVE RIVERS NEAR FISHER, OR LOCATION.--Lat 44°20'15", long 123°49'35", W-1/2 sec.19, T.14 S., R.9 W., Lincoln County, Hydrologic Unit 17100205, in Siuslaw National Forest, on left bank at downstream side of abandoned highway bridge, 500 ft downstream from Lobster Creek, 3.2 mi north of Fisher, and at mile 3.3. DRAINAGE AREA. -- 114 mi2. PERIOD OF RECORD.--August 1958 to September 1963, October 1967 to September 1982. GAGE.--Water-stage recorder. Altitude of gage is 130 ft, from topographic map. REMARKS.--No regulation or diversion above station. AVERAGE DISCHARGE.--20 years, 556 ft³/s, 66.23 in/yr, 402,800 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 17,200 ft³/s Jan. 21, 1972, gage height, 21.08 ft; minimum, 16 ft³/s Oct. 1, 1967. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of Dec. 22, 1964, reached a stage of 22.3 ft, from floodmarks, discharge, 19,000 ft³/s from rating curve extended above 10,000 ft³/s. #### STATISTICAL SUMMARIES MONTHLY AND ANNUAL MEAN DISCHARGES 1961-82 MAGNITUDE AND PROBABILITY OF ANNUAL LOW FLOW BASED ON PERIOD OF RECORD 1962-82 | | MINIMUM | MAYSMIN | MEAN | STAN-
DARD
DEVIA-
TION | COEFFI-
CIENT OF
VARI- | PERCENT
OF | PERIOD
(CON-
SECU- | | INTERVAL | CFS, FOF
, IN YEAR
CE PROBAE | RS, AND A | NNUAL N | 0N- | |-----------|---------|------------------|---------------|---------------------------------|------------------------------|------------------|--------------------------|----------|----------|------------------------------------|------------------|----------|-----------| | Монтн | (CFS) | MAXIMUM
(CFS) | MEAN
(CFS) | (CFS) | ATION | ANNUAL
RUNOFF | TIVE
DAYS) | 2
50% | 5
20% | 10
10 % | 20
5 % | 50
2% | 100
1% | | OCTOBER | 28 | 322 | 140 | 99 | .71 | 2.1 | 1 | 26 | 22 | 21 | 20 | | | | NOVEMBER | 61 | 2308 | 717 | 554 | .77 | 10.6 | 3 | 26 | 23 | 22 | 21 | | | | DECEMBER | 73 | 2393 | 1402 | 694 | .50 | 20.7 | 7 | 27 | 24 | 23 | 22 | | | | JANUARY | 80 | 2671 | 1241 | 733 | .59 | 18.3 | 14 | 28 | 25 | 24 | 23 | | | | FEBRUARY | 283 | 2363 | 1181 | 538 | . 46 | 17.5 | 30 | 31 | 27 | 26 | 25 | | | | MARCH | 298 | 1854 | 936 | 440 | .47 | 13.8 | 60 | 36 | 30 | 28 | 26 | | | | APRIL | 218 | 1117 | 574 | 274 | .48 | 8.5 | 90 | 43 | 35 | 31 | 29 | | | | MAY | 137 | 631 | 283 | 139 | .49 | 4.2 | 120 | 53 | 42 | 38 | 35 | | | | JUNE | 85 | 273 | 131 | 50 | .38 | 1.9 | 183 | 95 | 72 | 62 | 55 | | | | JULY | 45 | 88 | 64 | 13 | . 20 | .9 | | | | | | | | | AUGUST | 28 | 87 | 42 | 13 | .32 | .6 | | | | | | | | | SEPTEMBER | 30 | 95 | 53 | 22 | -41 | .8 | | | | | | | | | ANNUAL | 174 | 939 | 561 | 179 | .32 | 100 | | | | | | | | MAGNITUDE AND PROBABILITY OF INSTANTANEOUS PEAK FLOW BASED ON PERIOD OF RECORD 1961-82 MAGNITUDE AND PROBABILITY OF ANNUAL HIGH FLOW BASED ON PERIOD OF RECORD 1961-82 | DISCHARGE,
YEARS, A | | | | RECURRENC
ROBABILITY | | | PERIOD
(CON- | | INTER | VAL, IN | OR INDICAT
YEARS, AND
ABILITY, I | ANNUAL | | |------------------------|------------------|----------|-----------|-------------------------|----------|-----------|------------------------|----------|----------|-----------|--|----------|-----| | 1.25
80% | 2
50 % | 5
20% | 10
10% | 25
4% | 50
2% | 100
1% | SECU-
TIVE
DAYS) | 2
50% | 5
20% | 10
10% | 25
4% | 50
2% | 100 | | 5960 | 8570 | 12400 | 15100 | 18600 | | | | | | | | | | | | | | | | | | 1 | 6510 | 9300 | 11200 | 13600 | | | | WEIGHTED | SKEW = | •067 | | | | | 3 | 5090 | 7090 | 8420 | 10100 | | | | | | | | | | | 7 | 3770 | 4910 | 5590 | 6390 | | | | | | | | | | | 15 | 2560 | 3290 | 3750 | 4310 | | | | | | | | | | | 30 | 2040 | 2520 | 2770 | 3030 | | | | | | | | | | | 60 | 1610 | 2060 | 2300 | 2540 | | | | | | | | | | | 90 | 1400 | 1820 | 2020 | 2210 | | | DURATION TABLE OF DAILY MEAN FLOW FOR PERIOD OF RECORD 1961-82 | | | DISC | HARGE, | IN CFS, | WHICH WAS | EQUALED | OR EXCE | EDED FOR | INDICATED | PERCENT | OF TIME | | | | |------------|------|------|--------|---------|-----------|---------|---------|----------|-----------|---------|---------|-----|-----|-----| | 5 % | 10% | 15% | 20% | 25% | 30% | 40% | 50% | 60% | 70% | 75% | 80% | 85% | 90% | 95% | | 2230 | 1500 | 1090 | 836 | 650 | 532 | 356 | 223 | 129 | 79 | 63 | 52 | 43 | 36 | 29 | 14306500 ALSEA RIVER NEAR TIDEWATER, OR 155 LOCATION.--Lat 44°23'10", long 123°49'50", in NW½NW½ sec.6, T.14 S., R.9 W., Lincoln County, Hydrologic Unit 17100205, on right bank 0.9 mi downstream from Grass Creek, 2.5 mi upstream from Scott Creek, 3.8 mi southeast of Tidewater, and at mile 21.0. DRAINAGE AREA. -- 334 mi2. PERIOD OF RECORD. -- October 1939 to September 1982. GAGE.--Water-stage recorder. Datum of gage is 48.16 ft National Geodetic Vertical Datum of 1929. Prior to Nov. 16, 1939, nonrecording gage at present site and datum. REMARKS.--No regulation. Diversion for irrigation above station. AVERAGE DISCHARGE.--43 years, 1,522 ft³/s, 61.88 in/yr, 1,103,000 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 41,800 ft³/s Dec. 22, 1964, gage height, 27.44 ft; minimum, 45 ft³/s Sept. 26, 27, 1965. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood on or about Feb. 3, 1890, reached a stage of 29.5 ft, from floodmark (discharge not determined). ##
STATISTICAL SUMMARIES MONTHLY AND ANNUAL MEAN DISCHARGES 1940-82 MAGNITUDE AND PROBABILITY OF ANNUAL LOW FLOW BASED ON PERIOD OF RECORD 1941-82 | | MINIMUM | MAXIMUM | MEAN | STAN-
DARD
DEVIA-
TION | COEFFI-
CIENT OF
VARI- | PERCENT
OF
ANNUAL | PERIOD
(CON-
SECU- | | INTERVAL | , IN YEAF | R INDICAT
RS, AND A
BILITY, | ANNUAL N | 0 N - | |-----------|-------------|---------|-------|---------------------------------|------------------------------|-------------------------|--------------------------|----------|------------------|-----------|-----------------------------------|------------------|--------------| | МОНТН | (CFS) | (CFS) | (CFS) | (CFS) | ATION | RUNOFF | TIVE
DAYS) | 2
50% | 5
20 % | 10
10% | 20
5% | 50
2 % | 100
1% | | OCTOBER | 74 | 2521 | 417 | 472 | 1.13 | 2.3 | 1 | 75 | 62 |
57 | 53 | 48 | 4 5 | | NOVEMBER | 115 | 6058 | 1771 | 1289 | .73 | 9.7 | 3 | 76 | 63 | 58 | 54 | 49 | 46 | | DECEMBER | 182 | 7419 | 3446 | 1770 | .51 | 18.8 | 7 | 78 | 6 6 | 60 | 56 | 51 | 49 | | JANUARY | 211 | 7874 | 3721 | 1941 | .52 | 20.3 | 14 | 82 | 69 | 63 | 59 | 54 | 52 | | FEBRUARY | 607 | 6586 | 3324 | 1365 | .41 | 18.1 | 30 | 89 | 75 | 68 | 63 | 5 9 | 56 | | MARCH | 604 | 5144 | 2532 | 1083 | .43 | 13.8 | 60 | 105 | 85 | 77 | 71 | 64 | 61 | | APRIL | 5 50 | 3203 | 1529 | 700 | .46 | 8.3 | 90 | 121 | 97 | 87 | 79 | 72 | 68 | | MAY | 331 | 1848 | 801 | 377 | .47 | 4.4 | 120 | 147 | 117 | 104 | 95 | 87 | 82 | | JUNE | 178 | 724 | 373 | 132 | .35 | 2.0 | 183 | 274 | 208 | 178 | 156 | 134 | 120 | | JULY | 117 | 269 | 183 | 40 | .22 | 1.0 | | | | | | | | | AUGUST | 66 | 234 | 117 | 31 | .27 | .6 | | | | | | | | | SEPTEMBER | 60 | 452 | 135 | 76 | . 56 | .7 | | | | | | | | | ANNUAL | 431 | 2541 | 1522 | 410 | •27 | 100 | | | | | | | | MAGNITUDE AND PROBABILITY OF INSTANTANEOUS PEAK FLOW BASED ON PERIOD OF RECORD 1940-82 MAGNITUDE AND PROBABILITY OF ANNUAL HIGH FLOW BASED ON PERIOD OF RECORD 1940-82 | | | S, FOR II | | | | | PERIOD
(CON- | DISC | INTER | N CFS, FO
VAL, IN 'NCE PROB | YEARS, A | AUNNA DN | L | |-------------|--------------|------------------|-----------|------------------|------------------|-------------------|------------------------|------------------|------------------|--------------------------------|----------|----------|-----------| | 1.25
80% | 2
50%
 | 5
20 % | 10
10% | 25
4 % | 50
2 % | 100
1 % | SECU-
TIVE
DAYS) | 2
50 % | 5
20 % | 10
10% | 25
4% | 50
2% | 100
1% | | 15300 | 20600 | 27400 | 31500 | 36500 | 39900 | 43200 | | | | | | | | | | | | | | | | 1 | 17000 | 22200 | 25300 | 28700 | 31000 | 33200 | | WEIGHTE | D SKEW = | 221 | | | | | 3 | 13500 | 17800 | 20300 | 23200 | 25300 | 27200 | | | | | | | | | 7 | 10000 | 13000 | 14700 | 16500 | 17800 | 18900 | | | | | | | | | 15 | 7240 | 9180 | 10200 | 11300 | 12000 | 12600 | | | | | | | | | 30 | 5670 | 6960 | 7510 | 7990 | 8240 | 8420 | | | | | | | | | 60 | 4380 | 5500 | 6050 | 6580 | 6890 | 7150 | | | | | | | | | 90 | 3910 | 4910 | 5370 | 5800 | 6030 | 6210 | DURATION TABLE OF DAILY MEAN FLOW FOR PERIOD OF RECORD 1940-82 | | | DISC | CHARGE, | IN CFS, | WHICH WAS | EQUALED | OR EXCE | EDED FOR | INDICATE | D PERCEN | T OF TIM | E | | | |------|------|------|---------|---------|-----------|---------|-------------|-------------|----------|-------------|-------------|-------------|-----|-----| | 5% | 10% | 15% | 20% | 25% | 30% | 40% | 50 % | 60 % | 70% | 75 % | 80 % | 85 % | 90% | 95% | | 5930 | 3990 | 2930 | 2300 | 1840 | 1510 | 1010 | 638 | 374 | 224 | 176 | 141 | 119 | 100 | 83 | #### 14306600 DRIFT CREEK NEAR SALADO, OR LOCATION.--Lat 44°30'50", long 123°50'50", in NEt sec.24, T.12 S., R.10 W., Lincoln County, Hydrologic Unit 17100205, on right bank 0.2 mi downstream from Cape Horn Creek, 4.1 mi southwest of Salado, 8.5 mi southeast of Toledo, and at mile 21.8. DRAINAGE AREA .-- 20.5 mi2. 5% 447 10% 299 15% 225 20% 179 146 30% 122 88 PERIOD OF RECORD.--September 1958 to September 1963, June 1965 to September 1970. GAGE.--Water-stage recorder. Altitude of gage is 460 ft, from topographic map. REMARKS. -- No regulation or diversion above station. AVERAGE DISCHARGE.--10 years (water years 1959-63, 1966-70), 120 ft³/s, 79.49 in/yr, 86,940 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 2,500 ft³/s Nov. 25, 1962, gage height, 8.34 ft, from rating curve extended above 1,300 ft³/s on basis of slope-area measurement at gage height 8.11 ft; maximum gage height, 8.79 ft Dec. 4, 1966 (backwater from debris); minimum discharge, 3.8 ft³/s Sept. 7, 8, 1958. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood in December 1964 or January 1965, reached a stage of 9.86 ft, from floodmark in well, discharge, 4,050 ft³/s. ## STATISTICAL SUMMARIES | | | | MEAN | | COEFFI-
CIENT OF | PERCENT
OF | PERIOD
(CON- | | INTERVAL | CFS, FOF
, IN YEAF
CE PROBAG | RS, AND A | NNUAL N | -NC | |--------------------------|---|---|---|--|---|------------------------|---|--|--|--|---|---|------------| | MONTH | MINIMUM
(CFS) | MAXIMUM
(CFS) | MEAN
(CFS) | TION
(CFS) | VARI-
ATION | ANNUAL
RUNOFF | SECU-
TIVE
DAYS) | 2
50% | 5
20 % | 10
10% | 20
5% | 50
2% | 100
1% | | OCTOBER | 9.7 | 89 | 4 5 | 30 | .66 | 3.1 | 1 | | | | | | | | 10VEMBER | 73 | 317 | 171 | 88 | .52 | 11.8 | 3 | | | | ` | | | | ECEMBER | 108 | 400 | 224 | 95 | .43 | 15.5 | 7 | | | | | | | | ANUARY | 76 | 488 | 262 | 143 | • 55 | 18.1 | 14 | | | | | | | | EBRUARY | 154 | 510 | 274 | 109 | .40 | 18.9 | 30 | | | | | | | | MARCH | 89 | 390 | 209 | 91 | .43 | 14.5 | 60 | | | | | | | | PRIL | 61 | 232 | 116 | 53 | .46 | 8.0 | 90 | | | | | | | | 4AY_ | 25 | 135 | 74 | 37 | .50 | 5.1 | 120 | | | | | | | | UNE | 14 | 70 | 31 | 15 | .48 | 2.1 | 183 | | | | | | | | ULY | 9.2 | 23 | 15
9.7 | 4.2
3.8 | . 29 | 1.0 | NOTE | | · | 00 05 043 | | DI E | | | | | | | | • 39 | | | FSS IHA | N 10 YEA | RS OF DAT | A AVAILA | MRLE. | | | | 5.8
5.4 | 19
62 | | | | .7
1.0 | 11012. | | | | | | | | SEPTEMBER | 5.4
106 | 62
145
 | 15
120 | 16
11 | 1.08 | 1.0 | | | | | | | | | MAGNIT | 5.4
106
TUDE AND
BASE
, IN CFS, | 62 | 15
120
TY OF IN
OD OF REC | 16 11STANTANEC CORD 1959CURRENCE | 1.08
.10
 | 1.0
100

FLOW | | GNITUDE
Base
Disch | AND PROB
D ON PER
ARGE, IN
INTERV | ABILITY COLOR OF RECORDS ABOUT THE PROBABLE COLOR OF | DF ANNUAL
ECORD 19 | . HIGH FI
159-70
ED RECUI |
RRENCE | |)ISCHARGE,
YEARS, A | 106 TUDE AND BASE , IN CFS, AND ANNUA | 62 145 PROBABILI D ON PERI FOR INDI L EXCEEDA | 15 120 TY OF IN OD OF RECONCE PROBLEM | 16 11 STANTANECORD 1959 CURRENCE ABILITY, 25 | 1.08
.10
DUS PEAK F
9-70
INTERVAL,
IN PERCEI | 1.0
100
 | PERIOD (CON-SECU- | GNITUDE
BASE
DISCH | AND PROB
D ON PER
ARGE, IN
INTERV | ABILITY (10D OF RE CFS, FOR AL, IN YE | DF ANNUAL
CORD 19
R INDICAT
EARS, AND | . HIGH FI
159-70
ED RECUI
O ANNUAL
N PERCEI | RRENCE | | MAGNIT
ISCHARGE, | 106 TUDE AND BASE , IN CFS, | 62 145 PROBABILI D ON PERI FOR INDI | 15 120 TY OF IN OD OF REC | 16 11 STANTANEC CORD 1959 CURRENCE ABILITY, | 1.08
.10
DUS PEAK
69-70
INTERVAL, | 1.0
100
 | PERIOD
(CON- | GNITUDE
Base
Disch | AND PROB
D ON PER
ARGE, IN
INTERV | ABILITY (10D OF RE CFS, FOR | DF ANNUAL
ECORD 19 | . HIGH FI
159-70
ED RECUI | RRENCE | | MAGNITUSCHARGE, YEARS, A | 106 TUDE AND BASE , IN CFS, AND ANNUA | 62 145 PROBABILI D ON PERI FOR INDI L EXCEEDA 5 20% | 15 120 TY OF IN OD OF RECONCE PROBLEM | 16 11 STANTANECORD 1959 CURRENCE ABILITY, 25 | 1.08
.10
DUS PEAK F
9-70
INTERVAL,
IN PERCEI | 1.0
100
 | PERIOD
(CON-
SECU-
TIVE
DAYS) | ONITUDE
BASE
DISCH | AND PROB
D ON PER
ARGE, IN
INTERV.
EXCEEDANG
5
20% | ABILITY (IOD OF RE CFS, FOR AL, IN YE EPROBAE 10 10% | DF ANNUAL
CORD 19
R INDICAT
EARS, AND
BILITY, I | HIGH FI
159-70
ED RECUI
ANNUAL
N PERCEI | RRENCE | | MAGNIT | 106 TUDE AND BASE , IN CFS, AND ANNUA 2 50% | PROBABILI
D ON PERI
FOR INDI
L EXCEEDA | 15 120 TY OF IN OD OF REI CATED REI NCE PROB. | 16 11 STANTANECORD 1959 CURRENCE ABILITY, 25 | 1.08
.10
DUS PEAK F
9-70
INTERVAL,
IN PERCEI | 1.0
100
 | PERIOD (CON-SECU-TIVE DAYS) | ONITUDE
BASE
DISCH | AND PROBA
D ON PER
ARGE, IN
INTERV.
EXCEEDAN.
5
20% | ABILITY (100 OF RECEPTION RE | PF ANNUAL CORD 19 R INDICAT ARS, AND BILLITY, 1 25 4% | HIGH FI
159-70
ED RECUI
) ANNUAL
N PERCEI
50
2% | RRENCE | | MAGNIT | 106 TUDE AND BASE , IN CFS, AND ANNUA 2 50% | 62 145 PROBABILI D ON PERI FOR INDI L EXCEEDA 5 20% | 15 120 TY OF IN OD OF REI CATED REI NCE PROB. | 16 11 STANTANECORD 1959 CURRENCE ABILITY, 25 | 1.08
.10
DUS PEAK F
9-70
INTERVAL,
IN PERCEI | 1.0
100
 | PERIOD (CON- SECU- TIVE DAYS) | DISCH 2 50% 1360 1070 | AND PROB. D ON PER ARGE, IN INTERV. EXCEEDAN 1600 1200 | ABILITY (IOD OF RE CFS, FOF AL, IN YE E PROBAE 10 10 1750 1250 | OF ANNUAL
CORD 19
R INDICAT
ARS, AND
BILITY, 1
25
4% | HIGH FI
159-70
ED RECUI
O ANNUAL
N PERCEI
50
2% | RRENCE | | MAGNITUSCHARGE, YEARS, A | 106 TUDE AND BASE , IN CFS, AND ANNUA 2 50% | PROBABILI
D ON PERI
FOR INDI
L EXCEEDA | 15 120 TY OF IN OD OF REI CATED REI NCE PROB. | 16 11 STANTANECORD 1959 CURRENCE ABILITY, 25 | 1.08
.10
DUS PEAK F
9-70
INTERVAL,
IN PERCEI | 1.0
100
 | PERIOD (CON- SECU- TIVE DAYS) | DISCH | AND PROB
D ON PER
ARGE, IN
INTERV.
EXCEEDAN.
5
20% | ABILITY (10D OF RE CFS, FOR AL, IN YE CE PROBAE 10 105 1750 1250 997 | DF ANNUAL CORD 19 R INDICAT AND SILLITY, 1 25 4% | . HIGH FI | RRENCE | | MAGNITUSCHARGE, YEARS, A | 106 TUDE AND BASE , IN CFS, AND ANNUA 2 50% | PROBABILI
D ON PERI
FOR INDI
L EXCEEDA | 15 120 TY OF IN OD OF REI CATED REI NCE PROB. | 16 11 STANTANECORD 1959 CURRENCE ABILITY, 25 | 1.08
.10
DUS PEAK F
9-70
INTERVAL,
IN PERCEI | 1.0
100
 | PERIOD (CON- SECU- TIVE DAYS) 1 3 7 | DISCH DISCH 2 50 1360 1070 780 562 | AND PROB
D ON PER
ARGE, IN
INTERV.
EXCEEDANG
5
20%
1600
1200
914
692 | ABILITY (10D OF RECEPTED AL, IN YECE PROBAE 10 10% 1750 1750 1997 7774 | DF ANNUAL
CORD 19
R INDICAT
EARS, AND
BILITY, 1
25
4% | HIGH FI
159-70
ED RECUI
O ANNUAL
N PERCEI
50
2% | RRENCE | | MAGNIT | 106 TUDE AND BASE , IN CFS, AND ANNUA 2 50% | PROBABILI
D ON PERI
FOR INDI
L EXCEEDA | 15 120 TY OF IN OD OF REI CATED REI NCE PROB. | 16 11 STANTANECORD 1959 CURRENCE ABILITY, 25 | 1.08
.10
DUS PEAK F
9-70
INTERVAL,
IN PERCEI | 1.0
100
 | PERIOD (CON-
SECU-
TIVE DAYS) | DISCH 2 50% 1360 1070 780 562 413 | AND PROB. D ON PER ARGE, IN INTERV. EXCEEDAN 1600 1200 914 692 496 | ABILITY (IOD OF RE CFS, FOR AL, IN YE CE PROBAE 10 10 1750 1250 997 774 551 | OF ANNUAL CORD 19 R INDICAT ARS, AND BILITY, 1 25 4% | . HIGH FI |
RRENCE | | MAGNIT | 106 TUDE AND BASE , IN CFS, AND ANNUA 2 50% | PROBABILI
D ON PERI
FOR INDI
L EXCEEDA | 15 120 TY OF IN OD OF REI CATED REI NCE PROB. | 16 11 STANTANECORD 1959 CURRENCE ABILITY, 25 | 1.08
.10
DUS PEAK F
9-70
INTERVAL,
IN PERCEI | 1.0
100
 | PERIOD (CON- SECU- TIVE DAYS) 1 3 7 | DISCH DISCH 2 50 1360 1070 780 562 | AND PROB
D ON PER
ARGE, IN
INTERV.
EXCEEDANG
5
20%
1600
1200
914
692 | ABILITY (10D OF RECEPTED AL, IN YECE PROBAE 10 10% 1750 1750 1997 7774 | DF ANNUAL
CORD 19
R INDICAT
EARS, AND
BILITY, 1
25
4% | . HIGH FI | RRENCE | 50% 60 37 70% 75% 17 14 11 22 95% 6.7 8.6 ## 14306700 NEEDLE BRANCH NEAR SALADO, OR LOCATION.--Lat 44°30'55", 123°51'20", in SW½ sec.24, T.12 S., R.10 W., Lincoln County, Hydrologic Unit 17100205, on right bank 500 ft upstream from mouth, 4.6 mi west of Salado, and 8.5 mi southeast of Toledo. DRAINAGE AREA.--0.27 mi², computed as 174.64 acres on basis of field survey by Oregon State University. PERIOD OF RECORD. -- October 1958 to September 1973. GAGE.--Water-stage recorder and concrete control. Altitude of gage is 440 ft, from topographic map. REMARKS.--No regulation or diversion above station. 4.3 3.1 2.5 AVERAGE DISCHARGE.--15 years, 1.64 ft³/s, 82.49 in/yr, 1,190 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 64 ft³/s Jan. 11, 1972, gage height, 3.75 ft; minimum, 0.01 ft³/s Sept. 8, 9, 1962, Sept. 18 to Oct. 3, 1965, Aug. 17, Sept. 14, 23-28, 1967, many days in August and September 1970, Aug. 26, 1971, many days in August and September 1972, several days in August and September 1973. ## STATISTICAL SUMMARIES | | MINIMUM | MAXIMUM | MEAN | STAN-
DARD
DEVIA-
TION | COEFFI-
CIENT OF | | PERIOD
(CON-
SECU- | 11 | NTERVAL, | CFS, FOR
IN YEARS
E PROBABI | , AND AN | INUAL NO |)N- | |------------------------|------------------------------|--|--------------------------------|---|----------------------------------|-----------------------------|---|---|--
--|--|---------------------------------|----------------| | MONTH | (CFS) | (CFS) | (CFS) | (CFS) | VARI-
ATION | ANNUAL
RUNOFF | TIVE
DAYS) | 2
50 % | 5
20% | 10
10% | 20
5% | 50
2% | 100
1% | | OCTOBER | .1 | 1.9 | .6 | .6 | 1.07 | 2.9 | 1 | 0.0 | 0.0 | 0.0 | 0.0 | | | | 10VEMBER | .8 | 4.6 | 2.6 | 1.2 | .48 | 13.3 | 3 | 0.0 | 0.0 | 0.0 | 0.0 | | | | DECEMBER | 1.2 | 7.8 | 3.9 | 2.0 | .52 | 19.8 | 7 | 0.0 | 0.0 | 0.0 | 0.0 | | | | IANUARY | .8 | 7.1 | 4.3 | 2.1 | .49 | 21.9 | 14 | 0.0 | 0.0 | 0.0 | 0.0 | | | | EBRUARY | .7 | 6.2 | 2.9 | 1.4 | .47 | 14.9 | 30 | 0.0 | 0.0 | 0.0 | 0.0- | | | | MARCH | .7 | 4.5 | 2.6 | 1.1 | .43 | 13.0 | 60 | .1 | 0.0 | 0.0 | 0.0 | | | | PRIL | •6 | 2.7 | 1.4 | .7 | .53 | 7.1 | 90 | .1 | 0.0 | 0.0 | 0.0 | | | | 1AY | .2 | 1.8 | .8 | .4 | .56 | 3.9 | 120 | .1 | .1 | 0.0 | 0.0 | | | | JUNE | .1 | 1.1 | .3 | .2 | .70 | 1.7 | 183 | .3 | .2 | .1 | .1 | | | | JULY | .1 | .4 | .1 | .1 | •69 | •7 | | | | | | | | | \UGUST | 0.0 | •2 | -1 | 0.0 | .67 | •3 | | | | | | | | | SEPTEMBER | 0.0 | .7 | .1 | •2 | 1.38 | .7 | | | | | | | | | NNUAL | 1.1 | 2.5 | 1.6 | .4 | .23 | 100 | | | | | | | | | MAGNIT | | PROBABILI
D ON PERI | | | | FLOW | MAG | | | BILITY OF
DD OF REC | | | .ow | | SCHARGE,
YEARS, A | BASE
IN CFS, | FOR INDI | OD OF REC | CURRENCE | INTERVAL
IN PERCE | , IN
NT | PERIOD
(CON- | BASED
DISCHAF | ON PERIOR
RGE, IN O | | ORD 195 | 9-73

D RECUR
ANNUAL | RENCE | | SCHARGE, | BASE
IN CFS, | D ON PERI | OD OF REC | CORD 1959
CURRENCE | INTERVAL
IN PERCE | . IN | PERIOD
(CON-
SECU-
TIVE | BASED DISCHAR EX | ON PERIOR PER | OD OF REC
CFS, FOR
, IN YEA
E PROBABI | ORD 195 INDICATE RS, AND LITY, IN | 9-73 D RECURANNUAL PERCEN | RENCE | | OISCHARGE,
YEARS, A | BASE
IN CFS,
ND ANNUA | FOR INDIV
L EXCEEDA
5
20% | OD OF REC | CURRENCE ABILITY, | INTERVAL
IN PERCE | , IN
NT
 | PERIOD
(CON-
SECU- | BASED DISCHAR | ON PERIO | OD OF REC | ORD 195 INDICATE RS, AND LITY, IN | 9-73 D RECURANNUAL PERCEN | RENCE | | 1.25
80% | BASE IN CFS, IND ANNUA 2 50% | FOR INDI | OD OF REC | CORD 1959
CURRENCE
ABILITY,
25
4% | INTERVAL
IN PERCE | , IN
NT
 | PERIOD
(CON-
SECU-
TIVE | BASED DISCHAR EX | ON PERIOR PER | OD OF REC
CFS, FOR
, IN YEA
E PROBABI | ORD 195 INDICATE RS, AND LITY, IN | 9-73 D RECURANNUAL PERCEN | RENCE | | 1.25
80% | BASE IN CFS, AND ANNUA 2 50% | FOR INDIV
L EXCEEDA
5
20% | OD OF REC | CORD 1959
CURRENCE
ABILITY,
25
4% | INTERVAL
IN PERCE | , IN
NT
 | PERIOD
(CON-
SECU-
TIVE
DAYS) | DISCHAFE) | ON PERIO | DD OF REC
CFS, FOR
-, IN YEA
E PROBABI
10
10% | INDICATE RS, AND LITY, IN 25 4% | 9-73 D RECURANNUAL PERCEN 50 2% | T 100 | | 1.25
80% | BASE IN CFS, AND ANNUA 2 50% | FOR INDIV
L EXCEEDA
5
20% | OD OF REC | CORD 1959
CURRENCE
ABILITY,
25
4% | INTERVAL
IN PERCE | , IN
NT
 | PERIOD
(CON-
SECU-
TIVE
DAYS) | DISCHAFE EX 2 50% | ON PERIO | OD OF REC
CFS, FOR
, IN YEA
E PROBABI
10
10% | INDICATE RS, AND LITY, IN 25 4% | 9-73 D RECUFANNUAL PERCEN 50 2% | T 100 | | 1.25
80% | BASE IN CFS, AND ANNUA 2 50% | FOR INDIV
L EXCEEDA
5
20% | OD OF REC | CORD 1959
CURRENCE
ABILITY,
25
4% | INTERVAL
IN PERCE | , IN
NT
 | PERIOD (CON- SECU- TIVE DAYS) | DI SCHAF E) 2 50% 21 15 | ON PERIO | DD OF REC
CFS, FOR
, IN YEA
E PROBABI
10
10% | INDICATE RS, AND LITY, IN 25 4% 43 26 | 9-73 D RECURANNUAL PERCEN 50 2% | T 100 | | 1.25
80% | BASE IN CFS, AND ANNUA 2 50% | FOR INDIV
L EXCEEDA
5
20% | OD OF REC | CORD 1959
CURRENCE
ABILITY,
25
4% | INTERVAL
IN PERCE | , IN
NT
 | PERIOD (CON- SECU- TIVE DAYS) 1 3 7 | DISCHAR E) 2 50% 21 15 11 | ON PERIO | DD OF REC
CFS, FOR
, IN YEA
E PROBABI
10
10% | ORD 195 | 9-73 D RECUFANNUAL PERCEN 50 2% | T 100 | | 1.25
80% | BASE IN CFS, AND ANNUA 2 50% | FOR INDIV
L EXCEEDA
5
20% | OD OF REC | CORD 1959
CURRENCE
ABILITY,
25
4% | INTERVAL
IN PERCE | , IN
NT
 | PERIOD
(CON-
SECU-
TIVE
DAYS)
 | BASED DISCHAF E) 2 50% 21 15 11 8-2 | ON PERIO | OD OF REC
CFS, FOR
-, IN YEA
E PROBABI
10
10%
33
22
15 | 195
INDICATE
RS, AND
LITY, IN
25
4%
43
26
17
13 | 9-73 D RECUFANNUAL PERCEN 50 2% | T 100 | | 1.25
80% | BASE IN CFS, AND ANNUA 2 50% | FOR INDIV
L EXCEEDA
5
20% | OD OF REC | CORD 1959
CURRENCE
ABILITY,
25
4% | INTERVAL
IN PERCE | , IN
NT
 | PERIOD (CON-
SECU-
TIVE DAYS) | BASED DISCHAR E) 2 50% 21 15 11 8.2 6.1 | ON PERIO | DD OF REC
DD REC | ORD 195 | 9-73 D RECUFANNUAL PERCEN 50 2% | T
100
1% | | 1.25
80% | BASE IN CFS, AND ANNUA 2 50% | FOR INDIV
L EXCEEDA
5
20% | OD OF REC | CURRENCE BILITY, 25 44 | INTERVAL
IN PERCE | , IN
NT
1000
1% | PERIOD (CON-
SECU-
TIVE DAYS) | DI SCHAFE E) 2 50% 21 15 11 8.2 6.1 4.6 4.1 | ON PERIO
ON PERIO
INTERVAL
(CEEDANCE
5
20%
27
19
14
10
7.5
6.0
5.1 | DD OF REC
CFS, FOR
, IN YEA
E PROBABI
10
10%
33
22
15
11
8.3
6.9
5.8 | ORD 195 | 9-73 D RECUFANNUAL PERCEN 50 2% | T 100 | | 1.25
80% | BASE IN CFS, AND ANNUA 2 50% | FOR INDIVIDUAL EXCEEDA 5 20% 39 .394 | OD OF RECONCE PROBA- 10 10% 45 | CURRENCE BILITY, 25 4% 54 | INTERVAL
IN PERCE
50
2% | , IN
NT
100
1%
 | PERIOD (CON-
SECU-
TIVE DAYS) | DISCHAFE 2 50% 21 15 11 8.2 6.1 4.6 4.1 OF RECORD | ON PERIO
GRE, IN (
INTERVAL
(CEEDANCE
5
20%
27
19
14
10
7.5
6.0
5.1 | OD OF REC
CFS, FOR
, IN YEA
E PROBABI
10
10%
 | INDICATE RS, AND LITY, IN 25 4% | 9-73 D RECUFANNUAL PERCEN 50 2% | T 100 | 1.9 1.6 1.0 .7 .4 .2 .1 .1 .1 0.0 .1 # 14306800 FLYNN CREEK NEAR SALADO, OR LOCATION.--Lat 44°32'20", long 123°51'05", in SWt sec.12, T.12 S., R.10 W., Lincoln County, Hydrologic Unit 17100205, on right bank 1,000 ft upstream from mouth, 3.4 mi west of Salado, and 6.9 mi southeast of Toledo. DRAINAGE AREA.--0.78 mi², computed as 501.96 acres on basis of field survey by Oregon State University. PERIOD OF RECORD.--September 1958 to September 1973. GAGE.--Water-stage recorder and concrete control. Altitude of gage is 685 ft, from topographic map. REMARKS. -- No regulation or diversion above station. AVERAGE DISCHARGE.--15 years (water years 1959-73), 4.37 ft³/s, 76.08 in/yr, 3,170 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 139 ft³/s Jan. 11, 1972, gage height, 4.73 ft; minimum, 0.07 ft³/s Sept. 27, 1967. ## STATISTICAL SUMMARIES MONTHLY AND ANNUAL MEAN DISCHARGES 1959-73 MAGNITUDE AND PROBABILITY OF ANNUAL LOW FLOW BASED ON PERIOD OF RECORD 1960-73 | | MINIMIN | MAVIMIM | MEAN | STAN-
DARD
DEVIA- | COEFFI-
CIENT OF | PERCENT
OF | PERIOD
(CON- | ŀ | NTERVAL, | IN YEAR | INDICATES, AND A | NNUAL N | ON- | |--|--|--|---|--|--|-----------------------------------|---
--------------------------------------|--|---|---|--|-----------| | ионтн | MINIMUM
(CFS) | MAXIMUM
(CFS) | MEAN
(CFS) | TION
(CFS) | VARI-
ATION | ANNUAL
RUNOFF | SECU-
TIVE
DAYS) | 2
50% | 5
20% | 10
10% | 20
5% | 50
2% | 100
1% | | CTOBER | .2 | 3.2 | 1.0 | .9 | .90 | 1.8 | 1 | .2 | .1 | .1 | .1 | | | | OVEMBER | 1.0 | 11 | 5.7 | 3.3 | . 58 | 10.7 | 3 | .2 | .1 | .1 | .1 | | | | ECEMBER | 4.4 | 21 | 9.6 | 4.7 | . 49 | 18.1 | 7 | .2 | .1 | .1 | . 1 | | | | ANUARY | 3.2 | 18 | 12 | 5.5 | .46 | 22.4 | 14 | .2 | . 1 | .1 | . 1 | | | | EBRUARY | 2.0 | 19 | 8.7 | 4.1 | .47 | 16.4 | 30 | .2 | .2 | .1 | . 1 | | | | ARCH | 2.7 | 15 | 7.3 | 3.6 | .50 | 13.7 | 60 | .3 | .2 | .1 | . 1 | | | | PRIL | 1.8 | 8.3 | 4.2 | 2.0 | .48 | 8.0 | 90 | .3 | .2 | .2 | .2 - | | | | AY | .9 | 5.3 | 2.4 | 1.3 | .52 | 4.6 | 120 | .4 | .3 | .2 | •2 | | | | UNE | .5 | 3.2 | 1.1 | .7 | | 2.1 | 183 | .8 | .5 | .4 | . 4 | | | | ULY | .3 | 1.2 | .5 | .2 | .42 | 1.0 | | | | | | | | | | | .5 | .3 | .1 | | .5 | | | | | | | | | | .1 | | | | | | | | | | | | | | UGUST | .1 | 1.4 | .4 | .3 | . 86 | .7 | | | | | | | | | NUGUST
SEPTEMBER
NNUAL | .1
2.7
 | 6.3
PROBABILI | .4
4.4
 | .8
.8
STANTANE | .19
 | 100 |
MAG | | | | F ANNUAL | | | | UGUST
EPTEMBER
NNUAL
MAGNIT | 2.7 TUDE AND BASE , IN CFS, | PROBABILITO ON PERIO | .4 4.4 TY OF INS | .3 .8 STANTANE CORD 1959 CURRENCE ABILITY, | . 19
OUS PEAK
9-73
INTERVAL
IN PERCE | 100
FLOW
, IN | PERIOD
(CON- | BASED
DISCHA | ON PERI | OD OF RE

CFS, FOR
L, IN YE | F ANNUAL
CORD 199
INDICATI
ARS, AND | 59-73
ED RECUI | RRENCE | | UGUST EPTEMBER NNUAL MAGNIT ISCHARGE, YEARS, A | 2.7 TUDE AND BASE , IN CFS, | PROBABILITO ON PERIOR | 4.4 TY OF INS DD OF REC CATED REC NCE PROBA | .3
.8
STANTANEC
CORD 1959
CURRENCE
ABILITY, | . 19
OUS PEAK
9-73
INTERVAL
IN PERCE | 100

FLOW

, IN
NT | PERIOD
(CON-
SECU- | BASED
DISCHA
E | ON PERI | OD OF RE
CFS, FOR
L, IN YE
E PROBAB | CORD 199 | 59-73
ED RECUI
ANNUAL
N PERCEI | RRENCE | | UGUST EPTEMBER NNUAL MAGNIT I SCHARGE, YEARS, A | 2.7 TUDE AND BASE , IN CFS, | PROBABILITO ON PERIO | .4 4.4 TY OF INS | .3 .8 STANTANE CORD 1959 CURRENCE ABILITY, | . 19
OUS PEAK
9-73
INTERVAL
IN PERCE | 100
FLOW
, IN | PERIOD
(CON- | BASED
DISCHA | ON PERI | OD OF RE

CFS, FOR
L, IN YE | CORD 199 | 59-73
ED RECUI | RRENCE | | UGUST EPTEMBER NNUAL MAGNIT ISCHARGE, YEARS, A | 2.7 TUDE AND BASE , IN CFS, | PROBABILITO ON PERIOR | 4.4 TY OF INS DD OF REC CATED REC NCE PROBA | .3
.8
STANTANEC
CORD 1959
CURRENCE
ABILITY, | . 19
OUS PEAK
9-73
INTERVAL
IN PERCE | 100

FLOW

, IN
NT | PERIOD
(CON-
SECU-
TIVE
DAYS) | BASED DISCHA E 2 50% | ON PERI | OD OF RE
CFS, FOR
L, IN YE
E PROBAB | INDICATI
ARS, AND
ILITY, II | 59-73 ED RECUI ANNUAL N PERCEI | RRENCE | | UGUST
EPTEMBER
NNUAL
MAGNIT | LUDE AND BASE TIN CFS, AND ANNUA 2 50% | PROBABILITO ON PERIOD FOR INDICAL EXCEEDAT 5 20% | .4
4.4
TY OF INS
DD OF REC
CATED REC
NCE PROBA | .3
.8
STANTANEGORD 1959
CURRENCE ABILITY, | . 19
OUS PEAK
9-73
INTERVAL
IN PERCE | 100

FLOW

, IN
NT | PERIOD
(CON-
SECU-
TIVE
DAYS) | BASED DISCHA E 2 50% | RGE, IN
INTERVA
XCEEDANC | OD OF RECEIVED | INDICATI
ARS, AND
ILITY, II | 59-73 ED RECUI ANNUAL N PERCEI 50 2% | RRENCE | | JGUST
EPTEMBER
NNUAL
MAGNII
ISCHARGE,
YEARS, A | LUDE AND BASE TIN CFS, AND ANNUA 2 50% | PROBABILITO ON PERIOD FOR INDICAL EXCEEDAL | .4
4.4
TY OF INS
DD OF REC
CATED REC
NCE PROBA | .3
.8
STANTANEGORD 1959
CURRENCE ABILITY, | . 19
OUS PEAK
9-73
INTERVAL
IN PERCE | 100

FLOW

, IN
NT | PERIOD
(CON-
SECU-
TIVE
DAYS) | DISCHA 2 50% 45 36 | ON PERI | OD OF RE
CFS, FOR
L, IN YE
E PROBAB
10
10% | 100 19: INDICATI ARS, AND ILITY, II 25 4% 97 67 | ED RECUI
ANNUAL
N PERCEI
50
2% | RRENCE | | JGUST
EPTEMBER
NNUAL
MAGNIT
SCHARGE,
YEARS, A
1.25
80% | LUDE AND BASE TIN CFS, AND ANNUA 2 50% | PROBABILITO ON PERIOD FOR INDICAL EXCEEDAT 5 20% | .4
4.4
TY OF INS
DD OF REC
CATED REC
NCE PROBA | .3
.8
STANTANEGORD 1959
CURRENCE ABILITY, | . 19
OUS PEAK
9-73
INTERVAL
IN PERCE | 100

FLOW

, IN
NT | PERIOD (CON- SECU- TIVE DAYS) 1 3 7 | BASED DISCHA E 2 50% 45 36 29 | ON PERI
RGE, IN
INTERVA
XCEEDANC
5
20%
60
46
34 | OD OF RECEIVED | INDICATI
ARS, AND
ILITY, II
25
4%
97
67
44 | 59-73 ED RECUI ANNUAL N PERCEI 50 2% | RRENCI | | JGUST
EPTEMBER
NNUAL
MAGNIT
SCHARGE,
YEARS, A
1.25
80% | LUDE AND BASE TIN CFS, AND ANNUA 2 50% | PROBABILITO ON PERIOD FOR INDICAL EXCEEDAT 5 20% | .4
4.4
TY OF INS
DD OF REC
CATED REC
NCE PROBA | .3
.8
STANTANEGORD 1959
CURRENCE ABILITY, | . 19
OUS PEAK
9-73
INTERVAL
IN PERCE | 100

FLOW

, IN
NT | PERIOD
(CON-
SECU-
TIVE
DAYS) | DISCHA E 2 50% 45 36 29 22 | ON PERI ON PERI RGE, IN INTERVA EXCEEDANC 5 20% 60 46 34 27 | OD OF RE
CFS, FOR
L, IN YE
E PROBAB
10
10
74
54
38
30 | ORD 19: INDICATI ARS, AND ILITY, II 25 4% 97 67 44 33 | ED RECUI
ANNUAL
N PERCEI
50
2% | RRENCE | | UGUST
EPTEMBER
NNUAL
MAGNIT | LUDE AND BASE TIN CFS, AND ANNUA 2 50% | PROBABILITO ON PERIOD FOR INDICAL EXCEEDAT 5 20% | .4
4.4
TY OF INS
DD OF REC
CATED REC
NCE PROBA | .3
.8
STANTANEGORD 1959
CURRENCE ABILITY, | . 19
OUS PEAK
9-73
INTERVAL
IN PERCE | 100

FLOW

, IN
NT | PERIOD (CON-
SECU-
TIVE DAYS) | DI SCHA E 2 50\$ 45 36 29 22 16 | RGE, IN
INTERVA
XCEEDANC
5
20%
60
46
34
27
19 | OD OF RE
CFS, FOR
L, IN YE
E PROBAB
10
10
10
74
54
38
30
21 | ORD 199 INDICATI ARS, AND ILITY, II 25 4% 97 67 44 33 23 | 59-73 ED RECUI ANNUAL N PERCEI 50 2% | RRENCE | | UGUST
EPTEMBER
NNUAL
MAGNIT
ISCHARGE,
YEARS, A
1.25
80% | LUDE AND BASE TIN CFS, AND ANNUA 2 50% | PROBABILITO ON PERIOD FOR INDICAL EXCEEDAT 5 20% | .4
4.4
TY OF INS
DD OF REC
CATED REC
NCE PROBA | .3
.8
STANTANEGORD 1959
CURRENCE ABILITY, | . 19
OUS PEAK
9-73
INTERVAL
IN PERCE | 100

FLOW

, IN
NT | PERIOD
(CON-
SECU-
TIVE
DAYS) | DISCHA E 2 50% 45 36 29 22 | ON PERI ON PERI RGE, IN INTERVA EXCEEDANC 5 20% 60 46 34 27 | OD OF RE
CFS, FOR
L, IN YE
E PROBAB
10
10
74
54
38
30 | ORD 19: INDICATI ARS, AND ILITY, II 25 4% 97 67 44 33 | 59-73 ED RECUI ANNUAL N PERCEI 50 2% | RRENCE | | | | DISCH | ARGE, II | N CFS, | WHICH WAS | EQUALED | OR EXCEE | DED FOR | INDICATE | D PERCEN | IT OF TIM | 1E | | | |----|-----|-------|----------|--------|-----------|---------|----------|---------|----------|----------|-----------|-----|-----|-----| | 5% | 10% | 15% | 20% | 25% | 30% | 40% | 50% | 60% | 70% | 75% | 80% | 85% | 90% | 95% | | 18 | 12 | 8.7 | 6.7 | 5.3 | 4.3 | 3.1 | 2.0 | 1.2 | .7 | .5 | .4 | .3 | .2 | .2 | ## 14306810 DEER CREEK NEAR SALADO, DR LOCATION.--Lat 44°32'05", long 123°52'35", in SW‡ sec.11, T.12 S., R.10 W., Lincoln County, Hydrologic Unit 17100205, Siuslaw National Forest, on right bank 1,000 ft upstream from mouth, 4.6 mi west of Salado, and 6.5 mi southeast of Toledo. DRAINAGE AREA.--1.17 mi², computed as 749.5 acres on basis of field survey by Oregon State University. PERIOD OF RECORD. -- September 1958 to September 1973.
GAGE.--Water-stage recorder and concrete control. Altitude of gage is 600 ft, from topographic map. REMARKS.--No regulation or diversion above station. 25 17 13 9.6 7.8 6.4 4.5 2.9 1.9 1.1 .8 •6 .5 . 4 AVERAGE DISCHARGE.--15 years (water years 1959-73), $6.49 \text{ ft}^3/\text{s}$, 75.33 in/yr, 4,700 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 201 ft³/s Jan. 28, 1965, gage height, 4.21 ft; maximum gage height, 4.39 ft Jan. 20, 1972 (backwater from log); minimum discharge, 0.15 ft³/s Sept. 2, 14-16, 1972. ## STATISTICAL SUMMARIES | | | ID ANNUAL | MEAN DISC | CHARGES | 1959-73 | | MAG | NITUDE A
BASED | | | CORD 19 | | | |--|--|---|---|---|--|--|--|--|--|---|--|---------------------------------------|---------------------| | | M | MAXIMUM | MEAN | STAN-
DARD
DEVIA-
TION | COEFFI-
CIENT OF
VARI- | PERCENT
OF
ANNUAL | PERIOD
(CON-
SECU- | 11 | NTERVAL, | IN YEAR | INDICAT
S, AND A | NNUAL N | ON- | | МОМТН | (CFS) | (CFS) | (CFS) | (CFS) | ATION | RUNOFF | TIVE
DAYS) | 2
50 % | 5
20 % | 10
10% | 20
5% | 50
2% | 100
1% | | OCTOBER
NOVEMBER | .3
2.5 | 5.0
17 | 1.9 | 1.5
4.7 | .79
.52 | 2.4 | 1 3 | .3 | .2 | .2 | .2 | | | | DECEMBER | 5.9 | 30 | 14 | 6.7 | .48 | 17.9 | 7 | •3 | .2 | •2 | .2 | | | | JANUARY
FEBRUARY | 4.5
2.9 | 28
28
 17
12 | 8.3
5.9 | . 48
. 49 | 22.2 | 14
30 | .3 | .3 | •2 | •2 | | | | MARCH | 3.5 | 20
21 | 10 | 5.2 | .50 | 15.6
13.3 | 60 | .4 | .3 | .2 | •2. | | | | APRIL | 2.7 | 11 | 6.0 | 2.8 | .47 | 7.7 | 90 | .5 | .4 | .3 | .3 | | | | MAY | 1.2 | 7.0 | 3.5 | 1.7 | .50 | 4.4 | 120 | .6 | .4 | .4 | .3 | | | | JUNE | .7 | 5.1 | 1.8 | 1.1 | .60 | 2.3 | 183 | 1.3 | .9 | .8 | .7 | | | | JULY | .5 | 1.9 | .8 | .4 | .46 | 1.1 | | | | | | | | | AUGUST | .3 | 1.2 | .5 | .2 | .46 | .6 | | | | | | | | | SEPTEMBER | .3 | 2.7 | •7 | •7 | .89 | .9 | | | | | | | | | | | | | | 40 | | | | | | | | | | ANNUAL

MAGNI | | 9.1
PROBABILI
D ON PERIO | | | | 100

FLOW | MAG | NITUDE AI
BASED | | | F ANNUAL
CORD 19 | |
LOW | | MAGNIT | TUDE AND
BASE | PROBABILI | TY OF INS | STANTANEC
CORD 1959
CURRENCE | DUS PEAK F
D-73 | FLOW | MAG PERIOD (CON- | BASED
DISCHAI | ON PERI | OF REI | | 59-73

ED RECUR
ANNUAL |
RRENCE | | MAGNIT | TUDE AND
BASE | PROBABILI
D ON PERIO | TY OF INS | STANTANEC
CORD 1959
CURRENCE | DUS PEAK F
D-73
INTERVAL
IN PERCEI | FLOW | PERIOD
(CON-
SECU- | BASED
DISCHAI | ON PERI | OF REI | CORD 19 INDICAT ARS, AND ILITY, I | 59-73

ED RECUR
ANNUAL | RRENCE | | MAGNI | TUDE AND
BASE
IN CFS,
AND ANNUA | PROBABILI
D ON PERIO
FOR INDIO
L EXCEEDA | TY OF INSOD OF REC | STANTANEC
CORD 1959
CURRENCE
ABILITY, | DUS PEAK F
0-73
INTERVAL
IN PERCEI | FLOW | PERIOD
(CON- | BASED DISCHAI | ON PERI | OD OF REC | CORD 19

INDICAT
ARS, AND | 59-73 ED RECUF ANNUAL N PERCEN | RRENCE | | MAGNI | TUDE AND
BASE
IN CFS,
AND ANNUA | PROBABILI
D ON PERIO
FOR INDIO
L EXCEEDA | TY OF INSOD OF REC | STANTANEC
CORD 1959
CURRENCE
ABILITY, | DUS PEAK F
0-73
INTERVAL
IN PERCEI | FLOW | PERIOD
(CON-
SECU-
TIVE | BASED DISCHAI E) 2 50% | ON PERIOR PER | OD OF REC
CFS, FOR
L, IN YE.
E PROBAB | CORD 19 INDICAT ARS, AND ILITY, II | 59-73 ED RECUF ANNUAL N PERCEN | 100 | | MAGNITION OF THE PROPERTY T | TUDE AND BASE IN CFS, AND ANNUA 2 50% | PROBABILI
D ON PERIO
FOR INDIO
L EXCEEDA | TY OF INS
OD OF REC
CATED REC
NCE PROBA | STANTANEC
CORD 1959
CURRENCE
ABILITY, | DUS PEAK F
0-73
INTERVAL
IN PERCEI | FLOW | PERIOD
(CON-
SECU-
TIVE
DAYS) | BASED DISCHAI | ON PERI | OD OF RECEPTOR | CORD 19 INDICAT ARS, AND ILITY, I | 59-73 ED RECUF ANNUAL N PERCEN 50 2% | 100 | | MAGNITURE NAME OF THE | TUDE AND BASE IN CFS, AND ANNUA 2 50% | PROBABILI
D ON PERIO
FOR INDI-
L EXCEEDA | TY OF INS
OD OF REC
CATED REC
NCE PROBA | STANTANEC
CORD 1959
CURRENCE
ABILITY, | DUS PEAK F
0-73
INTERVAL
IN PERCEI | FLOW | PERIOD
(CON-
SECU-
TIVE
DAYS) | BASED DISCHAI E) 2 50% | ON PERIOR OF THE | CFS, FOR
L, IN YE
E PROBAB | CORD 19 INDICAT ARS, AND ILITY, II 25 4% | 59-73 ED RECUF ANNUAL N PERCEN 50 2% | 100 | | MAGNITION IN CONTRACT OF THE PROPERTY P | TUDE AND BASE IN CFS, AND ANNUA 2 50% | PROBABILI
D ON PERIO
FOR INDI-
L EXCEEDA | TY OF INS
OD OF REC
CATED REC
NCE PROBA | STANTANEC
CORD 1959
CURRENCE
ABILITY, | DUS PEAK F
0-73
INTERVAL
IN PERCEI | FLOW | PERIOD
(CON-
SECU-
TIVE
DAYS) | DISCHAI
E)
2
50% | ON PERIOR OF THE | CFS, FOR
L, IN YE
E PROBAB
10
10% | 1NDICAT
ARS, AND
ILITY, II
25
4% | 59-73 ED RECUF ANNUAL N PERCEN 50 2% | 100 | | MAGNITUSCHARGE YEARS, 1.25 80% | TUDE AND BASE IN CFS, AND ANNUA 2 50% | PROBABILI
D ON PERIO
FOR INDI-
L EXCEEDA | TY OF INS
OD OF REC
CATED REC
NCE PROBA | STANTANEC
CORD 1959
CURRENCE
ABILITY, | DUS PEAK F
0-73
INTERVAL
IN PERCEI | FLOW | PERIOD (CON-
SECU-
TIVE DAYS) | DISCHAI 2 50% 70 54 42 | ON PERIOD PER | OD OF RECORD | 1NDICAT
ARS, AND
ILITY, II
25
4%
154
104
68 | 59-73 ED RECUF ANNUAL N PERCEN 50 2% | 100 | | MAGNITURE NAME OF THE | TUDE AND BASE IN CFS, AND ANNUA 2 50% | PROBABILI
D ON PERIO
FOR INDI-
L EXCEEDA | TY OF INS
OD OF REC
CATED REC
NCE PROBA | STANTANEC
CORD 1959
CURRENCE
ABILITY, | DUS PEAK F
0-73
INTERVAL
IN PERCEI | FLOW | PERIOD (CON-
SECU-
TIVE DAYS) 1 3 7 7 15 30 60 | DISCHAI
E)
2
50\$
70
54
42
32
24
18 | ON PERIOR OF PER | DD OF REI | 190 CORD 19 | 59-73 ED RECUF ANNUAL N PERCEN 50 2% | 100 | | MAGNITUSCHARGE YEARS, 1.25 80% | TUDE AND BASE IN CFS, AND ANNUA 2 50% | PROBABILI
D ON PERIO
FOR INDI-
L EXCEEDA | TY OF INSOD OF RECONCE PROBA | STANTANEC
SORD 1959
SURRENCE
BILITY,
25
4% | DUS PEAK I
D-73
INTERVAL
IN PERCEI | FLOW , IN NT 100 1,5 | PERIOD (CON-
SECU-
TIVE DAYS) | DISCHAI E) 70 54 42 32 24 18 16 | ON PERIOD PER | CFS, FOR L, IN YE. E PROBAB 10 10 10 17 83 58 44 31 26 22 | CORD 19 INDICAT ARS, AND ILITY, I 25 4% 154 104 68 49 35 | 59-73 ED RECUF ANNUAL N PERCEN 50 2% | 100 | | MAGNITUSCHARGE YEARS, 1.25 80% | TUDE AND BASE IN CFS, AND ANNUA 2 50% | PROBABILI
D ON PERIO
FOR INDI-
L EXCEEDA | TY OF INSOD OF RECONCE PROBA | STANTANEC
SORD 1959
SURRENCE
BILITY,
25
4% | DUS PEAK I
D-73
INTERVAL
IN PERCEI | FLOW , IN NT 100 1,5 | PERIOD (CON-
SECU-
TIVE DAYS) 1 3 7 7 15 30 60 | DISCHAI E) 70 54 42 32 24 18 16 | ON PERIOD PER | CFS, FOR L, IN YE. E PROBAB 10 10 10 17 83 58 44 31 26 22 | 190 CORD 19 | 59-73 ED RECUF ANNUAL N PERCEN 50 2% | RRENCE
NT
100 | | MAGNITURE NAME OF THE | TUDE AND BASE IN CFS, AND ANNUA 2 50% | PROBABILI
D ON PERIO
FOR INDIO
L EXCEEDA
5
20% | TY OF INS OD OF REC CATED REC NCE PROBA 10 10% 158 | STANTANEC
CORD 1959
CURRENCE
BILITY,
25
4% | DUS PEAK F
1)-73
INTERVAL
IN PERCEI
50
2% | FLOW TOO THE STATE OF STA | PERIOD (CON-
SECU-
TIVE DAYS) | DISCHAI E) 2 50% 70 54 42 32 24 18 16 OF RECORU | 95 69 51 40 29 23 19 0 1959-7 | CFS, FOR L, IN YE. E PROBAB 10 10 10 117 83 58 44 31 26 22 | 100 CORD 19 INDICAT ARS, AND ILITY, II 25 4% 154 104 68 49 35 29 25 | 59-73 ED RECUF ANNUAL N PERCEN 50 2% |
RRENCE | #### BIG CREEK BASIN # 14306900 BIG CREEK NEAR ROOSEVELT BEACH. OR LOCATION.--Lat 44°10'05", long 124°03'55", in SEtSEt sec.13, T.16 S., R.12 W., Lane County, Hydrologic Unit 17100205, on right bank 1.0 mi downstream from Frying Pan Creek, 2.5 mi east of Roosevelt Beach. DRAINAGE AREA. -- 11.9 mi2. PERIOD OF RECORD. -- October 1972 to September 1982. GAGE. -- Water-stage recorder. Altitude of gage is 141 ft, by barometer. REMARKS.--No regulation or diversion above station. 7.7 40 ANNUAL 29 158 AVERAGE DISCHARGE. -- 10 years, 92.9 ft3/s, 106.02 ln/yr, 67.310 acre-ft/yr. MONTHLY AND ANNUAL MEAN DISCHARGES 1973-82 EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 2,150 ft³/s Nov. 30, 1975, gage height, 6.90 ft; minimum, 3.8 ft³/s Oct. 15, 1979. ## STATISTICAL SUMMARIES DISCHARGE, IN CFS, FOR INDICATED RECURRENCE INTERVAL, IN YEARS, AND ANNUAL NON-STAN-DARD COEFFI-PERIOD PERCENT DEVIA-CIENT OF (CON-EXCEEDANCE PROBABILITY, IN PERCENT TION MINIMUM MAXIMUM MEAN VARI-ANNUAL SECU-MONTH (CFS) (CFS) (CFS) (CFS) ATION RUNOFF TIVE 100 20% DAYS) 50% 10% 5% 2% 1% OCTOBER 29 137 24 2.6 5.7 67 .82 NOVEMBER 20 12.2 386 116 .85 DECEMBER 20 398 244 109 .45 21.8 JANUARY 27 287 182 97 .53 16.3 FEBRUARY 56 308 174 90 .52 30 MARCH 49 269 62 . 44 12.5 60 __ --APRIL 50 153 92 31 . 34 8.2 90 MAY 27 13 86 49 21 . 43 4.4 120 JUNE 56 30 13 .43 2.7 183 JULY 8.6 46 18 11 . 59 1.6 AUGUST . 39 NOTE: LESS THAN 10 YEARS OF DATA AVAILABLE. 6.0 18 11 3.5 .9 1.3 SEPTEMBER MAGNITUDE AND PROBABILITY OF INSTANTANEOUS PEAK FLOW BASED ON PERIOD OF RECORD 1973-82 14 93 8.4 33 .60 .35 100 MAGNITUDE AND PROBABILITY OF ANNUAL HIGH FLOW BASED ON PERIOD OF RECORD 1973-82 MAGNITUDE AND PROBABILITY OF ANNUAL LOW FLOW BASED ON PERIOD OF RECORD 1974-82 | DISCHARGE,
YEARS, A | | | | | | | PERIOD
(CON- | | INTERV | I CFS, FOF
AL, IN YE | ARS, AND | ANNUAL | | |------------------------|------------------|------------------|-----------|----------|------------------|-----------|------------------------|----------|----------|-------------------------|----------|----------|-----| | 1.25
80% | 2
50 % | 5
20 % | 10
10% | 25
4% | 50
2 % | 100
1% | SECU-
TIVE
DAYS) | 2
50% | 5
20% | 10
10% | 25
4% | 50
2% | 100 | | 720 | 1070 | 1570 | 1900 | | | | | | | | | | | | | | | | | | | 1 | 872 | 1170 | 1340 | | | | | WEIGHTED | SKEW = | 199 | | | | | 3 | 690 | 900 | 1010 | | | | | | | | | | | | 7 | 533 | 670 | 738 | | | | | | | | | | | | 15 | 403 | 493 | 539 | | | | | | | | | | | | 30 | 324 | 396 | 432 | | | | | | | | | | | | 60 | 249 | 321 | 363 | | | | | | | | | | | | 90 | 215 | 292 | 336 | | | | DURATION TABLE OF DAILY MEAN FLOW FOR PERIOD OF RECORD 1973-82 |
 | | DISC | HARGE, I | N CFS, | WHICH WAS | EQUALED | OR EXCE | EDED FOR | INDICATE | D PERCE | NT OF TH | 4E | | | |--------|-----|------|----------|--------|-----------|---------|---------|-------------|----------|---------|----------|-----|-----|-----| |
5% | 10% | 15% | 20% | 25% | 30% | 40% | 50% | 6 0% | 70% | 75% | 80% | 85% | 90% | 95% | | 353 | 241 | 183 | 144 | 115 | 92 | 61 | 42 | 29 | 19 | 15 | 13 | 10 | 8.3 | 6.7 | # 14307500 LAKE CREEK AT TRIANGLE LAKE, OR LOCATION.--Lat 44°09'40", long 123°34'10", in SW± sec.20, T.16 S., R.7 W., Lane County, Hydrologic Unit 17100206, on right bank 500 ft downstream from outlet of Triangle Lake and 3.0 ml southwest of Blachly. DRAINAGE AREA .-- 52.5 mi2. PERIOD OF RECORD. -- August 1931 to September 1955. GAGE.--Water-stage recorder. Datum of gage is 672.75 ft National Geodetic Vertical Datum of 1929. REMARKS.--Flow regulated by natural storage in Triangle Lake. No diversion above station. AVERAGE DISCHARGE.--24 years (water years 1932-55), 210 ft³/s, 152,000 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 4,180
ft³/s Feb. 18, 1949, gage-height, 8.33 ft, from rating curve extended above 2,400 ft³/s by logarithmic plotting; maximum gage height, 8.68 ft Feb. 18, 1949 (backwater from debris); minimum discharge, 2.7 ft³/s Aug. 1, 1944; minimum daily, 4.2 ft³/s Oct. 18, 19, 1952. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of Dec. 21, 1955, reached a stage of 7.7 ft, from floodmark, discharge, 3,600 ft³/s. #### STATISTICAL SUMMARIES MONTHLY AND ANNUAL MEAN DISCHARGES 1932-55 MAGNITUDE AND PROBABILITY OF ANNUAL LOW FLOW BASED ON PERIOD OF RECORD 1933-55 | | MINIMUM | MAXIMUM | MEAN | STAN-
DARD
DEVIA-
TION | COEFFI-
CIENT OF
VARI- | PERCENT
OF
ANNUAL | PERIOD
(CON-
SECU- | 11 | NTEŔVAL, | CFS, FOR
IN YEARS
E PROBABI | , AND AN | INUAL N | ON- | |-----------|---------|---------|-------|---------------------------------|------------------------------|-------------------------|--------------------------|----------|----------|-----------------------------------|----------|----------|-----------| | MONTH | (CFS) | (CFS) | (CFS) | (CFS) | ATION | RUNOFF | TIVE
DAYS) | 2
50% | 5
20% | 10
10% | 20
5% | 50
2% | 100
1% | | OCTOBER | 5.5 | 360 | 52 | 76 | 1.46 | 2.1 | 1 | 9.6 | 7.1 | 6.1 | 5.4 | | | | NOVEMBER | 9.7 | 573 | 226 | 174 | .77 | 8.9 | 3 | 9.6 | 7.2 | 6.2 | 5.5 | | | | DECEMBER | 79 | 927 | 426 | 247 | .58 | 16.8 | 7 | 9.9 | 7.4 | 6.3 | 5.6 | | | | JANUARY | 162 | 912 | 508 | 222 | .44 | 20.1 | 14 | 10 | 7.7 | 6.7 | 5.9 | | | | FEBRUARY | 160 | 939 | 500 | 201 | .40 | 19.8 | 30 | 11 | 8.4 | 7.3 | 6.5 | | | | MARCH | 98 | 794 | 362 | 162 | . 45 | 14.3 | 60 | 13 | 9.6 | 8.4 | 7.6 | | | | APRIL | 78 | 551 | 224 | 117 | •52 | 8.9 | 90 | 14 | 11 | 9.4 | 8.5 | | | | MAY | 37 | 276 | 117 | 62 | .53 | 4.6 | 120 | 18 | 13 | 11 | 9.6 | | | | JUNE | 27 | 149 | 58 | 32 | .56 | 2.3 | 183 | 35 | 24 | 20 | 16 | | | | JULY | 15 | 61 | 27 | 11 | .41 | 1.1 | | | | | | | | | AUGUST | 6.9 | 30 | 15 | 5.7 | .38 | .6 | | | | | | | | | SEPTEMBER | 8.5 | 55 | 16 | 9.9 | •62 | .6 | | | | | | | | | ANNUAL | 120 | 303 | 210 | 50 | . 24 | 100 | | | | | | | | MAGNITUDE AND PROBABILITY OF INSTANTANEOUS PEAK FLOW BASED ON PERIOD OF RECORD 1932-55 MAGNITUDE AND PROBABILITY OF ANNUAL HIGH FLOW BASED ON PERIOD OF RECORD 1932-55 | DISCHARGE,
YEARS, A | | | | RECURRENC
OBABILITY | | | PERIOD
(CON- | | INTERV | 'AL, ÎN Y | R INDICAT
EARS, AND
BILITY, I | ANNUAL | | |------------------------|---------|------|------|------------------------|--------|-----|-----------------|------------------|----------|-----------|-------------------------------------|----------|-----------| | 1.25 | 2 | 5 | 10 | 25 | 50 | 100 | SECU- | | | | | | | | 80% | 50%
 | 20% | 10% | 4%
 | 2%
 | 1% | TIVE
DAYS) | 2
50 % | 5
20% | 10
10% | 25
4% | 50
2% | 100
1% | | 1440 | 2220 | 3300 | 4010 | 4900 | | | | | | | | | | | | | | | | | | 1 | 2140 | 3110 | 3680 | 4330 | | | | WEIGHTED | SKEW = | 286 | | | | | 3 | 1760 | 2460 | 2860 | 3320 | | | | | | | | | | | 7 | 1330 | 1820 | 2090 | 2390 | | | | | | | | | | | 15 | 1030 | 1300 | 1420 | 1520 | | | | | | | | | | | 30 | 804 | 951 | 998 | 1030 | | | | | | | | | | | 60 | 620 | 737 | 782 | 816 | | | | | | | | | | | 90 | 553 | 672 | 724 | 769 | | | DURATION TABLE OF DAILY MEAN FLOW FOR PERIOD OF RECORD 1932-55 | | DI | SCHARGE, | IN CFS, | WHICH WAS | EQUALED | OR EXCE | EDED FOR | INDICATE | D PERCE | NT OF TI | ME | | | |---------|----------------------|----------|---------|-----------|---------|---------|----------|----------|---------|----------|-----|-----|-----| | 5% 10 | % 15 % | 20% | 25% | 30% | 40% | 50% | 60% | 70% | 75% | 80% | 85% | 90% | 95% | | 807 555 | 413 | 333 | 275 | 227 | 144 | 89 | 52 | 30 | 23 | 19 | 15 | 13 | 10 | ## SIUSLAW RIVER BASIN # 14307580 LAKE CREEK NEAR DEADWOOD, OR LOCATION.--Lat 44°04'58", long 123°47'05", in NWŁNWŁ sec.21, T.17 S., R.9 W., Lane County, Hydrologic Unit 17100206, on right bank 0.2 mi upstream from Indian Creek, 1.5 mi southwest of Deadwood, and at mile 2.6. DRAINAGE AREA. -- 174 mi 2. PERIOD OF RECORD. -- October 1967 to September 1982. GAGE.--Water-stage recorder. Datum of gage is 178.86 ft National Geodetic Vertical Datum of 1929. REMARKS.--Flow slightly regulated by natural storage in Triangle Lake. Several diversions for irrigation above station. AVERAGE DISCHARGE.--15 years, 726 ft^3/s , 56.66 in/yr, 526,000 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 20,400 ft³/s Dec. 25, 1980, gage height, 15.86 ft; minimum, 12 ft³/s Aug. 14, 15, 17, 18, 1977. #### STATISTICAL SUMMARIES | YEARS, 1.25
80%
6570 | AND ANNUA
2
50% | 014 | NCE PROE | 25
4%
2700
2700
N TABLE | IN PERCEI | 100
1%
 | PERIOD (CON- SECU- TIVE DAYS) 1 3 7 15 30 60 90 FOR PERIOD EXCEEDED FOR | 7520
6300
4870
3480
2770
2150
1880 | INTERV
EXCEEDAN
5
20≸
111100
9060
6440
4420
3380
2770
2480 | 13700
1090
1090
13700
10900
7400
4980
3680
3090
2770 | DR INDICAT
YEARS, AND
ABILITY, I
25
4\$
17200
13400
8530
5630
3970
3420
3050 | ANNUAL | | |---------------------------------|-----------------------|-------------------------|-----------------------|-------------------------------------|------------------------------|-------------------------|--|--|--|---|---|--------------------------------|-----------| | YEARS, 4
1.25
80%
6570 | 2
50%
9840 | 5
20%
14700 1 | 10
10%
8200 2 | 25
25
4%
2700 | 1N PERCEI | 100
1% | (CON-
SECU-
TIVE
DAYS)
 | 7520
6300
4870
3480
2770
2150
1880 | 11100
9060
6440
4420
3380
2770
2480 | 10
10%
10%
13700
10900
7400
4980
3680
3090
2770 | YEARS, AND ABILITY, I | 50
2% | 100
1% | | 1.25
80% | 2
50%
9840 | 5
20%
14700 1 | NCE PROB
10
10% | 25
4% | IN PERCEI | NT
100 | (CON-
SECU-
TIVE
DAYS)
 | 7520
6300
4870
3480
2770
2150 | 11100
9060
6440
4420
3380
2770 | 10
10%
10%
13700
10900
7400
4980
3680
3090 | YEARS, AND ABILITY, I | 50
2% | 100
19 | | 1.25
80% | 2
50%
9840 | 5
20%
14700 1 | NCE PROB
10
10% | 25
4% | IN PERCEI | NT
100 | (CON-
SECU-
TIVE
DAYS)
1
3
7
15 | 7520
6300
4870
3480
2770 | 1NTERV
EXCEEDAN
5
20%
11100
9060
6440
4420
3380 | 10
10%
10%
13700
10900
7400
4980
3680 | YEARS, AND
ABILITY, I
25
4%
17200
13400
8530
5630
3970 | 50
2% | 100
19 | | YEARS, 1.25
80%
6570 | 2
50%
9840 | 5
20%
14700 1 | NCE PROB
10
10% | 25
4% | IN PERCEI | NT
100 | (CON-
SECU-
TIVE
DAYS)
1
3
7 | 7520
6300
4870
3480 | 1NTERV
EXCEEDAN
5
20%
11100
9060
6440
4420 | 10
10%
10%
13700
10900
7400
4980 | YEARS, AND
ABILITY, I
25
4%
17200
13400
8530
5630 | 50
2% | 100
19 | | 1.25
80% | 2
50%
9840 | 5
20%
14700 1 | NCE PROB
10
10% | 25
4% | IN PERCEI | NT
100 | (CON-
SECU-
TIVE
DAYS) | 7520
6300
4870 | 1NTERV
EXCEEDAN
5
20%
11100
9060
6440 | 10
10
10%
13700
10900
7400 | YEARS, AND
ABILITY, I
25
4%
17200
13400
8530 | 50
2% | 100
19 | | YEARS, 1.25
80%
6570 | 2
50%
9840 | 5
20%
14700 1 | NCE PROB
10
10% | 25
4% | IN PERCEI | NT
100 | (CON-
SECU-
TIVE
DAYS) | 2
50%
7520
6300 | 1NTERV
EXCEEDAN
5
20%
11100
9060 | 10
10%
13700
10900 | YEARS, AND
ABILITY, I
25
4%
17200
13400 | ANNUAL
N PERCEN
50
2% | 100
1; | | YEARS, 7 | AND ANNUA
2
50% | 5
20% | NCE PROB
10
10% | 25
4% | IN PERCEI | NT
100 | (CON-
SECU-
TIVE
DAYS) | 2
50% | INTERVEXCEEDAN | 10
10% | YEARS, AND
ABILITY, I
25
4% | ANNUAL
N PERCEN
50
2% | 100
1; | | YEARS, 7 | AND ANNUA
2
50% | 5
20% | NCE PROB
10
10% | 25
4% | IN PERCEI | NT
100 | (CON-
SECU-
TIVE | 2 | INTERV
EXCEEDAN
5 | AL, IN Y
ICE PROBA | YEARS, AND
ABILITY, I

25 | ANNUAL
N PERCEN
50 | IT
 | | YEARS, 1 | AND ANNUA | AL EXCEEDA
5 | NCE PROB | ABILITY,
25 | IN PERCEI | NT
100 | (CON-
SECU-
TIVE | 2 | INTERV
EXCEEDAN
5 | AL, IN Y
ICE PROBA | YEARS, AND
ABILITY, I

25 | ANNUAL
N PERCEN
50 | IT
 | | YEARS, | AND ANNUA | AL EXCEEDA | NCE PROB | ABILITY, | IN PERCEI | NT
 | (CON- | DISCH | INTERV | 'AL, ÎN ' | YEARS, AND | ANNUAL | | | | | | | | | | | DISCH | INTERV | 'AL, ÎN ' | YEARS, AND | ANNUAL | | |) I SCHAPGE | IN CEC | EOD INDI | | CUDDENCE | INTERVAL | | | | | | | ED BECHE | | | MAGNI | | PROBABILI
ED ON PERI | | | | FLOW | MAC | | | | OF ANNUAL
RECORD 19 | | WO. | | ANNUAL | 215 | 1239 | 726
- | 263
 | .36 | 100 | | | | | | | | | SEPTEMBER | 26 | 122 | 61 | 29 | . 48 | .7 | | | | | | | | | AUGUST | 23 | 99 | 42 | 18 | .44 | .5 | | | | | | | | | JULY | 35 | 97 | 68 | 17 | .24 | .8 | | | | | | | | | MAY
JUNE | 181
101 | 585
304 | 327
154 | 126
55 | .39
.36 | 3.7
1.8 | 120
183 | 57
108 | 44
82 | 39
70 | 36
62 | | _ | | APRIL | 285 | 1501 | 751 | 348 | .46 | 8.6 | 90 | 46 | 35 | 31 | 28 | | - | | MARCH | 396 | 2235 | 1196 | 598 | .50 | 13.7 | 60 | 38 | 29 | 26 | 24 | | - | | EBRUARY | 338 | 2260 |
1515 | 641 | .42 | 17.3 | 30 | 32 | 24 | 21 | 19 | | - | | JANUARY | 92 | 3343 | 1820 | 966 | •53 | 20.8 | 14 | 28 | 21 | 18 | 16 | | _ | | DECEMBER | 77 | 3272 | 1901 | 972 | .51 | 21.7 | 7 | 26 | 20 | 17 | 15 | | _ | | OCTOBER
NOVEMBER | 26
87 | 391
2654 | 147
766 | 111
676 | .76
.88 | 1.7
8.8 | 1 3 | 25
25 | 19
19 | 16
17 | 14
14 | | | | | | | | | | | | | | | | | | | MONTH | (CFS) | (CFS) | (CFS) | (CFS) | ATION | RUNOFF | TIVE
DAYS) | 2
50% | 5
20 % | 10
10% | 20
5% | 50
2 % | 100 | | | MINIMUM | | MEAN | DARD
DEVIA-
TION | COEFFI-
CIENT OF
VARI- | PERCENT
OF
ANNUAL | PERIOD
(CON-
SECU- | | INTERVAL
EXCEEDAN | , IN YE | ARS, AND A
ABILITY, I | NNUAL NO | N-
IT | | | | | | STAN- | | | | DISC | ARGE. IN | CES. FO | OR INDICAT | ED RECUE | RENCI | . *** | | | | RECORD 19 | | | | Mı | ONTHLY AN | ND ANNUAL | MEAN DIS | CHARGES | 1968-82 | | MAG | | | | OF ANNUAL
RECORD 19 | | W | ## 163 SIUSLAW RIVER BASIN 14307620 SIUSLAW RIVER NEAR MAPLETON, OR LOCATION.--Lat 44°03'45", long 123°52'55", in SW±NW± sec.27, T.17 S., R.10 W., Lane County, Hydrologic Unit 17100206, on right bank 250 ft above Shoemaker Creek, 2.5 mi northwest of Mapleton, and at mile 23.7. DRAINAGE AREA .-- 588 mi2. 8950 5920 4170 3170 2490 2010 1330 826 497 296 236 193 160 132 97 PERIOD OF RECORD. -- October 1967 to September 1982. GAGE.--Water-stage recorder and crest-stage gage. Altitude of gage is 41 ft, from topographic map. REMARKS.--No regulation or diversions above station. AVERAGE DISCHARGE.--15 years, 2,159 ft³/s, 49.86 in/yr, 1,564,000 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 49,400 ft³/s Jan. 21, 1972, gage height, 28.45 ft; minimum, 45 ft³/s Aug. 18, 19, 1977. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of December 1964 reached a stage of about 28 ft, from information by local residents (discharge not determined). #### STATISTICAL SUMMARIES | | | | | | | | | | | | | . | DW. | |--|---|--|---|--|---|--|--|--|--|--|---|--|----------| | М | ONTHLY AN | ND ANNUAL | MEAN DIS | SCHARGES | 1968-82 | | MA | | | | OF ANNUAL
RECORD 19 | | | | | MINIMUM | MAXIMUM | MEAN | STAN-
DARD
DEVIA-
TION | COEFFI-
CIENT OF
VARI- | | PERIOD
(CON-
SECU- | DISC | INTERVA | L, IN YE | OR INDICATARS, AND A | ANNUAL NO |)N- | | НТИОМ | (CFS) | (CFS) | (CFS) | (CFS) | ATION | RUNOFF | TIVE
DAYS) | 2
50% | 5
20% | 10
10% | 20
5% | 50
2 % | 10 | | OCTOBER | 94 | 1219 | 464 | 364 | .78 | 1.8 | 1 | 86 | 65 | 5 6 | 49 | | | | NOVEMBER | 281 | 7819 | 2237 | 1980 | .89 | 8.6 | 3 | 88 | 6 6 | 57 | 50 | | - | | DECEMBER | 261 | 9787 | 5646 | 2912 | .52 | 21.7 | 7 | 91 | 69 | 60 | 53 | | - | | JANUARY | 300 | 10060 | 55 26 | 2941 | .53 | 21.3 | 14 | 97 | 73 | 63 | 56 | | - | | FEBRUARY | 876 | 6577 | 4302 | 1818 | .42 | 16. 6 | 30 | 108 | 83 | 73 | 6 6 | | - | | MARCH | 1287 | 6819 | 3496 | 1795 | .51 | 13.5 | 60 | 130 | 99 | 87 | 78 | | - | | APRIL | 68 6 | 4445 | 2226 | 1076 | .48 | 8.6 | 90 | 156 | 119 | 105 | 94 | | - | | MAY | 568 | 1753 | 1000 | 361 | . 36 | 3.8 | 120 | 194 | 152 | 135 | 124 | | - | | JUNE | 320 | 930 |
504 | 158 | .31 | 1.9 | 183 | 349 | 269 | 234 | 209 | | - | | JULY | 127 | 32 3 | 244 | 59 | .24 | .9 | | | | | | | | | AUGUST | 78 | 321 | 151 | 61 | .40 | .6 | | | | | | | | | | | 356 | 196 | 90 | .46 | -8 | | | | | | | | | SEPTEMBER | 97 | 330 | .,, | ,, | | •0 | | | | | | | | | SEPTEMBER ANNUAL MAGNI | 576
TUDE AND | 3711 | 2160
 | 802 | .37 | 100 |
MA | | | | OF ANNUAL | | .OW | | MAGNIT | 576
TUDE AND
BASE | 3711 PROBABILI D ON PERI | 2160 TY OF IN OD OF RE | 802
STANTANE
CORD 196
CURRENCE | .37 | 100

FLOW
, IN | MA PERIOD (CON- | BASI | ED ON PER
HARGE, IN | RIOD OF F | | 968-82

TED RECUR
D ANNUAL | RENC | | MAGNIT | 576
TUDE AND
BASE | 3711 PROBABILI D ON PERI | 2160 TY OF IN OD OF RE | 802
STANTANE
CORD 196
CURRENCE | .37
COUS PEAK
18-82
INTERVAL
IN PERCE | 100

FLOW
, IN | PERIOD | BASI | ED ON PER
HARGE, IN | RIOD OF F | RECORD 19
DR INDICAT
YEARS, AND | 968-82

TED RECUR
D ANNUAL | RENC | | MAGNITON MAG | 576 TUDE AND BASE , IN CFS, AND ANNUA | 3711 PROBABILI D ON PERI FOR INDI | 2160 TY OF IN OD OF RE CATED RE INCE PROE | 802
STANTANE
CORD 196
CURRENCE
BABILITY, | .37 OUS PEAK 18-82 INTERVAL IN PERCE | 100
 | PERIOD
(CON-
SECU- | BASI
DISCI | HARGE, INTERN | RIOD OF E | RECORD 19 DR INDICAT YEARS, AND | 968-82
TED RECUR
D ANNUAL
IN PERCEN | RRENC | | MAGNITO SCHARGE YEARS, | 576 TUDE AND BASE , IN CFS, AND ANNUA 2 50% | 3711 PROBABILI D ON PERI FOR INDI AL EXCEEDA 5 20% | 2160 TY OF IN OD OF RE CATED RE NNCE PROE | 802
STANTANE
CORD 196
CURRENCE
BABILITY, | .37 OUS PEAK 18-82 INTERVAL IN PERCE | 100
 | PERIOD
(CON-
SECU-
TIVE
DAYS) | BASI
DISCI | HARGE, IN
INTERN
EXCEEDAN
5
20% | N CFS, FC
VAL, IN N
NCE PROBA | DR INDICAT
YEARS, AND
ABILITY, I | 968-82 TED RECURD ANNUAL IN PERCEN | RRENC | | MAGNITON MAG | 576 TUDE AND BASE , IN CFS, AND ANNUA 2 50% | 3711 PROBABIL! D ON PERI FOR INDI AL EXCEEDA 5 20% | 2160 TY OF IN OD OF RE CATED RE NNCE PROE | 802 ISTANTANE ISTANTANE ICORD 196 CURRENCE BABILITY, 25 4% | .37 OUS PEAK 18-82 INTERVAL IN PERCE | 100
 | PERIOD
(CON-
SECU-
TIVE
DAYS) | DISCI | HARGE, IN
INTER
EXCEEDAN
5
20% | N CFS, FO
VAL, IN N
NCE PROBA
10% | PRECORD 19 | 968-82
TED RECUF
D ANNUAL
IN PERCEN
50
2% | RRENC | | MAGNITON MAG | 576 TUDE AND BASE , IN CFS, AND ANNUA 2 50% | 3711 PROBABIL! D ON PERI FOR INDI AL EXCEEDA 5 20% | 2160 TY OF IN OD OF RE CATED RE NNCE PROE | 802 ISTANTANE ISTANTANE ICORD 196 CURRENCE BABILITY, 25 4% | .37 OUS PEAK 18-82 INTERVAL IN PERCE | 100
 | PERIOD
(CON-
SECU-
TIVE
DAYS) | DISCI
2
50%
23300
19300 | HARGE, IN
INTER
EXCEEDAN
5
20% | 10 OF F | PRECORD 19 OR INDICAT YEARS, AND ABILITY, 1 25 4% 49100 39000 | P68-82 TED RECUF D ANNUAL IN PERCEN 50 2% | 10
10 | | MAGNITONISCHARGE YEARS, 1.25 80% | 576 TUDE AND BASE , IN CFS, AND ANNUA 2 50% | 3711 PROBABIL! D ON PERI FOR INDI AL EXCEEDA 5 20% | 2160 TY OF IN OD OF RE CATED RE NNCE PROE | 802 ISTANTANE ISTANTANE ICORD 196 CURRENCE BABILITY, 25 4% | .37 OUS PEAK 18-82 INTERVAL IN PERCE | 100
 | PERIOD (CON-
SECU-
TIVE DAYS) | BASI DISCI 2 50% 23300 19300 14700 | HARGE, IN INTERNEXCEEDAN 5 20% 34000 27700 19800 | N CFS, FC
VAL, IN N
NCE PROB/
10
10%
40900
32900
22700 | DR INDICAT
YEARS, AND
ABILITY, II
25
4%
49100
39000
26000 | 968-82 TED RECUF D ANNUAL IN PERCEN 50 2% | 10
10 | | MAGNITUSCHARGE, YEARS, 1.25, 80% | 576 TUDE AND BASE , IN CFS, AND ANNUA 2 50% | 3711 PROBABIL! D ON PERI FOR INDI AL EXCEEDA 5 20% | 2160 TY OF IN OD OF RE CATED RE NNCE PROE | 802 ISTANTANE ISTANTANE ICORD 196 CURRENCE BABILITY, 25 4% | .37 OUS PEAK 18-82 INTERVAL IN PERCE | 100
 | PERIOD
(CON-
SECU-
TIVE
DAYS)

1
3
7 | DISCI
DISCI
2
50%
23300
19300
14700
10300 | HARGE, IN INTERNEXCEEDAN 5 20% 34000 27700 19800 13400 | N CFS, FC
VAL, IN N
NCE PROB/
10
10%
40900
32900
22700
15300 | 25 45 49100 39000 26000 17400 | P68-82 TED RECUF D ANNUAL IN PERCEN 50 2% | TO 10 | | MAGNITISCHARGE YEARS, 1.25 80% | 576 TUDE AND BASE , IN CFS, AND ANNUA 2 50% | 3711 PROBABIL! D ON PERI FOR INDI AL EXCEEDA 5 20% | 2160 TY OF IN OD OF RE CATED RE NNCE PROE | 802 ISTANTANE ISTANTANE ICORD 196 CURRENCE BABILITY, 25 4% | .37 OUS PEAK 18-82 INTERVAL IN PERCE | 100
 | PERIOD (CON-
SECU-
TIVE DAYS) 1 3 7 15 30 | DISCI
2 50%
23300
19300
14700
10300
8160 | AARGE, IN INTER EXCEEDAN 5 20% 34000 179800 113400 10100 | N CFS, FG
VAL, IN N
NCE PROB/
10 10%
40900
32900
22700
15300
10900 | PRECORD 19 DR INDICAT YEARS, AND ABILITY, 1 25 4% 49100 39000 26000 17400 11700 | P68-82 TED RECUF D ANNUAL IN PERCEN 50 2% | 10
10 | | MAGNITONISCHARGE YEARS, 1.25 80% | 576 TUDE AND BASE , IN CFS, AND ANNUA 2 50% | 3711 PROBABIL! D ON PERI FOR INDI AL EXCEEDA 5 20% | 2160 TY OF IN OD OF RE CATED RE NNCE PROE | 802 ISTANTANE ISTANTANE ICORD 196 CURRENCE BABILITY, 25 4% | .37 OUS PEAK 18-82 INTERVAL IN PERCE | 100
 | PERIOD
(CON-
SECU-
TIVE
DAYS)

1
3
7 | DISCI
DISCI
2
50%
23300
19300
14700
10300 | HARGE, IN INTERNEXCEEDAN 5 20% 34000 27700 19800 13400 | N CFS, FC
VAL, IN N
NCE PROB/
10
10%
40900
32900
22700
15300 | 25 45 49100 39000 26000 17400 | P68-82 TED RECUF D ANNUAL IN PERCEN 50 2% | 10
10 | | MAGNITISCHARGE YEARS, 1.25 80% | 576 TUDE AND BASE , IN CFS, AND ANNUA 2 50% | 3711 PROBABIL! D ON PERI FOR INDI AL EXCEEDA 5 20% | 2160 TY OF IN OD OF RE CATED RE NICE PROE- 10 10% | 802 ISTANTANE CORD 196 CURRENCE SABILITY, 25 4\$ | .37 COUS PEAK 88-82 INTERVAL IN PERCE 50 2% | 100
FLOW
, IN
NT
100
1% | PERIOD (CON-
SECU-
TIVE DAYS) 1 3 7 15 30 60 | 23300
19300
14700
10300
8160
6400
5620 | HARGE, IN INTER: EXCEEDAN 5 20% | N CFS, FC
WAL, IN N
NCE PROB/
10 10%
40900
32900
22700
15300
10900
9320
8250 | PRECORD 19 | P68-82 TED RECUF D ANNUAL IN PERCEN 50 2% | 10
10 | | MAGNITUSCHARGE, YEARS, 1.25, 80% | 576 TUDE AND BASE , IN CFS, AND ANNUA 2 50% | 3711 PROBABILI D ON PERI FOR INDI AL EXCEEDA 5 20% | 2160 TY OF IN OD OF RE CATED RE INCE PROE 10 10% | 802 ISTANTANE CORD 196 CURRENCE SABILITY, 25 4% | INTERVAL IN PERCE | 100
FLOW
, IN
NT
100
1% | PERIOD (CON-
SECU-
TIVE DAYS) 1 3 7 7 15 30 60 90 | 250% 23300 19300 14700 10300 8160 6400 0F RECC | HARGE, IN INTER: EXCEEDAN 5 20% 34000 27700 19800 13400 10100 8380 7440 2000 10100 8000 1000 80000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 80 | ACFS, F(WAL, IN NCE PROB/
10 10%
40900 32900 22700 15300 10900 9320 8250 | PRECORD 19 | P68-82 TED RECUF D ANNUAL IN PERCEN 50 2% | RRENC | SIUSLAW RIVER BASIN 164 ## 14307645 NORTH FORK SIUSLAW RIVER NEAR MINERVA, OR LOCATION.--Lat 44°02'50", long 124°00'10", in NW4SW4 sec.34, T.17 S., R.11 W., Lane County, Hydrologic Unit 17100206, on left bank 10 ft downstream from county road bridge, 0.3 mi upstream from Condon Creek, 2.7 mi southwest of Minerva, and at mile 13.09. DRAINAGE AREA .-- 41.2 mi2. PERIOD OF RECORD. -- October 1967 to September 1982. GAGE.--Water-stage recorder and crest-stage gage. Altitude of gage is 40 ft, from topographic map. REMARKS.--No regulation. Small diversions for irrigation above station. AVERAGE DISCHARGE.--15 years, 290 ft3/s, 95.59 in/yr, 210,100 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 5,400 ft 3 /s Dec. 25, 1980, gage height, 24.36 ft; minimum, 11 ft 3 /s Sept. 9-11, 17, 18, 1980. #### STATISTICAL SHMMADIES | | | | | | S | TATISTIC | AL SUMMARIES | | | | | | | |---------------------|------------|------------------|------------|---------------------------------|------------------------------|-------------------------|--------------------------|--------------|------------------|--------------|-------------------------------------|------------------|-----------
 | M | ONTHLY AN | ID ANNUAL | MEAN DI | SCHARGES | 1968-82 | | МА | | AND PROB | | OF ANNUAL
ECORD 19 | . LOW FLO | IW | | | M IN I MUM | MAX I MUM | MEAN | STAN-
DARD
DEVIA-
TION | COEFFI-
CIENT OF
VARI- | PERCENT
OF
ANNUAL | PERIOD
(CON-
SECU- | | INTERVAL | , IN YEA | R INDICAT
RS, AND A | NNUAL NO |)N- | | MONTH | (CFS) | (CFS) | (CFS) | (CFS) | ATION | RUNOFF | TIVE
DAYS) | 2
50% | 5
20 % | 10
10% | 20
5% | 50
2 % | 100
1% | | OCTOBER
NOVEMBER | 16
67 | 279
1078 | 101
383 | 79
285 | .78
.74 | 2.9
11.0 | 1 3 | 15
15 | 12
13 | 11
12 | 10
11 | | | | DECEMBER | 56 | 1303 | 759 | 336 | .44 | 21.7 | 7 | 16 | 13 | 12 | 12 | | | | JANUARY | 73 | 1082 | 659 | 315 | .48 | 18.8 | 14 | 17 | 14 | 13 | 12 | | | | FEBRUARY | 171
150 | 875
809 | 564 | 224
199 | .40 | 16.1
12.3 | 30 | 19
23 | 15
19 | 14
17 | 14
16 | | | | MARCH
APRIL | 134 | 560 | 430
273 | 117 | .46
.43 | 7.8 | 60
90 | 23
29 | 21 | 17 | 17 | | | | MAY | 84 | 256 | 133 | 51 | .38 | 3.8 | 120 | 37 | 27 | 23 | 20 | | | | JUNE | 42 | 167 | 83 | 36 | .43 | 2.4 | 183 | 62 | 48 | 41 | 36 | | | | JULY | 26 | 82 | 42 | 15 | .36 | 1.2 | | | | | | | | | AUGUST | 16 | 78 | 29 | 15 | .53 | .8 | | | | | | | | | SEPTEMBER | 16 | 99 | 41 | 25 | •60 | 1.2 | | | | | | | | | ANNUAL | 118 | 443 | 290 | 88 | .30 | 100 | | | | | | | | | | | | | | E INTERVAL
, IN PERCE | • | PERIOD
(CON- | | INTERV | AL, ÎN Y | R INDICAT
EARS, AND
BILITY, I | ANNUAL | | | 1.25
80% | 2
50% | 5
20 % | 10
10% | 25
4 % | 50
2 % | 100
1% | SECU-
TIVE
DAYS) | 2
50% | 5
20 % | 10 |
25
4% | 50
2% | 100
1% | | 2150 | 2700 | 3460 | 3970 | 4620 | | | | | | | | | | | WE I GHTE | | •295 | | | | | 1 7 | 2350 | 2950 | 3360 | 3910
3180 | | | | MEIGHIE |) SKEW = | • 290 | | | | | 3
7 | 2040
1700 | 2530
2020 | 2830
2170 | 2310 | | | | | | | | | | | 15 | 1280 | 1530 | 1670 | 1820 | | | | | | | | | | | 30 | 1040 | 1220 | 1310 | 1400 | | | | | | | | | | | 60
90 | 820
713 | 1020
907 | 1130
1010 | 1250
1110 | | | | | | | DURATIO | ON TABLE | OF DAILY | MEAN FLOW | FOR PERIOD | | | | | | | | | | DISCHA | RGE, IN | CFS, WH | ICH WAS EQ | UALED OR | EXCEEDED FO | R INDICA | TED PERC | ENT OF T | IME | | | | 5% | 10% | 15% | 20% | 25% | 30% | 40% ! | 50% 60% | 70% | 75% | 80% | 85 % | 90% | 959 | | 1170 | 772 | 576 | 453 | 358 | 284 1 | 89 12 | 26 83 | 53 | 44 | 35 | 27 | 22 | 17 | ## UMPOUA RIVER BASIN ## 14307700 JACKSON CREEK NEAR TILLER, OR LOCATION.--Lat 42°57'15", long 122°49'40", in SW\u00e4NE\u00e4 sec.21 T.30 S., R.1 W., Douglas County, Hydrologic Unit 17100302, on right bank 0.5 mi upstream from Chapman Creek, 0.8 mi downstream from Beaver Creek, 6.5 ml northeast of Tiller, and at mile 3.0. Records include flow of Chapman Creek. DRAINAGE AREA.--152 mi², at cableway 0.6 mi downstream where all discharge measurements are made. PERIOD OF RECORD. -- October 1955 to September 1982. GAGE.--Water-stage recorder. Datum of gage is 1,240.25 ft National Geodetic Vertical Datum of 1929 (levels by Douglas County Water Resources Survey). REMARKS.--No regulation or diversion above station. AVERAGE DISCHARGE.--27 years, 313 ft3/s, 27.96 ln/yr, 226,800 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 21,100 ft³/s Dec. 22, 1964, gage height, 18.0 ft, from floodmark, from rating curve extended above 5,100 ft³/s and basin runoff comparison; minimum, 11 ft³/s Jan. 6, 1977, Nov. 13, 1978, result of freezeup. ## STATISTICAL SUMMARIES MONTHLY AND ANNUAL MEAN DISCHARGES 1956-82 MAGNITUDE AND PROBABILITY OF ANNUAL LOW FLOW BASED ON PERIOD OF RECORD 1957-82 | | MINIMUM | MAXIMUM | MEAN | STAN-
DARD
DEVIA- | COEFFI-
CIENT OF
VARI- | PERCENT
OF | PERIOD
(CON-
SECU- | | INTERVAL | CFS, FOR
, IN YEAR
CE PROBAE | RS, AND A | NNUAL NO | ON- | |-----------|---------|---------|---------------|-------------------------|------------------------------|------------------|--------------------------|----------|----------|------------------------------------|-----------|----------|-----------| | МОМТН | (CFS) | (CFS) | MEAN
(CFS) | TION
(CFS) | ATION | ANNUAL
RUNOFF | TIVE
DAYS) | 2
50% | 5
20% | 10
10% | 20
5% | 50
2% | 100
1% | | OCTOBER | 19 | 242 | 55 | 48 | .87 | 1.5 | 1 | 17 | 15 | 14 | 13 | 12 | | | NOVEMBER | 23 | 1203 | 293 | 256 | .87 | 7.8 | 3 | 17 | 15 | 14 | 13 | 12 | | | DECEMBER | 19 | 2006 | 605 | 490 | .81 | 16.1 | 7 | 18 | 15 | 14 | 13 | 13 | | | JANUARY | 25 | 1410 | 648 | 403 | .62 | 17.2 | 14 | 18 | 16 | 15 | 14 - | 13 | | | FEBRUARY | 26 | 1153 | 527 | 222 | .42 | 14.0 | 30 | 19 | 17 | 16 | 15 | 15 | | | MARCH | 122 | 1363 | 529 | 284 | .54 | 14.1 | 60 | 22 | 19 | 18 | 17 | 16 | | | APRIL | 158 | 705 | 449 | 153 | .34 | 11.9 | 90 | 24 | 21 | 20 | 19 | 18 | | | MAY | 120 | 752 | 389 | 159 | .41 | 10.3 | 120 | 30 | 25 | 22 | 21 | 19 | | | JUNE | 52 | 371 | 163 | 95 | .58 | 4.3 | 183 | 68 | 47 | 38 | 32 | 25 | | | JULY | 22 | 81 | 48 | 17 | . 35 | 1.3 | | | | | | | | | AUGUST | 17 | 70 | 27 | 10 | .37 | •7 | | | | | | | | | SEPTEMBER | 16 | 89 | 27 | 14 | .51 | .7 | | | | | | | | | ANNUAL | 85 | 566 | 313 | 109 | .35 | 100 | | | | | | | | MAGNITUDE AND PROBABILITY OF INSTANTANEOUS PEAK FLOW BASED ON PERIOD OF RECORD 1956-82 MAGNITUDE AND PROBABILITY OF ANNUAL HIGH FLOW BASED ON PERIOD OF RECORD 1956-82 | | | | | | ICE INTER | | PERIOD
(CON- | | INTERV | AL, ÍN Y | EARS, A | ATED RECUI
ND ANNUAL
IN PERCEI | | |-------------|----------|------------------|-----------|----------|-----------------|-----------|------------------------|------------------|------------------|-----------|----------|--------------------------------------|-----| | 1.25
80% | 2
50% | 5
20 % | 10
10% | 25
4% | 50
2% | 100
1% | SECU-
TIVE
DAYS) | 2
50 % | 5
20 % | 10
10% | 25
4% | 50
2% | 100 | | 3410 | 5490 | 8990 | 11700 | 15600 | 18800 | | | | | | | | | | | | | | | | | 1 | 3850 | 6190 | 7670 | 9400 | 10600 | | | NE I GHTED | SKEW = | .118 | | | | | 3 | 2650 | 4310 | 5510 | 7100 | 8330 | | | | | | | | | | 7 | 1750 | 2750 | 3490 | 4510 | 5330 | | | | | | | | | | 15 | 1230 | 1810 | 2210 | 2740 | 3150 | | | | | | | | | | 30 | 966 | 1350 | 1590 | 1890 | 2110 | | | | | | | | | | 60 | 763 | 1070 | 1270 | 1520 | 1710 | | | | | | | | | | 90 | 683 | 935 | 1080 | 1260 | 1370 | _ | DURATION TABLE OF DAILY MEAN FLOW FOR PERIOD OF RECORD 1956-82 | | | DISCI | HARGE, | IN CFS, | WHICH WAS | EQUALED | OR EXCE | EDED FOR | INDICATED | PERCE | NT OF TIM | 4E | | | |------|-----|-------|--------|---------|-----------|---------|---------|----------|-----------|-------|-----------|-----|-----|-----| | 5% | 10% | 15% | 20% | 25% | 30% | 40% | 50% | 60% | 70% | 75% | 80% | 85% | 90% | 95% | | | | | | | | | | | | | | | | | | 1040 | 739 | 588 | 497 | 420 | 355 | 251 | 158 | | 44 | | 29 | | 21 | 19 | ## UMPQUA RIVER BASIN ## 14308000 SOUTH UMPOUA RIVER AT TILLER, OR LOCATION.--Lat 42°55'50", long 122°56'50", in NEt sec.33, T.30 S., R.2 W., Douglas County, Hydrologic Unit 17100302, Umpqua National Forest, on left bank 0.3 mi upstream from bridge on State Highway 227 at Tiller, 0.3 mi upstream from Elk Creek, and at mile 187.31. DRAINAGE AREA .-- 449 mi 2. PERIOD OF RECORD.--October 1910 to December 1911, October 1939 to September 1982. Monthly discharge only for some periods, published in WSP 1318. Prior to December 1911, published as "South Fork of Umpqua River at Tiller". GAGE.--Water-stage recorder. Datum of gage is 991.8 ft National Geodetic Vertical Datum of 1929 (river-profile survey). Prior to Oct. 1, 1939, nonrecording gage at site 0.2 mi downstream at different datum. REMARKS.--No regulation. Small diversions for irrigation above station. AVERAGE DISCHARGE.--44 years, 1,034 ft³/s, 31.27 ln/yr, 749,100 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 60,200 ft³/s Dec. 22, 1964, gage height, 25.72 ft; minimum observed, 20 ft³/s Sept. 3, 4, 1911. | | | | | | | STATIST | ICAL S | UMMARIES | ; | | | | | | |---|--|---|---|--|--|--|--------------------------------------|---|---|--|---|---|---|--| | М | A YJHTMC | ND ANNUAL | MEAN DI | SCHARGES | 1911- | 82 | | МА | | AND PROE | | | AL LOW FL
1941-82 | OW | | | MINIMUM | MAXIMUM | MEAN | STAN-
DARD
DEVIA-
TION | COEFF | OF OF | | PERIOD
(CON-
SECU- | DISC | INTERVAL | _, IN YE | ARS, AND | ATED RECU
ANNUAL N | ON- | | MONTH | (CFS) | (CFS) | (CFS) | (CFS) | ATIO | | | TIVE
DAYS) | 2
50 % | 5
20 % | 10
10% | 20
5 % | 50
2 % | 100
1% | | OCTOBER NOVEMBER DECEMBER DECEMBER JANUARY FEBRUARY MARCH APRIL MAY JUNE JULY AUGUST SEPTEMBER ANNUAL | 44
48
67
90
95
442
433
309
121
50
30
40 | 1791
3977
7480
4513
3757
4776
2314
2093
1643
301
206
228
1762 |
210
1061
2015
2153
1977
1727
1391
1081
512
154
77
73 | 292
860
1586
1342
824
909
477
475
293
31
343 | 1.33
.8
.77
.66
.44
.55
.33
.44
.57
.33 | 1 8.
9 16.
2 17.
2 15.
3 13.
4 11.
4 8.
7 4.
9 1.
7 . | 5
2
3
9
9
2
7
1 | 1
3
7
14
30
60
90
120
183 | 44
45
46
48
53
61
71
91
220 | 37
37
38
40
44
50
58
74
151 | 34
34
35
37
40
45
53
67
123 | 34
37
41
49
62
105 | 28
28
29
31
34
38
45
57
87 | 26
26
27
29
32
35
43
54
76 | | OISCHARGE,
YEARS, | BASE
, IN CFS,
AND ANNUA | FOR INDI | CATED RE | CORD 19 COURRENCE BABILITY | 11-82
E INTER | VAL, IN
RCENT |
 | PERIOD | BASE | ARGE, IN | RIOD OF F | RECORD 1 | |
RR E NCE | | 1.25
80% | 2
50 % | 5
20 %
 | 10
10 % | 25
4%
 | 50
2 %
 | 100
1%
 | | SECU-
TIVE
DAYS) | 2
50 % | 5
20 % | 10
10% | 25
4% | 50
2% | 100
1% | | 11300

WEIGHTED | 17800
) SKEW = | .034 | 36000 4 | 16700
 | 55300
 | 64400 | | 1
3
7
15
30
60
90 | 13500
9390
6320
4320
3320
2640
2340 | 21100
14700
9480
6170
4600
3660
3200 | 25700
18000
11500
7340
5400
4300
3720 | 30900
22100
13900
8760
6360
5050
4330 | 34300
24900
15600
9770
7040
5590
4740 | 37300
27500
17200
10700
7690
6100
5140 | | | | | DURATIO | N TABLE | OF DAIL | LY MEAN F | LOW FO | R PERIOD | OF RECO | ORD 1911- | 82 | | | | | | | DISCHA | RGE, IN | CFS, WH | ICH WAS | EQUALED | OR EXC | EDED FO | R INDICA | TED PERC | ENT OF T | IME | · | | | 5 % | 10% | 15% | 20% | 25% | 30% | 40% | 50 % | 60% | 70 % | 75% | 80% | 85% | 90% | 955 | | 3630 | 2470 | 1940 1 | 580 1 | 320 | 1100 | 779 | 511 | 283 | 138 | 105 | 84 | 70 | 58 | 48 | 167 ## 14308500 ELK CREEK NEAR DREW, OR LOCATION.--Lat 42°53'25", long 122°55'00", in SWt sec.11, T.31 S., R.2 W., Douglas County, Hydrologic Unit 17100302, on right bank 100 ft downstream from Dixon Creek, 0.1 mi upstream from Drew Creek, 1.3 mi northwest of Drew, 3.3 mi southeast of Tiller, and at mile 4.1 DRAINAGE AREA .-- 54.4 mi2. PERIOD OF RECORD. -- September 1954 to September 1982. GAGE.--Water-stage recorder. Datum of gage Is 1,279.25 ft National Geodetic Vertical Datum of 1929. REMARKS.--No regulation. Several diversions for irrigation above station. AVERAGE DISCHARGE.--28 years (water years 1955-82), 84.3 ft³/s, 61,080 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 8,880 ft³/s Dec. 22, 1964, gage height, 10.61 ft, from rating curve extended above 2,900 ft³/s on basis of slope-area measurement at gage height 10.34 ft; maximum gage height, 10.80 ft Jan. 15, 1974; no flow at times in September 1974, Aug. 16-22, 1977, and Aug. 17-24, Sept. 16-19, 1981. EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage, 11.8 ft, from floodmarks, probably for flood in January or November 1953, discharge, about 11,000 ft³/s. ## STATISTICAL SUMMARIES | MONTHLY | AND | ANNUAL | MEAN | DISCHARGE | S | 1955-82 | | | MAGNI | TUDE | AND | PΕ | ROBABI | LITY | OF | ANNU | JAL | LOW | FLOV | ı | |---------|-----|--------|------|-----------|---|---------|--|--|-------|------|------|-----|--------|------|------|------|-----|------|------|---| | | | | | | | | | | | BASE | D 01 | N F | PERIOD | OF | RECO | ORD | 195 | 6-82 | • | MINIMUM | MAXIMUM | MEAN | STAN-
DARD
DEVIA-
TION | COEFFI-
CIENT OF
VARI- | PERCENT
OF
ANNUAL | PERIOD
(CON-
SECU- | 11 | NTERVAL, | CFS, FOR
IN YEARS
E PROBABI | , AND AN | INUAL NO | N- | |-----------|---------|---------|-------|---------------------------------|------------------------------|-------------------------|--------------------------|----------|----------|-----------------------------------|----------|----------|-----------| | MONTH | (CFS) | (CFS) | (CFS) | (CFS) | ATION | RUNOFF | TIVE
DAYS) | 2
50% | 5
20% | 10
10% | 20
5% | 50
2% | 100
1% | | OCTOBER | 1.5 | 63 | 8.7 | 13 | 1.47 | .9 | 1 | .6 | .2 |
. 1 | 0.0 | 0.0 | | | NOVEMBER | 3.3 | 449 | 74 | 91 | 1.22 | 7.3 | 3 | .6 | .2 | . 1 | 0.0 | 0.0 | | | DECEMBER | 3.1 | 651 | 188 | 169 | .90 | 18.5 | 7 | .7 | .2 | . 1 | .1 | 0.0 | | | JANUARY | 4.9 | 644 | 224 | 162 | .72 | 22.1 | 14 | •7 | .2 | .1 | . 1 | 0.0 | | | FEBRUARY | 5.1 | 382 | 173 | 89 | .52 | 17.0 | 30 | .8 | .3 | .2 | .1 | 0.0 | | | MARCH | 42 | 356 | 164 | 93 | •56 | 16.2 | 60 | 1.2 | .6 | .4 | .3 | .2 | | | APRIL | 27 | 193 | 107 | 51 | .48 | 10.5 | 90 | 1.5 | 1.0 | •8 | .7 | •5 | | | MAY | 11 | 164 | 53 | 37 | •69 | 5.3 | 120 | 2.4 | 1.6 | 1.3 | 1.1 | 1.0 | | | JUNE | 3.8 | 51 | 15 | 11 | .72 | 1.5 | 183 | 7.3 | 4.7 | 3.7 | 3.1 | 2.5 | | | JULY | .7 | 11 | 4.1 | 2.6 | .65 | . 4 | | | | | | | | | AUGUST | . 1 | 10 | 1.7 | 1.9 | 1.09 | .2 | | | | | | | | | SEPTEMBER | .1 | 19 | 2.2 | 3.3 | 1.53 | .2 | | | | | | | | | ANNUAL | 16 | 180 | 84 | 36 | .43 | 100 | | | | | | | | MAGNITUDE AND PROBABILITY OF INSTANTANEOUS PEAK FLOW BASED ON PERIOD OF RECORD 1955-82 # MAGNITUDE AND PROBABILITY OF ANNUAL HIGH FLOW BASED ON PERIOD OF RECORD 1955-82 | DISCHARGE,
YEARS, A | | | | | ICE INTER | | PERIOD
(CON- | | INTERV | 'AL, ÎN Y | EARS, AN | TED RECUI
D ANNUAL
IN PERCEI | | |------------------------|----------|----------|-----------|----------|-----------|-----------|------------------------|----------|----------|-----------|----------|------------------------------------|-----| | 1.25
80% | 2
50% | 5
20% | 10
10% | 25
4% | 50
2% | 100
1% | SECU-
TIVE
DAYS) | 2
50% | 5
20% | 10 | 25
4% | 50
2% | 100 | | 1660 | 2900 | 4990 | 6610 | 8870 | 10700 | | | | | | | | | | | | | | | | | 1 | 1730 | 2880 | 3550 | 4280 | 4730 | | | WE I GHTED | SKEW = | 081 | | | | | 3 | 1120 | 1860 | 2320 | 2870 | 3240 | | | | | | | | | | 7 | 721 | 1160 | 1440 | 1780 | 2010 | | | | | | | | | | 15 | 462 | 706 | 857 | 1030 | 1160 | | | | | | | | | | 30 | 334 | 491 | 588 | 702 | 781 | | | | | | | | | | 60 | 263 | 376 | 437 | 501 | 540 | | | | | | | | | | 90 | 222 | 315 | 366 | 420 | 455 | | DURATION TABLE OF DAILY MEAN FLOW FOR PERIOD OF RECORD 1955-82 |
 | | DISCH | ARGE, II | N CFS, | WHICH WAS | EQUALED | OR EXCE | EDED FOR | INDICATED | PERCENT | OF TIME | · | | | |--------|-----|-------|----------|--------|-----------|---------|---------|----------|-----------|---------|---------|-----------|-----|-----| |
5% | 10% | 15% | 20% | 25% | 30% | 40% | 50% | 60% | 70% | 75% | 80% | 85% | 90% | 95% | | 346 | 210 | 159 | 121 | 92 | 72 | 40 | 21 | 9.7 | 4.5 | 3.2 | 2.4 | 1.7 | 1.2 | .7 | ## 14308700 DAYS CREEK AT DAYS CREEK, OR LOCATION.--Lat 42°58'55", long 123°08'55", in NE‡ sec.10, T.30 S., R.4 W., Douglas County, Hydrologic Unit 17100302, on left bank 150 ft downstream from Wood Creek, 1.0 mi northeast of town of Days Creek, and at mile 1.3. DRAINAGE AREA. -- 55.3 mi2. PERIOD OF RECORD. -- October 1955 to July 1972. GAGE.--Nonrecording gage and crest-stage gage. Altitude of gage is 810 ft, from topographic mep. Prior to Oct. 1, 1962, at site 170 ft upstream at detum 3.06 ft higher. REMARKS.--No regulation. Several diversions for irrigation above station. AVERAGE DISCHARGE.--16 years (water years 1956-71), 44.4 ft3/s, 32,170 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.—Meximum discharge, 3,450 ft³/s Feb. 21, 1956, gage height, 11.24 ft, site and detum then in use, from rating curve extended above 1,100 ft³/s on besis of slope-erea measurement of peak flow; no flow for many deys in July and August 1961 ## STATISTICAL SUMMARIES MONTHLY AND ANNUAL MEAN DISCHARGES 1956-71 MAGNITUDE AND PROBABILITY OF ANNUAL LOW FLOW BASED ON PERIOD OF RECORD 1957-71 | | MINIMUM | MAXIMUM | MEAN | STAN-
DARD
DEVIA-
TION | COEFFI-
CIENT OF
VARI- | PERCENT
OF
ANNUAL | PERIOD
(CON-
SECU- | 11 | NTERVAL, | CFS, FOR
IN YEARS
E PROBABI | , AND AN | INUAL N | ON- | |-----------|---------|---------|-------|---------------------------------|------------------------------|-------------------------|--------------------------|----------|------------------|-----------------------------------|------------------|------------------|-----------| | MONTH | (CFS) | (CFS) | (CFS) | (CFS) | ATION | RUNOFF | TIVE
DAYS) | 2
50% | 5
20 % | 10
10% | 20
5 % | 50
2 % | 100
1% | | OCTOBER | 1.5 | 32 | 7.2 | 8.3 | 1.15 | 1.4 | 1 | .3 | .2 | .1 | .1 | | | | NOVEMBER | 3.7 | 120 | 39 | 34 | .88 | 7.2 | 3 | .4 | .2 | - 1 | .1 | | | | DECEMBER | 11 | 424 | 115 | 107 | .93 | 21.5 | 7 | .5 | •2 | . 1 | • 1. | | | | JANUARY | 13 | 232 | 120 | 78 | •65 | 22.5 | 14 | .5 | •2 | . 1 | .1 | | | | FEBRUARY | 42 | 213 | 99 | 48 | . 49 | 18.5 | 30 | •6 | .3 | •2 | - 1 | | | | MARCH | 20 | 166 | 82 | 49 | . 59 | 15.3 | 60 | .8 | .5 | .4 | .3 | | | | APRIL | 11 | 112 | 35 | 25 | .70 | 6.6 | 90 | 1.1 | .7 | .6 | .6 | | | | MAY | 4.2 | 117 | 25 | 27 | 1.08 | 4.7 | 120 | 1.5 | 1.1 | .9 | .8 | | | | JUNE | 2.0 | 26 | 7.8 | 6.2 | • 79 | 1.5 | 183 | 3.8 | 2.5 | 2.1 | 1.9 | | | | JULY | .5 | 4.4 | 2.0 | 1.4 | .68 | .4 | | | | | | | | | AUGUST | - 1 | 2.2 | 1.0 | .7 | .65 | .2 | | | | | | | | | SEPTEMBER | •7 | 3.0 | 1.5 | •6 | .44 | .3 | | | | | | | | | ANNUAL | 19 | 92 | 44 | 16 | .37 | 100 | | | | | | | | MAGNITUDE AND PROBABILITY OF INSTANTANEOUS PEAK FLOW BASED ON PERIOD OF RECORD 1956-71 MAGNITUDE AND PROBABILITY OF ANNUAL HIGH FLOW BASED ON PERIOD OF RECORD 1956-71 | | | | | RECURRENC
ROBABILITY | | | PERIOD
(CON- | | INTERV | AL, ÎN Y | R INDICAT
EARS, AND
BILITY, I | ANNUAL | | |-------------|----------|------------------|-----------
-------------------------|------------------|-----------|------------------------|------------------|------------------|-----------|-------------------------------------|------------------|-----------| | 1.25
80% | 2
50% | 5
20 % | 10
10% | 25
4% | 50
2 % | 100
1% | SECU-
TIVE
DAYS) | 2
50 % | 5
20 % | 10
10% | 25
4% | 50
2 % | 100
1% | | 1040 | 1580 | 2380 | 2930 | 3630 | | - | | | | | | | | | | | | | | | | 1 | 934 | 1360 | 1650 | 2020 | | | | WEIGHTED | SKEW = | 143 | | | | | 3 | 657 | 922 | 1090 | 1290 | | | | | | | | | | | 7 | 406 | 593 | 732 | 926 | | | | | | | | | | | 15 | 264 | 378 | 455 | 555 | | | | | | | | | | | 30 | 197 | 272 | 320 | 381 | | | | | | | | | | | 60 | 142 | 194 | 233 | 287 | | | | | | | | | | | 90 | 118 | 164 | 198 | 244 | | | DURATION TABLE OF DAILY MEAN FLOW FOR PERIOD OF RECORD 1956-71 | 5% 10% 15% 20% 25% 30% 40% 50% 60% 70% 75% 80% 85% 90% 95%
181 114 79 55 43 34 20 11 6.0 3.1 2.3 1.8 1.3 .8 .5 | | | DISC | HARGE, I | IN CFS, N | WHICH WAS | EQUALED | OR EXCE | EDED FOR | INDICATE | D PERCEN | IT OF TIM | 1E | | _ | |---|-----|-----|------|----------|-----------|-----------|---------|---------|----------|----------|----------|-----------|-----|-----|-----| | 181 114 79 55 43 34 20 11 6.0 3.1 2.3 1.8 1.3 .8 .5 | 5% | 10% | 15% | 20% | 25% | 30% | 40% | 50% | 60% | 70% | 75% | 80% | 85% | 90% | 95% | | | 181 | 114 | 79 | 55 | 43 | 34 | 20 | 11 | 6.0 | 3.1 | 2.3 | 1.8 | 1.3 | .8 | •5 | ## UMPQUA RIVER BASIN #### 14309000 COW CREEK NEAR AZALEA, OR LOCATION.--Lat 42°49'30", long 123°10'40", in N-1/2 sec.4, T.32 S., R.4 W., Douglas County, Hydrologic Unit 17100302, on right bank 0.8 mi upstream from Whitehorse Creek, 4.5 mi northeast of Azalea, and at mile 58.2. DRAINAGE AREA. -- 78.0 mi². 404 264 198 156 123 100 PERIOD OF RECORD.--April 1926 to September 1928 (no winter records), April 1929 to December 1931, April 1932 to September 1982. GAGE.--Water-stage recorder. Datum of gage is 1,694.32 ft National Geodetic Vertical Datum of 1929 (Douglas County Road Department bench mark). Prior to July 19, 1949, nonrecording gage at same site and datum. REMARKS.--No regulation. Diversions for irrigation above station. AVERAGE DISCHARGE.--52 years (water years 1930-31, 1933-82), 110 ft³/s, 19.15 in/yr, 79,700 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 10,600 ft³/s Jan. 15, 1974, gage height, 16.40 ft, from high-water mark in well; minimum, 1.1 ft³/s Aug. 12, 1981, but may have been less during period of no gage-height record Sept. 4-30, 1970. #### STATISTICAL SUMMARIES | | | | | | ; | STATISTIC | AL SUMMARIES | | | | | | | |--|------------------|---|---------------|-------------------------|-----------------------|---|---|--|---|---|---|---|--| | М | ONTHLY A | ND ANNUAL | MEAN DI | SCHARGES | 1930-82 | | МА | GNITUDE A
BASE | AND PROBA | | | | WC | | | MINIMONA | MAY I MI BI | MEAN | STAN-
DARD
DEVIA- | COEFFI-
CIENT OF | OF | PERIOD
(CON-
SECU- | | NTERVAL, | IN YEAR
E PROBAE | RS, AND | TED RECUI
ANNUAL NO
IN PERCEI | 0 N- | | MONTH | (CFS) | MAXIMUM
(CFS) | MEAN
(CFS) | TION
(CFS) | VARI-
ATION | ANNUAL
RUNOFF | TIVE
DAYS) | 2
50% | 5
20% | 10
10% | 20
5% | 50
2% | 100
1% | | OCTOBER NOVEMBER DECEMBER JANUARY FEBRUARY MARCH APRIL MAY JUNE JULY AUGUST SEPTEMBER ANNUAL MAGNI | 23
TUDE AND | 294
542
765
926
598
521
328
268
129
36
23
30
269
PROBABILI | | | .33
.32
.45
 | 1.9
6.3
15.1
20.0
18.2
15.5
11.1
6.0
2.9
1.3
.9 | 1
3
7
14
30
60
90
120
183 | 8.4
8.6
8.8
9.2
9.7
11
11
13
21
GNITUDE /
BASE | 6.0
6.2
6.6
6.9
7.4
8.5
9.4
11
16 | | | 3.0
3.6
4.0
4.5
5.8
7.2
8.2
11 | 2.4
2.5
3.3
5.6
6.1
7.10 | | | | FOR INDI | | | | | PERIOD
(CON- | | INTERV | L, IN YE | ARS, AN | TED RECUI
D ANNUAL
IN PERCEI | | | 1.25
80% | 2
50 % | 5
20 % | 10
10% | 25
4% | 50
2% | 100
1% | SECU-
TIVE
DAYS) | 2
50% | 5
20% | 10
10% | 25
4% | 50
2% | 100 | | 1390 | 2670 | 4670 | 6050 | 7760 | 9000 10 | 200 | | | | | | | | | WEIGHTE | SKEW = | 544 | | | | | 1
3
7
15
30
60
90 | 1830
1220
818
548
393
318
271 | 3110
2050
1330
855
604
467
394 | 3880
2550
1630
1040
735
547
462 | 4730
3100
1970
1250
886
630
532 | 5270
3450
2190
1380
989
681
575 | 5750
3750
2380
1500
1080
724
612 | | | | | DURATIO | N TABLE | OF DAILY | MEAN FLO | FOR PERIOD | OF RECOF | RD 1930-8 | 2 | | | | | | | DISCHA | RGE, IN | CFS, WHI | CH WAS EQ | UALED OR | EXCEEDED FOR | R INDICAT | ED PERCE | NT OF TI | ME | | | | 5% | 10% | 15% | 20% | 25% | 30% | 40% | 50% 60% | 70% | 75% | 80% | 85% | 90% | 95% | 26 18 ## 14309500 WEST FORK COW CREEK NEAR GLENDALE. OR LOCATION.--Lat 42°48'15", long 123°36'35", in SW±NE± sec.11, T.32 S., R.8 W., Douglas County, Hydrologic Unit 17100302, on left bank 1.6 mi downstream from Bear Creek, 11 mi northwest of Glendale, and at mile 0.8. DRAINAGE AREA. -- 86.9 mi2. 1230 722 505 373 276 212 127 17 14 12 9.7 PERIOD OF RECORD.--August 1955 to September 1982. GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 1,018.48 ft National Geodetic Vertical Datum of 1929. Prior to June 8, 1964, at site 0.6 mi upstream at different datum. REMARKS. -- No regulation or diversion above station. AVERAGE DISCHARGE.--27 years (water years 1956-82), 273 ft³/s, 42.66 in/yr, 197,800 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.—Maximum discharge, 15,700 ft³/s Dec. 22, 1964, gage height, 18.59 ft, from floodmark, from rating curve extended above 2,600 ft³/s on basis of slope-area measurement of peak flow; mlnimum, 3.7 ft³/s Aug. 17, 19, 1977. ## STATISTICAL SUMMARIES | | ONTHE! AN | ID ANNUAL I | MEAN DIS | SCHARGES | 1956-82 | | MAC | GNITUDE A
BASED | ON PERI | | | | | |---------------------------------|--|--|--|---|---|---------------------------------|--|---|---|---|---|---|------------| | | MINIMUM | MAXIMUM | MEAN | STAN-
DARD
DEVIA-
TION | COEFFI-
CIENT OF
VARI- | PERCENT
OF
ANNUAL | PERIOD
(CON-
SECU- | ! | NTERVAL, | IN YEA | RS, AND | TED RECUF
ANNUAL NO
IN PERCEN | N- | | нтиом | (CFS) | (CFS) | (CFS) | (CFS) | ATION | RUNOFF | TIVE
DAYS) | 2
50% | 5
20 % |
10
10% | 20
5% | 50
2 % | 100
1% | | OCTOBER | 8.5 | 254 | 48 | 55 | 1.14 | 1.5 | 1 | 7.3 | 6.1 | 5.5 | | | | | 10VEMBER | 15 | 1470 | 298 | 294 | •99 | 9.1 | 3 | 7.5 | 6.3 | 5.7 | | | | | DECEMBER | 13 | 1669 | 648 | 460 | .71 | 19.7 | 7 | 7.6 | 6.5 | 5.8 | | | | | JANUARY | 24 | 1496 | 724 | 457 | .63 | 22.0 | 14 | 8.0 | 6.7 | 6.0 | 5.5 | 4.9 | | | FEBRUARY | 66 | 1660 | 576 | 316 | .55 | 17.5 | 30 | 8.4 | 7.2 | 6.7 | 6.3 | - 5.8 | | | MARCH | 116 | 920 | 502 | 240 | . 48 | 15.3 | 60 | 9.5 | 8.2 | 7.6 | 7.2 | 6.9 | | | APR I L | 79 | 840 | 290 | 180 | .62 | 8.8 | 90 | 11 | 9.6 | 9.1 | 8.7 | 8.5 | | | MAY | 44 | 476 | 120 | 94 | .78 | 3.7 | 120 | 14 | 12 | 11 | 10 | 9.6 | | | JUNE | 23 | 79 | 38 | 11 | . 29 | 1.2 | 183 | 30 | 21 | 18 | 16 | 14 | | | JULY | 11 | 25 | 18 | 3.6 | .20 | .5 | | | | | | | | | AUGUST | 7.3 | 16 | 11 | 2.3 | .21 | .3 | | | | | | | | | SEPTEMBER | 6.9 | 54 | 14 | 9.7 | .71 | .4 | ANNUAL

MAGNI | | 499
PROBABILI
D ON PERIO | | | | 100

FLOW | MAG | | ND PROBA | | |
L HIGH FL
956-82 |
OW | | MAGNI | TUDE AND
BASE | PROBABILI | TY OF IN | ISTANTANE(CORD 1956 | DUS PEAK F
5-82 | FLOW | PERIOD | BASED
DISCHA | ON PERI | OD OF RI | ECORD 1

R INDICA
EARS, AN | | RENCE | | MAGNI | TUDE AND
BASE
, IN CFS,
AND ANNUA | PROBABILITO ON PERIO | TY OF IN
OD OF RE
CATED RE
NCE PROB | ISTANTANEC
CORD 1956
CURRENCE
BABILITY, | DUS PEAK F
5-82
INTERVAL,
IN PERCEI | FLOW IN | PERIOD
(CON-
SECU- | BASED
DISCHA
E | ON PERI | OD OF RI | ECORD 1 R INDICA EARS, AN BILITY, | 956-82 TED RECUR D ANNUAL IN PERCEN | RENCE | | MAGNI
DISCHARGE
YEARS, | TUDE AND
BASE
, IN CFS, | PROBABILI
D ON PERIO
FOR INDIO
L EXCEEDA | TY OF IND OF RECATED RENCE PROB | STANTANEC
CORD 1956
CURRENCE
BABILITY, | OUS PEAK F
5-82
INTERVAL
IN PERCEI | FLOW
, IN | PERIOD
(CON- | BASED
DISCHA | ON PERI | OD OF RI | ECORD 1

R INDICA
EARS, AN | 956-82

TED RECUR
D ANNUAL | RENCE
T | | MAGNI | TUDE AND
BASE
, IN CFS,
AND ANNUA | PROBABILII
D ON PERIO
FOR INDIO
L EXCEEDAN
5
20% | TY OF IN
DD OF RE
CATED RE
NCE PROB | CURRENCE
BABILITY, | DUS PEAK F
5-82
INTERVAL,
IN PERCEI | FLOW IN | PERIOD
(CON-
SECU-
TIVE
DAYS) | BASED DISCHA E 2 50% | ON PERI | OD OF RI | ECORD 1 R INDICA EARS, AN BILITY, 25 4% | 956-82 TED RECUF D ANNUAL IN PERCEN 50 2% | RENCE
T | | MAGNI DISCHARGE YEARS, 1.25 80% | TUDE AND BASE IN CFS, AND ANNUA 2 50% | PROBABILIT
D ON PERIO
FOR INDIC
EXCEEDA
5
20% | TY OF IN
DD OF RE
CATED RE
NCE PROB | CURRENCE
BABILITY, | DUS PEAK F
5-82
INTERVAL
IN PERCEI | FLOW IN | PERIOD
(CON-
SECU-
TIVE
DAYS) | DISCHA E 2 50% | ON PERI | OD OF RICES, FOIL, IN YIE PROBAL | ECORD 1 R INDICA EARS, AN BILITY, 25 4% 9160 | 956-82 TED RECUF D ANNUAL IN PERCEN 50 2% | T 100 1% | | MAGNI DISCHARGE YEARS, 1.25 80% | TUDE AND
BASE
, IN CFS,
AND ANNUA
2
50% | PROBABILIT
D ON PERIO
FOR INDIC
EXCEEDA
5
20% | TY OF IN
DD OF RE
CATED RE
NCE PROB | CURRENCE BABILITY, | DUS PEAK F
5-82
INTERVAL
IN PERCEI | FLOW IN | PERIOD
(CON-
SECU-
TIVE
DAYS) | DISCHA E 2 50% 4580 3260 | ON PERI
RGE, IN
INTERVA
XCEEDANC
5
20% | OD OF RI
CFS, FOI
L, IN YI
E PROBAL
10
10% | ECORD 1 R INDICA EARS, AN BILITY, 25 4% 9160 6830 | 956-82 TED RECUF D ANNUAL IN PERCEN 50 2% | T 100 1% | | MAGNI DISCHARGE YEARS, 1.25 80% | TUDE AND BASE IN CFS, AND ANNUA 2 50% | PROBABILIT
D ON PERIO
FOR INDIC
EXCEEDA
5
20% | TY OF IN
DD OF RE
CATED RE
NCE PROB | CURRENCE BABILITY, | DUS PEAK F
5-82
INTERVAL
IN PERCEI | FLOW IN | PERIOD
(CON-
SECU-
TIVE
DAYS) | DISCHA E 2 50% 4580 3260 2220 | ON PERI
RGE, IN
INTERVA
XCEEDANC
5
20%
6630
4770
3230 | OD OF RI
CFS, FOI
L, IN YI
E PROBAR
10
10%
7830
5710
3880 | ECORD 1 R INDICA EARS, AN BILITY, 25 4% 9160 6830 4700 | 956-82 TED RECURD ANNUAL IN PERCEN 2% 10000 7620 5300 | 100
1% | | MAGNI DISCHARGE YEARS, 1.25 80% | TUDE AND BASE IN CFS, AND ANNUA 2 50% | PROBABILIT
D ON PERIO
FOR INDIC
EXCEEDA
5
20% | TY OF IN
DD OF RE
CATED RE
NCE PROB | CURRENCE BABILITY, | DUS PEAK F
5-82
INTERVAL
IN PERCEI | FLOW IN | PERIOD
(CON-
SECU-
TIVE
DAYS)
 | BASED DISCHA E 2 50% 4580 3260 2220 1500 | ON PERI RGE, IN INTERVA XCEEDANC 5 20% 6630 4770 3230 2070 | OD OF RICCES, FOIL, IN YIE PROBAIL 10 10 7830 5710 3880 2420 | P160
6830
4700
2820 | 956-82 TED RECURD ANNUAL IN PERCEN 50 2% 10000 7620 5300 3090 | T 100 1% | | MAGNI DISCHARGE YEARS, 1.25 80% | TUDE AND BASE IN CFS, AND ANNUA 2 50% | PROBABILIT
D ON PERIO
FOR INDIC
L EXCEEDA
5
20% | TY OF IN
DD OF RE
CATED RE
NCE PROB | CURRENCE BABILITY, | DUS PEAK F
5-82
INTERVAL
IN PERCEI | FLOW IN | PERIOD (CON-
SECU-
TIVE DAYS) 1 3 7 15 30 | BASED DISCHA E 2 50% 4580 3260 2220 1500 1110 | ON PERI RGE, IN INTERVA XCEEDANC 5 20% 6630 4770 3230 22070 1510 | OD OF RICCES, FOILL, IN YIE PROBAL 10 10 7830 5710 3880 2420 1740 | P160
6830
4700
2820
2000 | 756-82 TED RECUFD ANNUAL IN PERCEN 50 2\$ 10000 7620 5300 3090 2170 | T 100 1% | | MAGNI DISCHARGE YEARS, 1.25 80% | TUDE AND BASE IN CFS, AND ANNUA 2 50% | PROBABILIT
D ON PERIO
FOR INDIC
L EXCEEDA
5
20% | TY OF IN
DD OF RE
CATED RE
NCE PROB | CURRENCE BABILITY, | DUS PEAK F
5-82
INTERVAL
IN PERCEI | FLOW IN | PERIOD
(CON-
SECU-
TIVE
DAYS)
 | DISCHA E 2 50% 4580 3260 2220 1110 887 | ON PERI RGE, IN INTERVA XCEEDANC 5 20% 6630 4770 3230 2070 1510 1190 | OD OF RICCES, FOIL, IN YIE PROBAIL 7830 5710 3880 2420 1740 1340 | PIGORD 1 R INDICA EARS, AN BILITY, 25 4% 9160 6830 4700 2820 2000 1480 | 956-82 TED RECUP D ANNUAL IN PERCEN 50 2% 10000 7620 5300 3090 2170 1570 | T 100 1% | | MAGNI | TUDE AND BASE IN CFS, AND ANNUA 2 50% | PROBABILIT
D ON PERIO
FOR INDIC
L EXCEEDA
5
20% | TY OF IND OF RE | STANTANEC
CORD 1956
CURRENCE
BABILITY,
25
4% | DUS PEAK F
5-82
INTERVAL
IN PERCEI
50
2% | FLOW , IN NT 1000 1.8 | PERIOD
(CON-
SECU-
TIVE
DAYS)
 | DISCHA E 2 50\$ 4580 3260 2220 1110 887 750 | RGE, IN INTERVA XCEEDANC 5 20% | OD OF RICCES, FOIL, IN YIE PROBAIL 7830 5710 3880 2420 1740 1340 11110 | P160
6830
4700
2820
2000 | 756-82 TED RECUFD ANNUAL IN PERCEN 50 2\$ 10000 7620 5300 3090 2170 | T 100 1% | | MAGNI | TUDE AND BASE IN CFS, AND ANNUA 2 50% | PROBABILIT
D ON PERIO
FOR INDIC
L EXCEEDA
5
20% | TY OF IND OF RE | STANTANEC
CORD 1956
CURRENCE
BABILITY,
25
4% | DUS PEAK F
5-82
INTERVAL
IN PERCEI
50
2% | FLOW , IN NT 1000 1.8 | PERIOD
(CON-
SECU-
TIVE
DAYS)
 | DISCHA E 2 50\$ 4580 3260 2220 1110 887 750 | RGE, IN INTERVA XCEEDANC 5 20% | OD OF RICCES, FOIL, IN YIE PROBAIL 7830 5710 3880 2420 1740 1340 11110 | PIGORD 1 R INDICA EARS, AN BILITY, 25 4% 9160 6830 4700 2820 2000 1480 | 956-82 TED RECUP D ANNUAL IN PERCEN 50 2% 10000 7620 5300 3090 2170 1570 | T 100 1% | | MAGNI DISCHARGE YEARS, 1.25 80% | TUDE AND BASE IN CFS, AND ANNUA 2 50% | PROBABILITO ON PERIOD ON PERIOD ON PERIOD ON PERIOD OF P | TY OF IND OF RECATED RECEPROE | STANTANEC CORD 1956 CURRENCE SABILITY, 25 4% 4000 15 | DUS PEAK F
5-82
INTERVAL
IN PERCEI
50
2% | FLOW IN NT 100 1% MEAN FLOW | PERIOD
(CON-
SECU-
TIVE
DAYS)
 | DISCHA E 2 50% 4580 3260 2220 1500 1110 887 750 OF RECOR | RGE, IN INTERVA XCEEDANC 5 20% 6630 4770 3230 2070 1510 1190 992 D 1956-8 | OD OF RICCES, FOIL, IN YIE PROBAIL 10 10 7830 5710 3880 2420 1740 11340 11110 | 9160
6830
4700
2820
2000
1480
1210 | 956-82 TED RECUP D ANNUAL IN PERCEN 50 2% 10000 7620 5300 3090 2170 1570 | T 100 1% | ## UMPQUA RIVER BASIN 171 ## 14310000 COW CREEK NEAR RIDDLE, OR LOCATION.--Lat 42°55'25", long 123°25'40", in NE[±] sec.32, T.30 S., R.6 W., Douglas County, Hydrologic Unit 17100302, on left bank 0.4 mi upstream from Council Creek, 3.8 ml southwest of Riddle, and at mile 6.7. DRAINAGE AREA. -- 456 mi². 3880 2260 1160 708 PERIOD OF RECORD. -- September 1954 to September 1982. GAGE.--Water-stage recorder. Datum of gage is 682.60 ft National Geodetic Vertical Datum of 1929. REMARKS.--No regulation. Many small diversions for irrigation above station. AVERAGE DISCHARGE.--28 years (water years 1955-82), $888 \text{ ft}^3/\text{s}$, 634,400 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 38,400 ft³/s Jan. 15, 1974, gage height, 28.17 ft; minimum, 7.4 ft³/s Aug. 17-19, 1977. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of Oct. 29, 1950, reached a stage of about 28.5 ft, discharge, 41,100 ft³/s, from slope-area measurement. STATISTICAL SUMMARIES | | ONTHLY AN | | | | | | | | | | | | | |--|--|--|--|---|--|---|---|--|--|--
--|---|-----------| | | | | | STAN-
DARD
DEVIA- | COEFFI-
CIENT OF | | PERIOD
(CON-
SECU- | DISC | INTERVA | L, IN YE | ARS, AND | ATED RECUI
ANNUAL NO
IN PERCEI | N- | | MONTH | MINIMUM
(CFS) | MAXIMUM
(CFS) | MEAN
(CFS) | TION
(CFS) | VARI-
ATION | ANNUAL
RUNOFF | TIVE
DAYS) | 2
50% | 5
20% | 10
10% | 20
5% | 50
2% | 100
1% | | OCTOBER
NOVEMBER
DECEMBER
JANUARY
FEBRUARY
MARCH
APRIL
MAY
JUNE
JUNE
AUGUST
SEPTEMBER | 41
59
58
85
161
506
199
172
75
25
15 | 633
4712
6574
5889
5902
3398
2719
1943
264
128
70
156 | 126
797
1971
2466
1915
1689
1000
435
150
65
36 | 125
923
1608
1743
1119
912
610
337
50
22
12
25 | .99 1.16 .82 .71 .58 .54 .61 .77 .33 .33 .33 .56 | 1.2
7.5
18.4
23.1
17.9
15.8
9.4
4.1
1.4
.6
.3 | 1
3
7
14
30
60
90
120
183 | 25
26
27
28
29
34
39
50
99 | 19
19
20
21
22
26
32
42
75 | 15
16
16
17
19
22
28
38
66 | 13
13
13
14
16
19
26
36
60 | 9.8
9.9
10
11
13
16
23
33
54 | | | ANNUAL | 147 | 1809 | 888 | 384 | .43 | 100 | | | | | | | | | MAGNI
DISCHARGE
YEARS, | TUDE AND
BASE
, IN CFS,
AND ANNUA | PROBABILI
D ON PERIO
FOR INDIO
L EXCEEDA | TY OF IN
OD OF RE
CATED RE | STANTANE
CORD 195
CURRENCE | OUS PEAK
5-82
INTERVAL
IN PERCE | FLOW
, IN
NT | PERIOD
(CON- | BAS | ED ON PEI

HARGE, II
INTER | N CFS, FO | RECORD 1 | AL HIGH FL
1955-82
ATED RECURND ANNUAL
IN PERCEN | RENCE | | MAGNI
DI SCHARGE | TUDE AND
BASE | PROBABILI
D ON PERI | TY OF INOD OF RE | STANTANE
CORD 195 | OUS PEAK
5-82
INTERVAL
IN PERCE | FLOW | PERIOD | BAS | ED ON PEI

HARGE, II
INTER | N CFS, FO | RECORD 1 | 1955-82
ATED RECURND ANNUAL | RENCE | | MAGNI DISCHARGE YEARS, 1.25 80% | TUDE AND
BASE
, IN CFS,
AND ANNUA
2
50% | PROBABILI
D ON PERIO
FOR INDII
L EXCEEDA
5
20% | TY OF INDO OF RE | STANTANE
CORD 195
CURRENCE
ABILITY,
25
4% | OUS PEAK
5-82
INTERVAL
IN PERCE
50
2% | FLOW , IN NT 100 1% | PERIOD
(CON-
SECU-
TIVE | DISCI 2 50% 15900 10800 7250 4850 3610 2880 2420 | HARGE, II
INTERI
EXCEEDAI
5
20%
23900
16900
11600
7370
5370
4130
3440 | N CFS, FIVAL, IN NCE PROB. 10 10% 27700 20400 14300 6360 4750 3940 | RECORD 1 | 1955-82
ATED RECUF
ND ANNUAL
IN PERCEN | RENCE T | | MAGNI DISCHARGE YEARS, 1.25 80% | TUDE AND BASE , IN CFS, AND ANNUA 2 50% | PROBABILI
D ON PERIO
FOR INDIO
L EXCEEDAD
5
20%
29000 39 | TY OF IN OD OF RECATED RENCE PROB | STANTANE CORD 195 CURRENCE ABILITY, 25 4% 2300 4 | OUS PEAK 5-82 INTERVAL IN PERCE 50 2% 7500 | FLOW , IN NT 100 1% | PERIOD (CON-
SECU-
TIVE DAYS) 1 3 7 7 15 30 60 90 | DISCI
2
50%
15900
7250
4850
3610
2880
2420 | HARGE, II
INTER:
EXCEEDAN
5
20%
23900
11600
7370
5370
4130
3440 | N CFS, FIVAL, IN VACE PROB. 27700 20400 14300 8860 6360 4750 3940 | DR INDICA
(FARS, AN
ABILITY,
25
4%
31000
24200
17500
10500
7420
5330
4410 | 1955-82 ATED RECURND ANNUAL IN PERCEN 50 2% 32800 26500 19600 11600 8090 5660 | T 100 1% | 241 134 418 77 61 27 34 ## 14310700 SOUTH MYRTLE CREEK NEAR MYRTLE CREEK. OR LOCATION.--Lat 43°01'55", long 123°11'30", in SEL sec.20, T.29 S., R.4 W., Douglas County, Hydrologic Unit 17100302, on left bank 0.6 mi downstream from School Hollow, 5.5 ml east of town of Myrtle Creek, and at mile 7.3. DRAINAGE AREA .-- 43.9 mi2. 258 PERIOD OF RECORD. -- October 1955 to July 1972. GAGE.--Nonrecording gage and crest-stage gage. Datum of gage Is 775.25 ft National Geodetic Vertical Datum of 1929. REMARKS.--No regulation. Several diversions for irrigation above station. AVERAGE DISCHARGE.--16 years (water years 1956-71), 65.9 ft3/s, 57,740 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 3,050 ft^3/s Dec. 11, 1956, gage height, 7.72 ft, from rating curve extended above 1,100 ft^3/s ; mlnimum observed, 0.20 ft^3/s Aug. 2, 1961. #### STATISTICAL SUMMARIES | | | | | | 3 | TATISTICA | L SUMMARIES | | | | | | | |--------------------------------------|--------------------------------|-------------------------------------|-------------------------|---|--------------------------------|-------------------------|--|--|---|---|--|--|---------------------------| | М | ONTHLY AN | ID ANNUAL | MEAN DISC | CHARGES | 1956-71 | | MA | | | | OF ANNUAL
ECORD 19 | | OW | | | MINIMI | MAYIMIM | MEAN | STAN-
DARD
DEVIA- | COEFFI-
CIENT OF | OF | PERIOD
(CON-
SECU- | | INTERVAL | , IN YEA | R INDICAT
RS, AND A
BILITY, I | NNUAL N | ON- | | MONTH | (CFS) | MAXIMUM
(CFS) | MEAN
(CFS) | TION
(CFS) | VARI-
ATION | ANNUAL
RUNOFF | TIVE
DAYS) | 2
50% | 5
20 % | 10
10% | 20
5 % | 50
2 % | 100
1% | | OCTOBER
NOVEMBER
DECEMBER | 6.2
8.3
18 | 44
146
434 | 15
59
145 | 11
40
122 | .74
.67 | 1.8
7.5
18.3 | 1
3
7 | .8
1.1
1.5 | .6 | .4 | | | | | JANUARY
FEBRUARY
MARCH | 22
64
39 | 345
230
274 | 170
135
127 | 114
54
75 | .67
.40 | 21.4
17.0
16.0 | 14
30
60 | 1.8
2.1
2.8 | 1.1 | .9
1.2
1.7 | .8
1.0 | | | | APRIL
MAY
JUNE | 25
13
5.6 | 149
159 | 65
47 | 31
35 | .47
.74 | 8.2
5.9 | 90
120 | 3.6
4.9 | 2.8
3.8 | 2.5
3.3 | 2.3
3.0 | | | | JULY
AUGUST
SEPTEMBER | 1.2
1.3 | 33
13
5.6
8.1 | 17
5.7
3.2
5.0 | 8.2
3.3
1.4
1.5 | • 57
• 44 | 2.1
.7
.4
.6 | 183 | 9.6 | 7.1 | 6.2 | 5.6 | | | | ANNUAL | 28 | 120 | 66 | 22 | .33 | 100 | | | | | | | | | MAGNI | TUDE AND | | | | | | | | | | | | | | | | PROBABILI
D ON PERIO | TY OF INS
OD OF REC | | | FLOW | MA(| | | | OF ANNUAL
ECORD 19 | | LOW | | DISCHARGE
YEARS, | BASE
, IN CFS,
AND ANNUA | FOR INDIC | OD OF REC | CURRENCE | INTERVAL | , IN
NT | PERIOD
(CON- | BASE | D ON PER ARGE, IN INTERVA | CFS, FOR | ECORD 19 R INDICAT EARS, AND BILITY, I | 56-71 ED RECUR ANNUAL N PERCEN | RRENCE | | DISCHARGE | BASE
, IN CFS, | D ON PERIO | OD OF REC | CORD 1956
CURRENCE | INTERVAL |
, IN | PERIOD | BASE | D ON PER ARGE, IN INTERVA | CFS, FOR | ECORD 19
R INDICAT
EARS, AND | 56-71 ED RECUR ANNUAL N PERCEN | RRENCE | | DISCHARGE
YEARS, 1
1.25
80% | BASE , IN CFS, AND ANNUA 2 50% | FOR INDIC
L EXCEEDAD | OD OF REC | CURRENCE
ABILITY, | INTERVAL
IN PERCE | , IN
NT | PERIOD
(CON-
SECU-
TIVE
DAYS) | D1SCH | O ON PER ARGE, IN INTERV EXCEEDANG | CFS, FOR
AL, IN YICE PROBAL | ECORD 19 R INDICAT EARS, AND BILITY, I | ED RECUR
ANNUAL
N PERCEN | RRENCE
NT | | DISCHARGE
YEARS, 1
1.25
80% | BASE , IN CFS, AND ANNUA 2 50% | FOR INDIC
L EXCEEDAD | OD OF REC | CORD 1956
CURRENCE
ABILITY,
25
4% | INTERVAL
IN PERCE | , IN
NT | PERIOD
(CON-
SECU-
TIVE
DAYS) | DISCH | D ON PER ARGE, IN INTERVI EXCEEDANC | CFS, FOI
AL, IN YI
CE PROBAL
10
10% | ECORD 19 R INDICAT EARS, AND BILITY, 1 25 4% | ED RECUP
ANNUAL
N PERCEN
50
2% | RRENCE
NT
100
1% | | DISCHARGE
YEARS, 1
1.25
80% | BASE , IN CFS, AND ANNUA 2 50% | FOR INDIC
L EXCEEDAD | OD OF RECONCE PROBA | CURRENCE BILITY, 25 44 | INTERVAL
IN PERCEI | , IN
NT
 | PERIOD
(CON-
SECU-
TIVE
DAYS)
 | DISCH. 2 50\$ 1100 808 521 357 266 196 168 | ARGE, IN INTERV/EXCEEDANC 1520 1070 722 480 358 267 227 | CFS, FOI
AL, IN YI
E PROBAI
10
10\$
1790
1210
854
414
316
265 | R INDICAT
EARS, AND
BILITY, I
25
4%
2130
1370
1020
629
478
380 | ED RECUF
ANNUAL
N PERCEN
50
2% | 100
1% | | DISCHARGE
YEARS, 1
1.25
80% | BASE , IN CFS, AND ANNUA 2 50% | FOR INDIC
L EXCEEDAN
5
20% | OD OF RECONCE PROBA | CURRENCE BILITY, 25 4% 4400 | INTERVAL
IN PERCEI
50 2% | , IN
NT
100
1% | PERIOD (CON-
SECU-
TIVE DAYS) 1 3 7 15 30 60 90 | DISCH. 2 50\$ 1100 808 521 357 266 196 168 OF RECOR | D ON PER ARGE, IN INTERV EXCEEDANC 5 20\$ 1520 1070 722 480 358 267 227 RD 1956-7 | 1790 1210 854 414 316 265 | 25 4% 2130 1020 629 478 380 313 | ED RECUF
ANNUAL
N PERCEN
50
2% | 100
1% | 165 117 89 72 59 40 26 16 8.6 6.8 5.4 4.2 3.1 2.0 ## UMPQUA RIVER BASIN 173 # 14311000 NORTH MYRTLE CREEK NEAR MYRTLE CREEK, OR LOCATION.--Lat 43°02'30", long 123°15'30", in SW½ sec.14, T.29 S., R.5 W., Douglas County, Hydrologic Unit 17100302, on left bank 300 ft downstream from Bilger Creek, 1.5 mi northeast of town of Myrtle Creek, and at mile 2.2. DRAINAGE AREA .-- 54.2 mi2. 308 189 135 103 79 62 38 24 14 8.3 6.6 5.1 4.0 3.1 2.2 PERIOD OF RECORD. -- October 1955 to September 1982. GAGE.--Water-stage recorder. Datum of gage is 642.81 ft National Geodetic Vertical Datum of 1929 (levels by City Engineer of Myrtle Creek). Oct. 1, 1955, to Aug. 31, 1977, at site 340 ft downstream on right bank. Oct. 1, 1955, to Sept.
30, 1975, at datum 1.63 ft lower and Oct. 1, 1975, to Aug. 31, 1977, at datum 1.33 ft lower. REMARKS.--No regulation. Several diversions for irrigation above station. AVERAGE DISCHARGE.--27 years, 72.8 ft3/s, 52,740 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 3,700 ft³/s Dec. 6, 1981, gage height, 10.08 ft, from floodmark, from rating curve extended above 1,300 ft³/s on basis of slope-area measurement of peak flow; maximum gage height, 11.58 ft Dec. 26, 1955 (backwater from debris), site and datum then in use; no flow at times in July 1973 and August 1977. #### STATISTICAL SHMMARIES | М | ONTHLY AN | ND ANNUAL | MEAN DIS | CHARGES | 1956-82 | | MAC | BASEC | ON PERI | | | 957-82 | | |----------------------------------|--|---|--|--|--|----------------------|---|---|---|--|--|--|------------| | | MINIMUM | MAX1MUM | MEAN | STAN-
DARD
DEVIA-
TION | COEFFI-
CIENT OF
VARI- | | PERIOD
(CON-
SECU- | 1 | NTERVAL, | IN YEAR | RS, AND | TED RECUR
ANNUAL NO
IN PERCEN | N- | | монтн | (CFS) | (CFS) | (CFS) | (CFS) | ATION | RUNOFF | TIVE
DAYS) | 2
50% | 5
20% | 10
10% | 20
5% | 50
2% | 100
1% | | OCTOBER | 4.6 | 38 | 12 | 7.4 | .64 | 1.3 | 1 | | | | | | | | NDVEMBER | 9.1 | 376 | 68 | 73 | 1.07 | 7.8 | 3 | | | | | | | | DECEMBER | 9.5 | 482 | 169 | 130 | .77 | 19.3 | 7 | | | | | | | | JANUARY | 11 | 384 | 195 | 119 | -61 | 22.3 | 14 | 2.4 | 1.2 | •6 | .3 | .1 | | | FEBRUARY | 9.1 | 363 | 152 | 81 | .53 | 17.4 | 30 | 2.5 | 1.6 | 1.2 | .9 | .7 | | | MARCH | 38 | 294 | 135 | 84 | .62 | 15.4 | 60 | 3.2 | 2.1 | 1.7 | 1.4 | 1.1 | | | APRIL | 18 | 207 | 77 | 47 | .60 | 8.8 | 90 | 3.8 | 2.8 | 2.3 | 2.0 | 1.7 | | | MAY | 12 | 188 | 40 | 34 | .86 | 4.5 | 120 | 5.0 | 3.9 | 3.4 | 3.0 | 2.6 | | | JUNE | 5.2 | 34 | 15 | 6.3 | .44 | 1.7 | 183 | 9.2 | 7.1 | 6.3 | 5.7 | 5.2 | | | JULY | 1.6 | 11 | 5.5 | 2.3 | .43 | •6 | | | | | | | | | AUGUST | 1.1 | 9.9 | 3.4 | 1.8 | .53 | .4 | | | | | | | | | SEPTEMBER | 2.6 | 11 | 4.7 | 1.8 | •38 | .5 | 133
PROBABILI
D ON PERIO | | | | 100

FLOW |
MAG | | ND PROBA | | |
HIGH FL
956-82 |
OW | | MAGNI
DISCHARGE
YEARS, | TUDE AND
BASE
, IN CFS,
AND ANNUA | PROBABILI
D ON PERIO
FOR INDIO | TY OF INS | STANTANEC
CORD 1956
CURRENCE
ABILITY, | OUS PEAK
5-82
INTERVAL
IN PERCE | FLOW
, IN | PERIOD
(CON- | BASED

DISCHA | ON PERI

RGE, IN
INTERVA | OD OF RE

CFS, FOR
L, IN YE | CORD 19 | 956-82

TED RECUR | RENCE | | MAGN1 | TUDE AND
BASE | PROBABILI
D ON PERIO | TY OF INS | STANTANEC
CORD 1956
CURRENCE | OUS PEAK
5-82
INTERVAL
IN PERCE | FLOW | PERIOD
(CON-
SECU-
TIVE | BASED DISCHA E 2 | ON PERI
RGE, IN
INTERVA
XCEEDANC | OD OF RE
CFS, FOR
L, IN YE
E PROBAB | CORD 19 INDICAT ARS, AND | 956-82
FED RECUR
O ANNUAL
IN PERCEN | RENCE | | MAGNI | TUDE AND
BASE
, IN CFS,
AND ANNUA
2
50% | PROBABILI
D ON PERIO
FOR INDIO
L EXCEEDA
5
20% | TY OF INS
OD OF REC
CATED REC
NCE PROBA | STANTANEC
CORD 1956
CURRENCE
ABILITY, | OUS PEAK
5-82
INTERVAL
IN PERCE | FLOW , IN NT | PERIOD
(CON-
SECU- | BASED
DISCHA | ON PERI
RGE, IN
INTERVA
XCEEDANC | OD OF RE
CFS, FOR
L, IN YE
E PROBAB | CORD 19 INDICAT | 956-82
FED RECUR
O ANNUAL
IN PERCEN | RENCE | | DISCHARGE
YEARS, 1 | TUDE AND
BASE
, IN CFS,
AND ANNUA | PROBABILI
D ON PERIO
FOR INDIO
L EXCEEDA
5
20% | TY OF INS
OD OF REC
CATED REC
NCE PROBA | STANTANEC
CORD 1956
CURRENCE
ABILITY, | OUS PEAK
5-82
INTERVAL
IN PERCE | FLOW , IN NT | PERIOD
(CON-
SECU-
TIVE
DAYS) | BASED DISCHA E 2 50% | ON PERI | OD OF RE
CFS, FOR
L, IN YE
E PROBAB | CORD 19 INDICAT ARS, AND ILLITY, I | P56-82 TED RECUR O ANNUAL N PERCEN 50 2% | RENCE
T | | MAGNITOLISCHARGE YEARS, 1.25 80% | TUDE AND BASE IN CFS, AND ANNUA 2 50% | PROBABILI'D ON PERIO | TY OF INS
OD OF REC
CATED REC
NCE PROBA | STANTANEC
CORD 1956
CURRENCE
ABILITY, | OUS PEAK
5-82
INTERVAL
IN PERCE | FLOW , IN NT | PERIOD
(CON-
SECU-
TIVE
DAYS) | BASED | ON PERI | OD OF RECEIVED | CORD 19 INDICAT RARS, AND ILLITY, I 25 4% 2210 | P56-82 TED RECURD ANNUAL N PERCEN 50 2% | RENCE | | MAGNITOLISCHARGE YEARS, 1.25 80% | TUDE AND
BASE
, IN CFS,
AND ANNUA
2
50% | PROBABILI'D ON PERIO | TY OF INS
OD OF REC
CATED REC
NCE PROBA | STANTANEC
CORD 1956
CURRENCE
ABILITY, | OUS PEAK
5-82
INTERVAL
IN PERCE | FLOW , IN NT | PERIOD
(CON-
SECU-
TIVE
DAYS) | BASED DISCHA E 2 50% 1350 937 | ON PERI | OD OF RE CFS, FOR L, IN YE E PROBAB 10 10% 2080 1430 | 2210 | 250
1550
2250
1550 | RENCE
T | | MAGNITOLISCHARGE YEARS, 1.25 80% | TUDE AND BASE IN CFS, AND ANNUA 2 50% | PROBABILI'D ON PERIO | TY OF INS
OD OF REC
CATED REC
NCE PROBA | STANTANEC
CORD 1956
CURRENCE
ABILITY, | OUS PEAK
5-82
INTERVAL
IN PERCE | FLOW , IN NT | PERIOD (CON- SECU- TIVE DAYS) 1 3 7 | BASED DISCHA E 2 50% 1350 937 630 | ON PERI | OD OF RE CFS, FOR L, IN YE E PROBAB 10 10 5 2080 1430 948 | 25
4%
2210
1520
1000 | 2250
1020 | RENCE | | MAGNITOLISCHARGE YEARS, 1.25 80% | TUDE AND BASE IN CFS, AND ANNUA 2
50% | PROBABILI'D ON PERIO | TY OF INS
OD OF REC
CATED REC
NCE PROBA | STANTANEC
CORD 1956
CURRENCE
ABILITY, | OUS PEAK
5-82
INTERVAL
IN PERCE | FLOW , IN NT | PERIOD
(CON-
SECU-
TIVE
DAYS)
 | BASED DISCHA E 2 50% 1350 937 630 418 | ON PERI RGE, IN INTERVA XCEEDANC 5 20% 1890 1300 866 576 | OD OF RE CFS, FOR L, IN YE E PROBAB 10 10% 2080 1430 948 639 | 2210
1520
1000
688 | 2250
1020
711 | RENCE | | MAGNITOLISCHARGE YEARS, 1.25 80% | TUDE AND BASE IN CFS, AND ANNUA 2 50% | PROBABILI'D ON PERIO | TY OF INS
OD OF REC
CATED REC
NCE PROBA | STANTANEC
CORD 1956
CURRENCE
ABILITY, | OUS PEAK
5-82
INTERVAL
IN PERCE | FLOW , IN NT | PERIOD (CON-
SECU-
TIVE DAYS) | BASED DISCHA E 2 50% 1350 937 630 418 315 | ON PERI RGE, IN INTERVA XCEEDANC 5 20% 1890 1300 866 576 423 | OD OF RE
CFS, FOR
L, IN YE
E PROBAB
10
10%
2080
1430
948
639
463 | 25 4 2210 1520 1000 688 493 | 250 1550 1020 711 505 | RENCE | | MAGNITOLISCHARGE YEARS, 1.25 80% | TUDE AND BASE IN CFS, AND ANNUA 2 50% | PROBABILI'D ON PERIO | TY OF INS
OD OF REC
CATED REC
NCE PROBA | STANTANEC
CORD 1956
CURRENCE
ABILITY, | OUS PEAK
5-82
INTERVAL
IN PERCE | FLOW , IN NT | PERIOD
(CON-
SECU-
TIVE
DAYS)
 | BASED DISCHA E 2 50% 1350 937 630 418 | ON PERI RGE, IN INTERVA XCEEDANC 5 20% 1890 1300 866 576 | OD OF RE CFS, FOR L, IN YE E PROBAB 10 10% 2080 1430 948 639 | 2210
1520
1000
688 | 2250
1020
711 | RENCE
T | | MAGNITOLISCHARGE YEARS, 1.25 80% | TUDE AND BASE IN CFS, AND ANNUA 2 50% | PROBABILI'D ON PERIO | TY OF INSTANCE OF THE PROBLEM | STANTANEC
CORD 1950
CURRENCE
ABILITY,
25
4% | DUS PEAK
5-82
INTERVAL
IN PERCE
50
2% | FLOW , IN NT 100 1% | PERIOD (CON-
SECU-
TIVE DAYS) | DISCHA E 2 50% 1350 937 630 418 315 248 208 | ON PERI RGE, IN INTERVA XCCEDANC 5 20% 1890 1300 866 576 423 324 278 | OD OF RECOMPANY | 2210
1520
1000
688
493
366 | 250 1020 711 505 373 | RENCE | | MAGNITOLISCHARGE YEARS, 1.25 80% | TUDE AND BASE IN CFS, AND ANNUA 2 50% | PROBABILI' D ON PERIO FOR INDII L EXCEEDA 5 20% 2780 574 | TY OF INS OD OF REC CATED REC NCE PROBJ 10 10% 3410 4 | STANTANEC CORD 1956 CURRENCE ABILITY, 25 4% 1150 4 | DUS PEAK
5-82
INTERVAL
IN PERCE
50
2% | FLOW , IN NT 100 1% | PERIOD (CON-
SECU-
TIVE DAYS) | BASED DISCHA E 2 50% 1350 937 630 418 315 248 208 OF RECORI | ON PERI RGE, IN INTERVA XCEEDANC 5 20% 1890 1300 866 576 423 324 278 D 1956-8: | OD OF RECOMPANY | 2210
1520
1000
688
493
366
326 | 250 1020 711 505 373 | RENCE | #### UMPOUA RIVER BASIN ## 14311200 OLALLA CREEK NEAR TENMILE, OR LOCATION.--Lat 43°02'20", long 123°32'35", in NW\ sec.21, T.29 S., R.7 W., Douglas County, Hydrologic Unit 17100302, on left bank 0.5 mi downstream from Berry Creek, 4.4 mi south of Tenmile, and at mile 11.7. DRAINAGE AREA .-- 61.3 mi2. PERIOD OF RECORD.--October 1956 to September 1973. GAGE.--Water-stage recorder. Datum of gage is 749.53 ft National Geodetic Vertical Datum of 1929. Prior to June 21, 1957, nonrecording gage at site 0.3 mi downstream at datum 7.83 ft lower. $\label{eq:REMARKS.--No regulation.} Remarks.-- No regulation. Some diversions for irrigation above station.$ AVERAGE DISCHARGE.--17 years, 102 ft³/s, 73,900 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 9,160 ft³/s Jan. 3, 1966, gage height, 11.98 ft, from floodmark; no flow at times. EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1920, 13.6 ft Dec. 26, 1955, from floodmarks, present site and datum, discharge, 12,300 ft³/s, from rating curve extended above 6,000 ft³/s. ## STATISTICAL SUMMARIES MONTHLY AND ANNUAL MEAN DISCHARGES 1957-73 MAGNITUDE AND PROBABILITY OF ANNUAL LOW FLOW BASED ON PERIOD OF RECORD 1958-73 | | | | Meth | STAN-
DARD
DEVIA- | COEFFI-
CIENT OF | PERCENT
OF | PERIOD
(CON- | 1 | NTERVAL, | IN YEAR | INDICATE
S, AND AN
ULITY, IN | NNUAL NO | ON- | |--------------------------------|--|---|--|---|--|----------------------------|---|------------------------------------|-----------|--|--|---|-----------| | МОМТН | MINIMUM
(CFS) | MAXIMUM
(CFS) | MEAN
(CFS) | TION
(CFS) | VARI-
ATION | ANNUAL
RUNOFF | SECU-
TIVE
DAYS) | 2
50% | 5
20% | 10
10% | 20
5% | 50
2% | 100
1% | | CTOBER | .9 | 51 | 8.9 | 15 | 1.64 | .7 | 1 | | | | | | | | OVEMBER | 3.4 | 253 | 80 | 71 | .89 | 6.5 | 3 | | | | | | | | ECEMBER | 11 | 660 | 239 | 175 | .73 | 19.4 | 7 | | | | | | | | ANUARY | 25 | 613 | 328 | 214 | .65 | 26.7 | 14 | | | | | | | | EBRUARY | 56 | 754 | 242 | 177 | .73 | 19.7 | 30 | .2 | . 1 | 0.0 | 0.0 | | | | IARCH | 45 | 463 | 205 | 126 | .61 | 16.7 | 60 | .4 | .2 | . 1 | .1 | | | | PRIL | 20 | 283 | 79 | 69 | .87 | 6.4 | 90 | .7 | .4 | .3 | .2 | | | | ΙΑΥ | 6.9 | 246 | 37 | 57 | 1.56 | 3.0 | 120 | 1.2 | .8 | .6 | .5 | | | | UNE | 2.8 | 28 | 8.6 | 6.5 | .76 | .7 | 183 | 4.5 | 2.6 | 2.0 | 1.6 | | | | ULY | .4 | 5.8 | 2.0 | 1.6 | .82 | .2 | | | | | | | | | UGUST | 0.0 | 1.5 | .5 | .4 | . 79 | 0.0 | | | | | | | | | EPTEMBER | .1 | 1.8 | .8 | .5 | .64 | . 1 | NNUAL | 42 | 167 | 102 | 31 | .30 | 100 | | | | | | | | | MAGNI | TUDE AND
BASE
, IN CFS, | PROBABILITO ON PERIO | TY OF INS | TANTANEC
CORD 195
CURRENCE
BILITY, | DUS PEAK F
7-73
INTERVAL,
IN PERCE |
FLOW

, IN
NT | PERIOD
(CON- | BASED
DISCHA | ON PERI | OD OF RE

CFS, FOR
L, IN YE | F ANNUAL CORD 195 INDICATE ARS, AND ILITY, IN | 57-73
ED RECUF
ANNUAL | RRENCE | | MAGNI | TUDE AND
BASE
, IN CFS,
AND ANNUA | PROBABILITO ON PERIO | TY OF INS
DD OF REC
CATED REC
NCE PROBA | TANTANECORD 1957 | OUS PEAK F
7-73
INTERVAL,
IN PERCEN | FLOW

, IN
NT | PERIOD
(CON-
SECU- | BASEC
DISCHA | ON PERI | OD OF RE
CFS, FOR
L, IN YE
E PROBAB | CORD 195 INDICATE ARS, AND ILITY, IN | 57-73
ED RECUF
ANNUAL
I PERCEN | RRENCE | | MAGNI
ISCHARGE
YEARS, | TUDE AND
BASE
, IN CFS, | PROBABILITO ON PERIO | TY OF INS | TANTANEC
CORD 195
CURRENCE
BILITY, | DUS PEAK F
7-73
INTERVAL,
IN PERCE |
FLOW

, IN
NT | PERIOD
(CON- | BASED
DISCHA | ON PERI | OD OF RE

CFS, FOR
L, IN YE | CORD 195

INDICATE
ARS, AND | 57-73
ED RECUF
ANNUAL | RRENCE | | MAGNI | TUDE AND
BASE
, IN CFS,
AND ANNUA | PROBABILI'
D ON PERIO
FOR INDIO
L EXCEEDAI | TY OF INS
DD OF REC
CATED REC
NCE PROBA | TANTANECORD 1957 | OUS PEAK F
7-73
INTERVAL,
IN PERCEN | FLOW

, IN
NT | PERIOD
(CON-
SECU-
TIVE
DAYS) | DISCHA E 2 50% | O ON PERI | OD OF RE CFS, FOR L, IN YE E PROBAB 10 10% | CORD 195 INDICATE ARS, AND ILITY, IN 25 4% | 57-73 ED RECUP ANNUAL PERCEN 50 | RRENCE | | MAGNIIISCHARGE YEARS, 1.25 80% | TUDE AND
BASE
, IN CFS,
AND ANNUA
2
50% | PROBABILI'D ON PERIO | TY OF INS
DD OF REC
CATED REC
NCE PROBA | ETANTANEC
CORD 1957
CURRENCE
BILITY, | OUS PEAK F
7-73
INTERVAL,
IN PERCEN | FLOW

, IN
NT | PERIOD (CON- SECU- TIVE DAYS) | DISCHA E 2 50% | O ON PERI | OD OF RE CFS, FOR L, IN YE E PROBAB 10 10% 4060 | INDICATE ARS, AND ILITY, IN 25 4% | 57-73 ED RECUF ANNUAL PERCEN 50 2% | RRENCE | | MAGNIIISCHARGE YEARS, 1.25 80% | TUDE AND
BASE
, IN CFS,
AND ANNUA
2
50% | PROBABILI'D ON PERIO | TY OF INS
DD OF REC
CATED REC
NCE PROBA | ETANTANEC
CORD 1957
CURRENCE
BILITY, | OUS PEAK F
7-73
INTERVAL,
IN PERCEN | FLOW

, IN
NT | PERIOD
(CON-
SECU-
TIVE
DAYS) | DI SCHA 2 50% 2540 1820 | O ON PERI | OD OF RE
CFS, FOR
L, IN YE
E PROBAB
10
10% | 195
 | 57-73 ED RECUF ANNUAL PERCEN 50 2% | RRENCE | | MAGNI ISCHARGE YEARS, 1.25 80% | TUDE AND
BASE
, IN CFS,
AND ANNUA
2
50% | PROBABILI'D ON PERIO | TY OF INS
DD OF REC
CATED REC
NCE PROBA | ETANTANEC
CORD 1957
CURRENCE
BILITY, | OUS PEAK F
7-73
INTERVAL,
IN PERCEN | FLOW

, IN
NT | PERIOD (CON- SECU- TIVE DAYS) 1 3 7 | DI SCHA E 2 50% 2540 1820 1110 | O ON PERI | OD OF RE CFS, FOR L, IN YE E PROBAB 10 10% 4060 2800 1870 | 100 195 INDICATE ARS, AND ILITY, IN 25 4% 4490 3080 2200 | 57-73 ED RECUF ANNUAL PERCEN 50 2% | RRENCE | | MAGNIIISCHARGE YEARS, 1.25 80% | TUDE AND
BASE
, IN CFS,
AND ANNUA
2
50% | PROBABILI'D ON PERIO | TY OF INS
DD OF REC
CATED REC
NCE PROBA | ETANTANEC
CORD 1957
CURRENCE
BILITY, | OUS PEAK F
7-73
INTERVAL,
IN PERCEN | FLOW

, IN
NT | PERIOD
(CON-
SECU-
TIVE
DAYS) | DI SCHA 2 50% 2540 1820 | O ON PERI | OD OF RE
CFS, FOR
L, IN YE
E PROBAB
10
10% | 195
 | 57-73 ED RECUF ANNUAL PERCEN 50 2% | RRENCE | DURATION TABLE OF DAILY MEAN FLOW FOR PERIOD OF RECORD 1957-73 |
 | | D I SCH/ | ARGE, IN | CFS, | WHICH WAS | EQUALED | OR EXCE | DED FOR | INDICATED | PERCEN | T OF TIM |
- | | | |--------|-----|----------|----------|------|-----------|---------|---------|---------|-----------|---------|----------|-------|-----|-----| |
5% | 10% | 15% | 20% | 25% | 30% | 40% | 50% | 60% | 70% | 75%
 | 80% | 85% | 90% | 95% | | 512 | 267 | 170 | 115 | 81 | 59 | 31 | 16 | 7.2 | 2.8 | 1.8 | 1.1 | .7 | .4 | .2 | 60 90 385 317 628 518 563 465 500 414 ## 14311500 LOOKINGGLASS CREEK AT BROCKWAY, OR LOCATION.--Lat 43°07'50", long 123°27'50", in
SEtSEt sec.13, T.28 S., R.7 W., Douglas County, Hydrologic Unit 17100302, on left bank 1.7 mi northwest of Brockway and at mile 2.85. DRAINAGE AREA. -- 158 mi2. 1400 734 475 317 230 168 83 35 14 3.8 1.0 0.0 0.0 0.0 0.0 PERIOD OF RECORD. -- October 1955 to September 1982. GAGE.--Water-stage recorder. Altitude of gage is 540 ft, from topographic map. Prior to Oct. 5, 1967, water-stage recorder at site 2.3 mi downstream at different datum. REMARKS.--Some regulation by Ben Irving Reservoir 17 mi upstream on Berry Creek, capacity, 11,200 acre-ft since January 1980. Many diversions by pumping for irrigation above station. Discharge not adjusted for storage or release from Ben Irving Reservoir as losses from reservoir at times exceed natural flow. AVERAGE DISCHARGE.--24 years (water years 1956-79), 282 ft^3/s , 204,300 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.—Maximum discharge, 35,000 ft³/s Dec. 26, 1955, gage height, 24.93 ft, site and datum then in use, from rating curve extended above 7,200 ft³/s on basis of slope—area measurement of peak flow; maximum gage height, 25.28 ft Dec. 23, 1964 (backwater from South Umpqua River, site and datum then in use); no flow at times each year prior to January 1980. ## STATISTICAL SUMMARIES | | MINIMUM | MAXIMUM | MEAN | STAN-
DARD
DEVIA-
TION | COEFFI-
CIENT OF
VARI- | PERCENT
OF
ANNUAL | PERIOD
(CON-
SECU- | DISC | INTERVAL | _, IN YE | OR INDICA
ARS, AND
ABILITY, | ANNUAL N | ON- | |---------------------------|--|--|--|--|--|-------------------------|--|---|--|---|---|--|---------------------------| | MONTH | (CFS) | (CFS) | (CFS) | (CFS) | ATION | RUNOFF | TIVE
DAYS) | 2
50% | 5
20% | 10
10% | 20
5% | 50
2% | 100
1% | | OCTOBER | 0.0 | 98 | 14 | 25 | 1.78 | .4 | 1 | | | | | | | | NOVEMBER | 5.3 | 1444 | 256 | 330 | 1.29 | 7.6 | 3 | | | | | | | | DECEMBER | 4.9 | 3323 | 741 | 726 | .98 | 21.9 | 7 | | | | | | | | JANUARY | 11 | 1811 | 873 | 585 | .67 | 25.7 | 14 | | | | | | | | FEBRUARY | 29 | 1954 | 674 | 444 | .66 | 19.9 | 30 | | | | | | | | MARCH | 110 | 1105 | 519 | 320 | •62 | 15.3 | 60 | | | | | | | | APRIL | 33 | 751 | 207 | 163 | . 79 | 6.1 | 90 | | | | | | | | MAY | 19 | 631 | 87 | 126 | 1.44 | 2.6 | 120 | | | | | | | | JUNE | 3.9 | 57 | 16 | 13 | .81 | .5 | 183 | | | | | | | | JULY | 0.0 | 10 | 1.8 | 2.4 | | • 1 | | | | | | | | | AUGUST | 0.0 | 2.6 | •1 | .5 | 3.79 | 0.0 | | | | ICS UNC | ERTAIN DU | E TO EXC | ESSIVE | | SEPTEMBER | 0.0 | 9.1 | .9 | 2.1 | 2.27 | 0.0 | | ZERO EVE | ENTS. | | | | | | ARINITAT | _ | | | | | | | | | | | | | | | | 628

PROBABILI
D ON PERI | | | | 100
 |
MA | | | | OF ANNUAL | |
LOW | | MAGNI | TUDE AND
BASE | PROBABILI | TY OF INS | STANTANEC
CORD 1956
CURRENCE | DUS PEAK F
5-79 | FLOW | PERIOD | BASE | ARGE, IN | CFS, FO | RECORD 19

OR INDICAT
(EARS, AND | 956-79

TED RECUI
D ANNUAL |
RRENCE | | DISCHARGE, | TUDE AND
BASE | PROBABILI
D ON PERI | TY OF INS | STANTANEC
CORD 1956
CURRENCE | DUS PEAK F
5-79
INTERVAL,
IN PERCEN | FLOW | | BASE | ARGE, IN | CFS, FO | RECORD 19 | 956-79

TED RECUI
D ANNUAL | RRENCE | | MAGNI | TUDE AND
BASE
, IN CFS, | PROBABILI
D ON PERI
FOR INDII
L EXCEEDA | TY OF INS | STANTANEC
CORD 1956
CURRENCE
ABILITY, | DUS PEAK F
5-79
INTERVAL,
IN PERCEN |

, IN | PERIOD
(CON- | BASE | ARGE, IN | CFS, FO | RECORD 19

OR INDICAT
(EARS, AND | 956-79

TED RECUI
D ANNUAL |
RRENCE | | MAGNI | TUDE AND
BASE
, IN CFS,
AND ANNUA | PROBABILI
D ON PERI
FOR INDII
L EXCEEDA | TY OF INS
DD OF REC
CATED REC
NCE PROBA | STANTANEC
CORD 1956
CURRENCE
ABILITY, | DUS PEAK F
5-79
INTERVAL,
IN PERCEN |
IN
NT | PERIOD
(CON-
SECU- | BASE
DISCH | ARGE, INTERVENCE | CFS, FO | RECORD 19 OR INDICATE YEARS, AND ABILITY, | 956-79
TED RECUI
D ANNUAL
IN PERCEI | RRENCE | | MAGNI | TUDE AND BASE , IN CFS, AND ANNUA 2 50% | PROBABILI
D ON PERIO
FOR INDIO
L EXCEEDAN
5
20% | TY OF INS
DD OF REC
CATED REC
NCE PROBA | STANTANEC
CORD 1956
CURRENCE
ABILITY, | DUS PEAK F
5-79
INTERVAL,
IN PERCEN |
IN
NT | PERIOD
(CON-
SECU-
TIVE | BASE
DISCH | ARGE, INTERVEXCEEDAN | I CFS, FO | RECORD 19 OR INDICATE YEARS, AND ABILITY, 19 | 956-79 TED RECUID ANNUAL IN PERCEI | RRENCE | | MAGNITON | TUDE AND BASE , IN CFS, AND ANNUA 2 50% | PROBABILI
D ON PERIO
FOR INDIO
L EXCEEDAN
5
20% | TY OF INS
DD OF REC
CATED REC
NCE PROBA | STANTANEC
CORD 1956
CURRENCE
ABILITY,
25
4% | DUS PEAK F
5-79
INTERVAL,
IN PERCEN |
IN
NT | PERIOD
(CON-
SECU-
TIVE | BASE
DISCH | ARGE, INTERVEXCEEDAN | I CFS, FO | RECORD 19 OR INDICATE YEARS, AND ABILITY, 19 | 956-79 TED RECUID ANNUAL IN PERCEI | RRENCE | | MAGNI DISCHARGE, YEARS, / | TUDE AND BASE , IN CFS, AND ANNUA 2 50% | PROBABILI
D ON PERIO
FOR INDIO
L EXCEEDA
5
20% | TY OF INS
DD OF REC
CATED REC
NCE PROBA | STANTANEC
CORD 1956
CURRENCE
ABILITY,
25
4% | DUS PEAK F
5-79
INTERVAL,
IN PERCEN |
IN
NT | PERIOD
(CON-
SECU-
TIVE
DAYS) | DISCH | HARGE, IN
INTERV
EXCEEDAN
5
20% | I CFS, FO
VAL, IN N
ICE PROBA | RECORD 19 OR INDICAT (FEARS, AND ABILITY, 19 25 4% | 956-79 TED RECUID ANNUAL IN PERCEI | RRENCE | | MAGNI DISCHARGE, YEARS, / | TUDE AND BASE , IN CFS, AND ANNUA 2 50% | PROBABILI
D ON PERIO
FOR INDIO
L EXCEEDA
5
20% | TY OF INS
DD OF REC
CATED REC
NCE PROBA | STANTANEC
CORD 1956
CURRENCE
ABILITY,
25
4% | DUS PEAK F
5-79
INTERVAL,
IN PERCEN |
IN
NT | PERIOD (CON- SECU- TIVE DAYS) | DISCH | HARGE, IN
INTERV
EXCEEDAN
20% | I CFS, FO
VAL, IN VICE PROB
10 10 % | DR INDICA
(EARS, AND
ABILITY, 25
4% | 956-79 TED RECUID ANNUAL IN PERCEI 50 2% | RRENCE
NT
100
1% | | MAGNI DISCHARGE, YEARS, / | TUDE AND BASE , IN CFS, AND ANNUA 2 50% | PROBABILI
D ON PERIO
FOR INDIO
L EXCEEDA
5
20% | TY OF INS
DD OF REC
CATED REC
NCE PROBA | STANTANEC
CORD 1956
CURRENCE
ABILITY,
25
4% | DUS PEAK F
5-79
INTERVAL,
IN PERCEN |
IN
NT | PERIOD
(CON-
SECU-
TIVE
DAYS) | DISCH | HARGE, IN
INTERV
EXCEEDAN
5
20% | 1 CFS, FO
(AL, IN NICE PROB)
10
10% | PRECORD 19 OR INDICA YEARS, AND ABILITY, 25 4% 17200 10000 | 956-79 TED RECUI D ANNUAL IN PERCEI 50 2% | RRENCE
NT
100
1% | | MAGNI DISCHARGE, YEARS, / | TUDE AND BASE , IN CFS, AND ANNUA 2 50% | PROBABILI
D ON PERIO
FOR INDIO
L EXCEEDA
5
20% | TY OF INS
DD OF REC
CATED REC
NCE PROBA | STANTANEC
CORD 1956
CURRENCE
ABILITY,
25
4% | DUS PEAK F
5-79
INTERVAL,
IN PERCEN |
IN
NT | PERIOD (CON-
SECU-
TIVE DAYS) | DISCH | HARGE, IN
INTERV
EXCEEDAN
5
20%
 | 10 OF IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII | DR INDICA: (FEARS, AND ABILITY, 125 4% 17200 10000 6950 | 956-79 TED RECUI D ANNUAL IN PERCEI 50 2% | RRENCE
NT
100
1% | | MAGNI DISCHARGE, YEARS, / | TUDE AND BASE , IN CFS, AND ANNUA 2 50% | PROBABILI
D ON PERIO
FOR INDIO
L EXCEEDA
5
20% | TY OF INS
DD OF REC
CATED REC
NCE PROBA | STANTANEC
CORD 1956
CURRENCE
ABILITY,
25
4% | DUS PEAK F
5-79
INTERVAL,
IN PERCEN |
IN
NT | PERIOD (CON-
SECU-
TIVE DAYS) 1 3 7 15 | 7260
4860
3090
1940 | HARGE, IN INTERVEXCEEDAN 5 20% | 10 OF III CFS, FI III CFS, FI III CFS, FI III CFS, FI III III III III III III III III III | DR INDICA
(EARS, AND
ABILITY, 125
4%
17200
10000
6950
4140
2590 | 956-79 TED RECUI D ANNUAL IN PERCEI 50 2% | RRENCE
NT
100
1% | | MAGNI | TUDE AND BASE , IN CFS, AND ANNUA 2 50% | PROBABILI
D ON PERIO
FOR INDIO
L EXCEEDA
5
20% | TY OF INS
DD OF REC
CATED REC
NCE PROBA | STANTANEC
CORD 1956
CURRENCE
ABILITY,
25
4% | DUS PEAK F
5-79
INTERVAL,
IN PERCEN |
IN
NT | PERIOD (CON-SECU-TIVE DAYS) 1 3 7 15 30 | DISCH 2 50% 7260 4860 3090 1940 | HARGE, IN INTERVENCE EXCEEDAN 20% 12100 7590 4930 2990 | 10 CFS, FI
(AL, IN)
(CE PROB)
10 10%
14700
8890
5940
3560 | DR INDICA: OR INDICA: ABILITY, 25 4% 17200 10000 6950 4140 | TED RECUI
D ANNUAL
IN PERCEI
50
2% | RRENCE
NT
100
1% | | MAGNI | TUDE AND BASE , IN CFS, AND ANNUA 2 50% | PROBABILI
D ON PERIO
FOR INDIO
L EXCEEDA
5
20% | TY OF INS | STANTANEC
CORD 1956
CURRENCE
BILITY,
25
4% | DUS PEAK I
5-79
INTERVAL
IN PERCEI
50
2% | FLOW | PERIOD (CON-
SECU-
TIVE DAYS) | 7260
4860
3090
1940
1400
1120
929 | 12100
7590
20%
20%
20%
2990
2030
1500
1250 | 10 OF I | 17200
10000
6950
4140
2590
1710 | TED RECUI
D ANNUAL
IN PERCEI
50
2% | RRENCE
NT
100
1% | | MAGNI DISCHARGE, YEARS, / | TUDE AND BASE , IN CFS, AND ANNUA 2 50% | PROBABILI
D ON PERII
FOR INDII
L EXCEEDAI
5
20% | TY OF INS | STANTANECCORD 1956 CURRENCE ABILITY, 25 4% B900 | DUS PEAK F
5-79
INTERVAL,
IN PERCEI
50
2% | FLOW TOO TRANSPORTED | PERIOD
(CON-
SECU-
TIVE DAYS) | 7260
4860
3090
1940
1120
929 | HARGE, IN INTERVEXCEEDAN | 14700
8890
5940
3560
2330
1630 | DR INDICA
(EARS, AND
ABILITY, 125
4%
17200
10000
6950
4140
2590
1710
1420 | TED RECUI
D ANNUAL
IN PERCEI
50
2% | RRENCE
NT
100
1% | ## 14312000 SOUTH UMPOUA RIVER NEAR BROCKWAY, OR LOCATION.--Lat 43°08'00", long 123°23'50", in SWL sec.15, T.28 S., R.6 W., Douglas County, Hydrologic Unit 17100302, on right bank 10 ft upstream from Winston Bridge on State Highway 99, 2.5 ml northeast of Brockway, 4.2 ml downstream from Lookingglass Creek, and at mile 132.8. DRAINAGE AREA. -- 1,670 mi2. PERIOD OF RECORD.--December 1905 to June 1912, October 1923 to September 1926, January 1942 to September 1982. Monthly discharge only for some periods, published in WSP 1318. GAGE.--Water-stage recorder. Datum of gage is 462.52 ft National Geodetic Vertical Datum of 1929 (State Highway Department bench mark). Prior to June 24, 1949, nonrecording gage at several sites within 400 ft of present site at various datums. June 24, 1949, to Oct. 1, 1970, at datum 461.84 ft National Geodetic Vertical Datum of 1929 (State Highway Department bench mark). REMARKS.--No regulation. Many small diversions for irrigation above station. AVERAGE DISCHARGE.--48 years (water years 1907-11, 1924-26, 1943-82), 2,873 ft³/s, 23.36 in/yr, 2,081,000 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD. -- Maximum discharge, 125,000 ft³/s Dec. 23, 1964, gage height, 34.28 ft; minimum, 16 ft³/s Aug. 23, 1977 EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of Feb. 21, 1927, reached a stage of about 31.2 ft, present site and datum, discharge, 89,500 ft³/s. Discharge for flood of February 1890, which reached a stage 1.9 ft higher, according to local resident who lived nearby at time of both floods, has been found to be in error and should not be used. #### STATISTICAL SUMMARIES MONTHLY AND ANNUAL MEAN DISCHARGES 1907-82 MAGNITUDE AND PROBABILITY OF ANNUAL LOW FLOW BASED ON PERIOD OF RECORD 1908-82 | | MINIMUM | MAXIMUM
(CFS) | MEAN | STAN-
DARD
DEVIA-
TION | COEFFI-
CIENT OF
VARI-
ATION | PERCENT
OF
ANNUAL
RUNOFF | PERIOD
(CON-
SECU- | DISCHARGE, IN CFS, FOR INDICATED RECURRENCE
INTERVAL, IN YEARS, AND ANNUAL NON-
EXCEEDANCE PROBABILITY, IN PERCENT | | | | | | | |-----------|---------|------------------|-------|---------------------------------|---------------------------------------|-----------------------------------|--------------------------|--|------------------|------------|----------|------------------|-----------|--| | МОМТН | (CFS) | | (CFS) | (CFS) | | | TIVE
DAYS) | 2
50% | 5
20 % | 10
10% | 20
5% | 50
2 % | 100
1% | | | OCTOBER | 103 | 6045 | 508 | 888 | 1.75 | 1.5 | 1 | 80 | 53 | 41 | 33 | 25 | 21 | | | NOVEMBER | 190 | 13590 | 2814 | 2666 | .95 | 8.2 | 3 | 81 | 54 | 42 | 33 | 25 | 21 | | | DECEMBER | 184 | 19540 | 5877 | 4621 | .79 | 17.0 | 7 | 84 | 56 | 44 | 36 | 27 | 22 | | | JANUARY | 262 | 16010 | 7368 | 4529 | •61 | 21.4 | 14 | 88 | 60 | 4 8 | 39 | 30 | 25 | | | FEBRUARY | 341 | 15370 | 6445 | 2693 | .42 | 18.7 | 30 | 96 | 67 | 55 | 46 | 37 | 31 | | | MARCH | 1372 | 10950 | 4887 | 2570 | .53 | 14.2 | 60 | 114 | 83 | 70 | 60 | 50 | 45 | | | APRIL | 589 | 7378 | 3241 | 1547 | .48 | 9.4 | 90 | 132 | 100 | 8 7 | 78 | 69 | 64 | | | MAY | 446 | 6909 | 1972 | 1213 | .62 | 5.7 | 120 | 172 | 133 | 117 | 106 | 95 | 88 | | | JUNE | 142 | 3312 | 854 | 531 | .62 | 2.5 | 183 | 404 | 282 | 236 | 205 | 175 | 158 | | | JULY | 53 | 576 | 255 | 117 | .46 | .7 | | | | | | | | | | AUGUST | 40 | 332 | 128 | 57 | .44 | . 4 | | | | | | | | | | SEPTEMBER | 69 | 478 | 136 | 63 | .46 | .4 | | | | - | | | | | | ANNUAL | 562 | 5567 | 2871 | 1040 | .36 | 100 | | | | | | | | | MAGNITUDE AND PROBABILITY OF INSTANTANEOUS PEAK FLOW BASED ON PERIOD OF RECORD 1907-82 MAGNITUDE AND PROBABILITY OF ANNUAL HIGH FLOW BASED ON PERIOD OF RECORD 1907-82 | DISCHARGE
YEARS, | , IN CFS | | | | | • | PERIOD
(CON- | DISCHARGE, IN CFS, FOR INDICATED RECURRENCE INTERVAL, IN YEARS, AND ANNUAL EXCEEDANCE PROBABILITY. IN PERCENT | | | | | | | | |---------------------|------------------|--------------|-----------|----------|------------------|---------------|------------------------|---|----------------|----------------|----------------|----------------|----------------|--|--| | 1.25
80% | 2
50 % | 5
20%
 | 10
10% | 25
4% | 50
2 % | 100
1%
 | SECU-
TIVE
DAYS) | 2
50% | 5
20% | 10 | 25
4% | 50
2% | 100 | | | | 30800 | 49100 | 74300 | 90400 | 110000 | 124000 | 137000 | | 47000 | 67500 | 72400 | 00200 | 04100 | 06000 | | | | WEIGHTE | D SKEW = | - /19 | | | | | 1
3 | 43800
31700 | 63500
45800 | 72400
52200 | 80200
58000 | 84100
61000 | 86900
63100 | | | | WE TOTTLE | D SKLW - | 410 | | | | | 7 | 22000 | 31900 | 36800 | 41400 | 43900 | 46000 | | | | | | | | | | | 15 | 15100 | 21300 | 24400 | 27200 | 28800 | 30000 | | | | | | | | | | | 30 | 11200 | 15500 | 17500 | 19300 | 20300 | 21000 | | | | | | | | | | | 60 | 8780 | 11900 | 13300 | 14600 | 15300 | 15800 | | | | | | | | | | | 90 | 7500 | 10200 | 11600 | 13000 | 13800 | 14400 | | | DURATION TABLE OF DAILY MEAN FLOW FOR PERIOD OF RECORD 1907-82 | | | DISC | HARGE, | IN CFS, | WHICH WAS | EQUALED | OR EXCEE | DED FOR | INDICATED | PERCENT | OF TIME | | | | |-------|------|------|--------|---------|-----------|---------|----------|---------|-----------|---------|---------|-----|-----|-----| | 5% | 10% | 15% | 20% | 25% | 30% | 40% | 50% | 60% | 70% | 75% | 80% | 85% | 90% | 95% | | 11800 | 7150 | 5240 | 4130 | 3300 | 2680 | 1790 | 1070 | 547 | 271 | 209 | 169 | 137 | 110 | 85 | ## 14312200 DEER CREEK NEAR ROSEBURG, OR LOCATION.--Lat 43°13'10", long 123°16'35", in NEtSWt sec.15, T.27 S., R.5 W., Douglas County, Hydrologic Unit 17100302, on right bank 0.6 mi upstream from Shick Creek, 3.3 mi east of Roseburg, and at mile 4.0. DRAINAGE AREA .-- 53.2 mi2. PERIOD OF RECORD. -- October 1955 to September 1973. GAGE.--Water-stage recorder. Datum of gage is 498.95 ft National Geodetic Vertical Datum of 1929 (Douglas County Highway Department). Prior to July 3, 1969, nonrecording gage at site 0.5 mi downstream at datum 12.85 ft lower. REMARKS.--No regulation. Diversions above station for logponds and many small diversions by pumping for irrigation above station. AVERAGE DISCHARGE.--18 years, 77.4 ft3/s, 56,080 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 7,910 ft³/s Dec. 28, 1965, gage height, 14.76 ft, from floodmark, from rating curve extended above 2,200 ft³/s on basis of slope-area measurements at gage heights 13.38 and 13.67 ft; no flow at times. EXTREMES OUTSIDE PERIOD OF RECORD.—Flood of Oct. 29, 1950, reached a stage of 13.38 ft, from floodmarks, discharge, $6,460 \text{ ft}^3/\text{s}$, from rating curve extended above 2,200 ft $^3/\text{s}$ as explained above. ## STATISTICAL SUMMARIES MONTHLY AND ANNUAL MEAN DISCHARGES 1956-73 MAGNITUDE AND PRO MAGNITUDE AND PROBABILITY DF ANNUAL LOW FLOW BASED ON PERIOD OF RECORD 1957-73 | | | MAXIMUM | | STAN-
DARD
DEVIA-
TION | COEFFI-
CIENT OF | | PERIOD
(CON- | DISCHARGE, IN CFS, FOR INDICATED RECURRENCE
INTERVAL, IN YEARS, AND ANNUAL NON-
EXCEEDANCE PROBABILITY, IN PERCENT | | | | | | | |-----------|------------------|-------------|---------------|---------------------------------|---------------------|------------------|------------------------|--|----------|-----------|----------|----------|-----------|--| | монтн | MINIMUM
(CFS) | (CFS) | MEAN
(CFS) | (CFS) | VARI-
ATION | ANNUAL
RUNOFF | SECU-
TIVE
DAYS) | 2
50% | 5
20% | 10
10% | 20
5% | 50
2% | 100
1% | | | OCTOBER | 2.8 | 31 | 7.6 | 7.9 | 1.04 | .8 | 1 | .2 | .1 | .1 | 0.0 | | | | | NOVEMBER | 4.0 | 238 | 65 | 58 | .90 | 7.0 | 3 | •3 | .1 | - 1 | 0.0 | | | | | DECEMBER | 11 | 706 | 212 | 182 | .86 | 22.8 | 7 | .5 | .2 | -1 | . 1 | | | | | JANUARY | 20 | 459 | 222 | 138 | •62 | 23.8 | 14 | .5 | .2 | .2 | .1 | | | | | FEBRUARY | 43 | 35 9 | 167 | 96 | •57 | 17.9 | 30 | .8 | .4 | .3 | .2 | | | | | MARCH | 31 | 320 | 141 | 84 | .60 | 15.1 | 60 | 1.3 | .7 | •6 | .4 | | | | | APRIL | 19 | 224 | 61 | 48 | .78 | 6.6 | 90 | 1.6 | 1.1 | •9 | •7 | | | | | MAY | 5.3 | 220 | 38 | 50 | 1.33 | 4.0 | 120 | 2.3 | 1.6 | 1.4 | 1.2 | | | | | JUNE | 3.3 | 51 | 11 | 11 | .98 | 1.2 | 183 | 5.5 | 3.4 | 2.7 | 2.2 | | | | | JULY | .6 | 7.2 | 2.8 | 2.0 | .71 | .3 | | | | - | | | | | | AUGUST | .3 | 2.5 | 1.3 | .7 | • 57 | .1 | | | | | | | | | | SEPTEMBER | .5 | 17 | 2.9 | 3.7 | 1.28 | .3 | | | | | | | | | | ANNUAL | 33 | 151 | 77 | 26 | .34 | 100 | | | | | | | | | MAGNITUDE AND PROBABILITY OF INSTANTANEOUS PEAK FLOW BASED ON PERIOD OF RECORD 1956-73 MAGNITUDE AND PROBABILITY OF ANNUAL HIGH FLOW BASED ON PERIOD OF RECORD 1956-73 | | | | | RECURRENC
ROBABILITY | | | PERIOD
(CON- | DISCHARGE, IN CFS, FOR INDICATED RECURRENCE INTERVAL, IN YEARS, AND ANNUAL EXCEEDANCE PROBABILITY. IN PERCENT | | | | | | | | |-------------|--------------|--------------|-----------|-------------------------|----------|----------------|------------------------|---|----------|-----------|----------|----------|-----------|--|--| | 1.25
80% | 2
50%
 | 5
20%
 | 10
10% | 25
4 %
 | 50
2% | 100
1,5
 | SECU-
TIVE
DAYS) | 2
50% | 5
20% | 10
10% | 25
4% |
50
2% | 100
1% | | | | 2260 | 3680 | 5630 | 6870 | 8350 | 1 | 2190 | 3160 | 3570 | 3900 | | | | | | WEIGHTED | SKEW = | 489 | | | | | 3 | 1400 | 1890 | 2080 | 2230 | | | | | | | | | | | | | 7 | 836 | 1200 | 1400 | 1590 | | | | | | | | | | | | | 15 | 502 | 741 | 889 | 1060 | | | | | | | | | | | | | 30 | 379 | 518 | 591 | 666 | | | | | | | | | | | | | 60 | 286 | 378 | 422 | 464 | | | | | | | | | | | | | 90 | 228 | 306 | 349 | 396 | | | | | DURATION TABLE OF DAILY MEAN FLOW FOR PERIOD OF RECORD 1956-73 | | | | DISCH | ARGE, | IN CFS, | WHICH WAS | EQUALED | OR EXCE | DED FOR | INDICATED | PERCEN | T OF TIM | 1E | | | |---|-----|-----|-------|-------|---------|-----------|---------|---------|---------|-----------|--------|----------|-----|-----|-----| | _ | 5% | 10% | 15% | 20% | 25% | 30% | 40% | 50% | 60% | 70% | 75% | 80% | 85% | 90% | 95% | | _ | 349 | 200 | 130 | 93 | 70 | 53 | 30 | 16 | 7.8 | 3.8 | 3.0 | 2.3 | 1.8 | 1.2 | .6 | ### 14312500 LAKE CREEK NEAR DIAMOND LAKE, OR LOCATION.--Lat 43°11'10", long 122°09'55", in NW&SW& sec.30, T.27 S., R.6 E., Douglas County, Hydrologic Unit 17100301, Umpqua Natlonal Forest, on right bank 260 ft downstream from outlet of Diamond Lake, 1.6 mi northwest of town of Diamond Lake, and at mile 10.7. DRAINAGE AREA .-- 54.9 mi2. PERIOD OF RECORD.--May 1922 to September 1925 (no winter records), October 1926 to September 1929, April, July, August 1930, October 1930 to September 1953, October 1971 to October 1977, February 1978 to September 1982. Prior to October 1971 published as "at Diamond Lake, near Fort Klamath." GAGE.--Water-stage recorder. Altitude of gage is 5,180 ft, from river-profile map. Prior to May 26, 1931, nonrecording gage at site 300 ft downstream at different datum. May 26, 1931, to 0ct. 6, 1933, nonrecording gage at present site and datum. REMARKS, --- Flow regulated by gates and fish racks at lake outlet. No diversion above station. AVERAGE DISCHARGE.--36 years (water years 1927-29, 1931-53, 1972-77, 1979-82), 56.2 ft³/s, 40,720 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge observed, 336 ft³/s Jan. 1, 1943, gage height, 2.8 ft, from rating curve extended above 120 ft³/s; no flow Aug. 25-27, 1931, Sept. 19, 1977. ## STATISTICAL SUMMARIES MONTHLY AND ANNUAL MEAN DISCHARGES 1927-82 MAGNITUDE AND PROBABILITY OF ANNUAL LOW FLOW BASED ON PERIOD OF RECORD 1935-82 | | MINIMUM | MAXIMUM | MEAN | STAN-
DARD
DEVIA-
TION | COEFFI-
CIENT OF
VARI- | PERCENT
OF
ANNUAL | PERIOD
(CON-
SECU- | - 11 | NTERVAL, | CFS, FOR
IN YEARS
PROBABI | , AND AN | INUAL NO | N | |-----------|---------|---------|-------|---------------------------------|------------------------------|-------------------------|--------------------------|----------|------------------|---------------------------------|------------------|------------------|-----------| | MONTH | (CFS) | (CFS) | (CFS) | (CFS) | ATION | RUNOFF | TIVE
DAYS) | 2
50% | 5
20 % | 10
10% | 20
5 % | 50
2 % | 100
1% | | OCTOBER | 12 | 94 | 41 | 24 | .57 | 6.0 | 1 | 6.0 | 2.5 | 1.5 | 1.0. | .6 | | | NOVEMBER | 15 | 133 | 60 | 29 | .48 | 8.7 | 3 | 7.5 | 3.3 | 2.0 | 1.4 | .8 | | | DECEMBER | 33 | 139 | 77 | 27 | .35 | 11.2 | 7 | 9.1 | 4.4 | 2.9 | 2.0 | 1.3 | | | JANUARY | 34 | 142 | 82 | 25 | .30 | 11.9 | 14 | 13 | 6.5 | 4.4 | 3.0 | 1.9 | | | FEBRUARY | 34 | 140 | 76 | 22 | . 29 | 11.0 | 30 | 16 | 10.0 | 7.5 | 5.8 | 4.3 | | | MARCH | 29 | 134 | 70 | 22 | .31 | 10.1 | 60 | 23 | 15 | 12 | 9.6 | 7.1 | | | APRIL | 5.0 | 106 | 59 | 20 | .34 | 8.5 | 90 | 26 | 18 | 15 | 12 | 9.4 | | | MAY | 30 | 107 | 60 | 19 | .32 | 8.7 | 120 | 30 | 22 | 18 | 15 | 13 | | | JUNE | 23 | 149 | 67 | 34 | .50 | 9.7 | 183 | 37 | 28 | 24 | 22 | 19 | | | JULY | 9.5 | 81 | 41 | 19 | .47 | 6.0 | | | | | | | | | AUGUST | 6.2 | 60 | 28 | 12 | .44 | 4.1 | | | | | | | | | SEPTEMBER | 7.4 | 58 | 28 | 13 | .47 | 4.0 | | | | | | | | | ANNUAL | 37 | 91 | 58 | 17 | • 29 | 100 | | | | | | | | MAGNITUDE AND PROBABILITY OF INSTANTANEOUS PEAK FLOW BASED ON PERIOD OF RECORD MAGNITUDE AND PROBABILITY OF ANNUAL HIGH FLOW BASED ON PERIOD OF RECORD 1927-82 | DISCHARGE,
YEARS, A | | | | | | | PERIOD
(CON- | | ARGE, IN
INTERVA | AL, ÍN Y | EARS, AN | ANNUAL | | |------------------------|------------------|----------------------|-----------|-----------------|------------------|-----------|------------------------|----------|---------------------|-----------|------------------|------------------|-----| | 1.25
80% | 2
50 % | 5
20 %
 | 10
10% | 25
4% | 50
2 % | 100
1% | SECU-
TIVE
DAYS) | 2
50% | 5
20 % | 10
10% | 25
4 % | 50
2 % | 100 | 1 | 120 | 158 | 187 | 225 | 257 | | | WEIGHTED | SKEW = | | | | | | 3 | 116 | 153 | 179 | 214 | 242 | | | | | | | | | | 7 | 112 | 144 | 167 | 198 | 221 | | | | | | | | | | 15 | 102 | 130 | 150 | 175 | 195 | | | | | | | | | | 30 | 93 | 118 | 134 | 155 | 171 | | | | | | | | | | 60 | 85 | 107 | 122 | 141 | 156 | | | | | | | | | | 90 | 80 | 100 | 115 | 133 | 148 | | DURATION TABLE OF DAILY MEAN FLOW FOR PERIOD OF RECORD 1927-82 | | | | DISCH | MARGE, II | N CFS, | WHICH WAS | EQUALED | OR EXCE | EDED FOR | INDICATE | D PERCE | NT OF TI | ME | _ | | |---|-----|-----|-------|-----------|--------|-----------|---------|-------------|----------|----------|---------|----------|-------------|-----|-------------| | • | 5% | 10% | 15% | 20% | 25% | 30% | 40% | 50 % | 60% | 70% | 75% | 80% | 85 % | 90% | 95 % | | - | 117 | 100 | 92 | 84 | 78 | 73 | 64 | 55 | 46 | 37 | 33 | 30 | 26 | 21 | 15 | ### 14315500 NORTH UMPOUA RIVER AT TOKETEE FALLS, OR LOCATION.--Lat 43°15'50", long 122°25'20", in E-1/2 sec.35, T.26 S., R.3 E., Douglas County, Hydrologic Unit 17100301, 0.1 mi downstream from Clearwater River and 0.5 mi upstream from Toketee Falls. DRAINAGE AREA .-- 339 mi2. 5% 1540 10% 1340 15% 1200 20% 1090 25% 1000 30% 938 40% 846 50% 780 60% 720 70% 670 75% 647 80% 622 85% 599 90% 580 95% 553 PERIOD OF RECORD.--July 1925 to September 1945, April 1946 to September 1948. CAGE.--Water-stage recorder. Datum of gage is 2,373 ft National Geodetic Vertical Datum of 1929 (levels by California-Oregon Power Co.). Feb. 26, 1908, to July 20, 1909, staff gage, and Dec. 19, 1914, to Sept. 30, 1917, water-stage recorder, at datum 0.50 ft lower. REMARKS.--No diversion or regulation above station. AVERAGE DISCHARGE.--22 years (water years 1926-45, 1947-48), 875 ft³/s. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 5,080 ft³/s Dec. 31, 1942, gage height, 5.90 ft, from rating curve extended above 1,900 ft³/s by logarithmic plotting; minimum, 475 ft³/s Nov. 27-29, Dec. 12, 14, 1931. | | | | | STAN-
DARD
DEVIA- | COEFFI-
CIENT OF | PERCENT
OF | PERIOD
(CON- | | INTERVAL | ., IN YE | OR INDICATARS, AND A | ANNUAL N |)N- | |---|---|--|---|---|---|---------------------|---|--|--|--|--|--|------------| | MONTH | MINIMUM
(CFS) | MAXIMUM
(CFS) | MEAN
(CFS) | (CFS) | VARI-
ATION | ANNUAL
RUNOFF | SECU-
TIVE
DAYS) | 2
50% | 5
20% | 10
10% | 20
5% | 50
2% | 100
1% | | OCTOBER | 512 | 820 | 632 | 78 | .12 | 6.0 | 1 |
574 | 532 | 514 | 501 | | | | NOVEMBER | 494 | 1095 | 736 | 164 | .22 | 7.0 | 3 | 577 | 534 | 515 | 501 | | | | DECEMBER | 518 | 1685 | 842 | 260 | .31 | 8.0 | 7 | 581 | 537 | 517 | 503 | | | | JANUARY | 570 | 1513 | 876 | 240 | •27 | 8.3 | 14 | 587 | 542 | 522 | 507 | | | | EBRUARY | 584 | 1350 | 920 | 217 | .24 | 8.8 | 30 | 594 | 547 | 527 | 512 | | | | MARCH | 675 | 1307 | 965 | 180 | .19 | 9.2 | 60 | 603 | 555 | 535 | 520 | | | | APRIL | 665 | 1741 | 1129 | 245 | .22 | 10.7 | 90 | 613 | 561 | 538 | 521 | | | | 4A Y | 749 | 1741 | 1248 | 329 | .26 | 11.9 | 120 | 625 | 568 | 542 | 523 | | | | JUNE | 599 | 2028 | 1072 | 362 | .34 | 10.2 | 183 | 670 | 598 | 564 | 538 | | | | JULY | 545 | 1131 | 776 | 154 | . 20 | 7.4 | | | | | | | | | AUGUST | 510 | 877 | 675 | 97 | .14 | 6.4 | | | | | | | | | | | | | 81 | .13 | <i>c</i> • | | | | | | | | | SEPTEMBER | 504 | 807 | 636 | 01 | •13 | 6.1 | | | | | | | | | ANNUAL | 635 | 1246
 | 875
TY OF IN | 143
 | .16
 | 100 |
Ma(| | | | OF ANNUAL | - | | | MAGNIT | 635
TUDE AND BASE | 1246 PROBABILI D ON PERIO | 875 TY OF IN | 143
ISTANTANE
CORD 192
CURRENCE | .16
 | 100

FLOW
 | PERIOD | BASE
DISCH | ON PER | CFS, FO | RECORD 19
PR INDICAT
EARS, AND | 26-48
ED RECUP | RENCE | | MAGNIT
DISCHARGE,
YEARS, A | 635 TUDE AND BASE IN CFS, | PROBABILI
D ON PERII
FOR INDII
L EXCEEDA | 875 TY OF IN OD OF RE | 143
STANTANE
CORD 192
CURRENCE | .16
OUS PEAK F
6-48
INTERVAL,
IN PERCEN | 100
 | PERIOD
(CON- | BASE
DISCH | ON PER | CFS, FO | RECORD 19 | 26-48
ED RECUP | RENCE | | MAGNIT
DISCHARGE,
YEARS, A | 635 TUDE AND BASE IN CFS, | 1246 PROBABILIT D ON PERIT | 875 TY OF IN OD OF RE CATED RE NCE PROB | 143
STANTANE
CORD 192
CURRENCE
ABILITY, | .16
OUS PEAK F
6-48
INTERVAL,
IN PERCEN | 100
FLOW | PERIOD
(CON-
SECU- | BASE
DISCH | O ON PER
ARGE, IN
INTERV
EXCEEDAN | CFS, FO | RECORD 19 PR INDICAT PEARS, AND BILITY, I | 26-48 ED RECUF ANNUAL N PERCEN | RRENCE | | MAGNIT | 635 TUDE AND BASE IN CFS, | PROBABILI
D ON PERII
FOR INDII
L EXCEEDA | 875 TY OF IN OD OF RE | 143
STANTANE
CORD 192
CURRENCE | .16
OUS PEAK F
6-48
INTERVAL,
IN PERCEN | 100
 | PERIOD
(CON- | BASE
DISCH | ON PER | CFS, FO | RECORD 19
PR INDICAT
EARS, AND | 26-48
ED RECUP | RRENCE | | MAGNIT
DISCHARGE,
YEARS, A | 635 TUDE AND BASE IN CFS, | PROBABILII
D ON PERII
FOR INDII
L EXCEEDAI | 875 TY OF IN DD OF RE CATED RE NCE PROB | 143
STANTANE
CORD 192
CURRENCE
ABILITY, | .16
OUS PEAK F
6-48
INTERVAL,
IN PERCEN | 100
FLOW | PERIOD
(CON-
SECU-
TIVE
DAYS) | DISCH | O ON PER
ARGE, IN
INTERV
EXCEEDAN
5
20% | CFS, FC
AL, IN Y
CE PROBA | RECORD 19 RECORD 19 RECORD 19 REARS, AND RECORD 19 | P26-48 ED RECUF ANNUAL N PERCEN | RRENCE | | MAGNIT
DISCHARGE,
YEARS, A
1.25
80% | 635 TUDE AND BASE IN CFS, IND ANNUAL 2 50% | PROBABILITO NO PERIODE SERVICE | 875 TY OF IN DD OF RE CATED RE NCE PROB | 143 ISTANTANE CORD 192 CURRENCE ABILITY, 25 4% | .16
OUS PEAK F
6-48
INTERVAL,
IN PERCEN | 100
FLOW | PERIOD (CON- SECU- TIVE DAYS) | DISCH 2 50% | O ON PER
ARGE, IN
INTERV
EXCEEDAN
5
20% | CFS, FC
AL, IN Y
CE PROBA
10
10% | RECORD 19 RE INDICAT FEARS, AND BILITY, I 25 4% 3930 | ED RECUP
O ANNUAL
N PERCEN
50
2% | 100
1% | | MAGNIT
DISCHARGE,
YEARS, A
1.25
80% | 635 TUDE AND BASE IN CFS, AND ANNUAL 2 50% | PROBABILITO NO PERIODE SERVICE | 875 TY OF IN DD OF RE CATED RE NCE PROB | 143 ISTANTANE CORD 192 CURRENCE ABILITY, 25 4% | .16
OUS PEAK F
6-48
INTERVAL,
IN PERCEN | 100
FLOW | PERIOD
(CON-
SECU-
TIVE
DAYS) | DISCH 2 50% 2220 1960 | O ON PER
ARGE, IN
INTERV
EXCEEDAN
5
20%
2940
2520 | CFS, FC
AL, IN Y
CE PROBA
10
10% | RECORD 19 PR INDICAT FEARS, AND BILITY, I 25 4% 3930 3260 | ED RECUF
ANNUAL
N PERCEN
50
2% | RRENCE | | MAGNIT
DISCHARGE,
YEARS, A
1.25
80% | 635 TUDE AND BASE IN CFS, IND ANNUAL 2 50% | PROBABILITO NO PERIODE SERVICE | 875 TY OF IN DD OF RE CATED RE NCE PROB | 143 ISTANTANE CORD 192 CURRENCE ABILITY, 25 4% | .16
OUS PEAK F
6-48
INTERVAL,
IN PERCEN | 100
FLOW | PERIOD
(CON-
SECU-
TIVE
DAYS) | DISCH 2 50% 2220 1960 1680 | D ON PER
ARGE, IN
INTERV
EXCEEDAN
5
20%
2940
2520
2090 | CFS, FC
AL, IN Y
CE PROBA
10
10%
3390
2860
2350 | RECORD 19 REINDICAT FEARS, AND BILITY, I 25 4\$ 3930 3260 2660 | 26-48 TED RECUF ANNUAL N PERCEN 50 2% | 100
13 | | MAGNIT | 635 TUDE AND BASE IN CFS, IND ANNUAL 2 50% | PROBABILITO NO PERIODE SERVICE | 875 TY OF IN DD OF RE CATED RE NCE PROB | 143 ISTANTANE CORD 192 CURRENCE ABILITY, 25 4% | .16
OUS PEAK F
6-48
INTERVAL,
IN PERCEN | 100
FLOW | PERIOD
(CON-
SECU-
TIVE
DAYS) | DISCH 2 50% 2220 1960 1680 1500 | D ON PER
ARGE, IN
INTERV
EXCEEDAN
5
20%
2940
2520
2090
1830 | CFS, FCAL, IN YCE PROBA 10 10 3390 2860 2350 2030 | RECORD 19 REINDICAT EARS, AND BILITY, I 25 4 3930 3260 2260 2260 | 26-48 FED RECUF ANNUAL N PERCEN 50 2% | 100
1,8 | | MAGNIT
DISCHARGE,
YEARS, A
1.25
80% | 635 TUDE AND BASE IN CFS, IND ANNUAL 2 50% | PROBABILITO NO PERIODE SERVICE | 875 TY OF IN DD OF RE CATED RE NCE PROB | 143 ISTANTANE CORD 192 CURRENCE ABILITY, 25 4% | .16
OUS PEAK F
6-48
INTERVAL,
IN PERCEN | 100
FLOW | PERIOD (CON-
SECU-
TIVE DAYS) | DISCH 2 50% 2220 1960 1680 1500 1400 | D ON PER ARGE, IN INTERV EXCEEDAN 5 20\$ 2940 2520 2090 1830 1670 | CFS, FC
AL, IN Y
CE PROBA
10
10%
3390
2860
2350
2030
1820 | RECORD 19 IR INDICAT FEARS, AND BILITY, I 25 4\$ 3930 3260 2660 2660 2260 1990 | 26-48 FED RECUF ANNUAL N PERCEN 50 2% | 100
13 | | MAGNIT
DISCHARGE,
YEARS, A
1.25
80% | 635 TUDE AND BASE IN CFS, IND ANNUAL 2 50% | PROBABILITO NO PERIODE SERVICE | 875 TY OF IN DD OF RE CATED RE NCE PROB | 143 ISTANTANE CORD 192 CURRENCE ABILITY, 25 4% | .16
OUS PEAK F
6-48
INTERVAL,
IN PERCEN | 100
FLOW | PERIOD
(CON-
SECU-
TIVE
DAYS) | DISCH 2 50% 2220 1960 1680 1500 | D ON PER
ARGE, IN
INTERV
EXCEEDAN
5
20%
2940
2520
2090
1830 | CFS, FCAL, IN YCE PROBA 10 10 3390 2860 2350 2030 | RECORD 19 REINDICAT EARS, AND BILITY, I 25 4 3930 3260 2260 2260 | 26-48 FED RECUF ANNUAL N PERCEN 50 2% | 100
1% | ## 14316500 NORTH UMPQUA RIVER ABOVE COPELAND CREEK, NEAR TOKETEE FALLS, OR LOCATION.--Lat 43°17'45", long 122°32'10", in NWL sec.24, T.26 S., R.2 E., Douglas County, Hydrologic Unit 17100301, Umpqua National Forest, on left bank 0.6 ml upstream from Copeland Creek, 4.7 mi west of town of Toketee Falls, and at mile 67.2. DRAINAGE AREA. -- 475 mi2. PERIOD OF RECORD.—September 1949 to September 1982. Monthly discharge only September 1949, published in WSP 1318. Prior to October 1952, published as "above Copeland Creek." GAGE.--Water-stage recorder. Altitude of gage is 1,580 ft, from river-profile map. Prior to Aug. 1, 1976, on right bank at same datum. REMARKS.--Considerable fluctuation caused by powerplants upstream; flow slightly regulated by Diamond Lake and by Lemolo Lake. No diversion above station. AVERAGE DISCHARGE. -- 33 years, 1,503 ft3/s, 1,089,000 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.—Maximum discharge, 40,700 ft³/s Dec. 22, 1964, gage height, 19.1 ft, from floodmark, from rating curve extended above 7,200 ft³/s on basis of slope-area measurement of peak flow; minimum, 370 ft³/s Sept. 30, 1981; minimum daily, 565 ft³/s Sept. 13, 1959. ### STATISTICAL SUMMARIES MONTHLY AND ANNUAL MEAN DISCHARGES 1950-82 MAGNITUDE AND PROBABILITY OF ANNUAL LOW FLOW BASED ON PERIOD OF RECORD 1951-82 | | | 14 8 37 1 145 104 | WEAU | STAN-
DARD
DEVIA- | COEFFI-
CIENT OF | PERCENT
OF | PERIOD
(CON- | | INTERVAL | , IN YEA | R INDICA
RS, AND A
BILITY, | ANNUAL N | DN- | |----------|------------------|--------------------------|---------------|-------------------------|---------------------|------------------|------------------------|------------------|------------------|-----------|----------------------------------|------------------|-----| | MONTH | MINIMUM
(CFS) | MAXIMUM
(CFS) | MEAN
(CFS) | TION
(CFS) | VARI-
ATION | ANNUAL
RUNOFF | SECU-
TIVE
DAYS) | 2
50 % | 5
20 % | 10
10% | 20
5% | 50
2 % | 100 | | OCTOBER | 758 | 1568 | 949 | 172 | .18 | 5.3 | 1 | 659 | 604 | 582 | 567 | 554 | | | NOVEMBER | 805 | 2298 | 1310 | 396 | .30 | 7.3 | 3 | 703 | 628 | 597 | 575 | 553 | | | DECEMBER | 803 | 5163 | 1845 | 957 | .52 | 10.2 | 7 | 738 | 649 | 612 | 585 | 558 | | | ANUARY | 788 | 3418 | 1863 | 727 | .39 | 10.3 | 14 | 763 | 675 | 637 | 609 | 581 | | | EBRUARY | 670 | 3254 | 1846 | 575 | .31 | 10.2 | 30 | 787 | 697 | 658 | 629 | 600 | | | IARCH | 873 | 4221 | 1725 | 591 | .34 | 9.5 | 60 | 816 | 730 | 693 | 666 | 638 | | | PRIL | 1065 | 2876 | 1857 | 442 | . 24 | 10.3 | 90 | 844 | 755 | 715 | 685 | 6 5 5 | | | !AY | 1066 | 3191 | 2077 | 547 | • 26 | 11.5 | 120 | 879 | 782 | 740 | 708 | 676 | | | IUNE | 904 | 2933 | 1726 | 601 | .35 | 9.6 | 183 | 1010 | 880 | 827 | 790 | 754 | | | ULY | 689 | 1652 | 1102 | 264 | .24 | 6.1 | | | | | | | | | UGUST | 684 | 1178 | 904 | 159 | .18 | 5.0 | | | | | | | | | EPTEMBER | 653 | 1107 | 860 | 122 | .14 | 4.8 | | | | | | | | | ANNUAL | 897 | 2080 | 1503 | 307 | .20 | 100 | | | | | | | | MAGNITUDE AND PROBABILITY OF INSTANTANEOUS PEAK FLOW BASED ON PERIOD OF RECORD 1950-82 MAGNITUDE AND PROBABILITY OF ANNUAL HIGH FLOW BASED ON PERIOD OF RECORD 1950-82 | YEARS, A | | | | | | | PERIOD
(CON- | | INTER | VAL, ÍN | YEARS, A | ATED RECU
ND ANNUAL
IN PERCE | | |-------------|------------------|----------------------|-----------|----------|----------
-----------|------------------------|----------|------------------|-----------|----------|------------------------------------|-----| | 1.25
80% | 2
50 % | 5
20 %
 | 10
10% | 25
4% | 50
2% | 100
1% | SECU-
TIVE
DAYS) | 2
50% | 5
20 % | 10
10% | 25
4% | 50
2 % | 100 | | 4570 | 7650 | 13700 | 19200 | 28000 | 36300 | | | | | | | | | | | | | | | | | 1 | 5870 | 9900 | 13300 | 18400 | 23000 | | | WEIGHTED | SKEW = | •453 | | | | | 3 | 4780 | 7640 | 10000 | 13700 | 16900 | | | | | | | | | | 7 | 3890 | 5700 | 7100 | 9130 | 10800 | | | | | | | | | | 15 | 3180 | 4290 | 5060 | 6070 | 6840 | | | | | | | | | | 30 | 2770 | 3540 | 4030 | 4620 | 5040 | | | | | | | | | | 60 | 2360 | 2940 | 3290 | 3700 | 4000 | | | | | | | | | | 90 | 2200 | 2680 | 2960 | 3270 | 3490 | | DURATION TABLE OF DAILY MEAN FLOW FOR PERIOD OF RECORD 1950-82 | | | DISC | HARGE, | IN CFS, | WHICH WAS | EQUALED | OR EXCE | EDED FOR | INDICATED | PERCENT | OF TIM | E | | | |------------|------|------|--------|---------|-----------|---------|---------|----------|-----------|-------------|--------|-----|-----|-----| | 5 % | 10% | 15% | 20% | 25% | 30% | 40% | 50% | 60% | 70% | 75 % | 80% | 85% | 90% | 95% | | 2920 | 2480 | 2200 | 2000 | 1830 | 1680 | 1460 | 1260 | 1110 | | 944 | 891 | 835 | 779 | 713 | ## 14316700 STEAMBOAT CREEK NEAR GLIDE, OR LOCATION.--Lat 43°21'00", long 122°43'40", in N-1/2 sec.32, T.25-1/2 S., R.1 E., Douglas County, Hydrologic Unit 17100301, in Umpqua National Forest, on right bank in Canton Creek Forest Service Park, 200 ft downstream from Canton Creek, 19 mi northeast of Glide, and at mile 0.5. DRAINAGE AREA. -- 227 mi2. PERIOD OF RECORD.--Water year 1956 (annual maximum only), June 1956 to September 1982. GAGE.--Water-stage recorder. Datum of gage is 1,128.55 ft National Geodetic Vertical Datum of 1929 (levels by Bureau of Public Roads). Oct. 7, 1955, to June 13, 1956, nonrecording gage at site 100 ft upstream at same datum. REMARKS. -- No regulation or diversion above station. AVERAGE DISCHARGE.--26 years, 735 ft³/s, 43.97 in/yr, 532,500 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 51,000 ft³/s Dec. 22, 1964, gage height, 25.6 ft, from floodmark, from rating curve extended above 13,000 ft³/s on basis of slope-area measurement at 17.96 ft; minimum, 30 ft³/s Sept. 15-17, 1973. ### STATISTICAL SUMMARIES MONTHLY AND ANNUAL MEAN DISCHARGES 1957-82 MAGNITUDE AND PROBABILITY OF ANNUAL LOW FLOW BASED ON PERIOD OF RECORD 1958-82 | | MINIMUM | MAXIMUM | MEAN | STAN-
DARD
DEVIA-
TION | COEFFI-
CIENT OF
VARI- | PERCENT
OF
ANNUAL | PERIOD
(CON-
SECU- | | INTERVAL | CFS, FOR
, IN YEAR
CE PROBAE | RS, AND A | NNUAL N | ON- | |-----------|---------|---------|-------|---------------------------------|------------------------------|-------------------------|--------------------------|------------------|----------|------------------------------------|-----------|------------------|-----------| | MONTH | (CFS) | (CFS) | (CFS) | (CFS) | ATION | RUNOFF | TIVE
DAYS) | 2
50 % | 5
20% | 10
10% | 20
5% | 50
2 % | 100
1% | | OCTOBER | 44 | 536 | 172 | 120 | •70 | 1.9 | 1 | 36 | 32 | 31 | 30 | 30 | | | NOVEMBER | 77 | 2887 | 869 | 656 | .75 | 9.8 | 3 | 36 | 33 | 31 | 31 | 30 | | | DECEMBER | 63 | 5391 | 1562 | 1146 | .73 | 17.6 | 7 | 37 | 34 | 32 | 31 | 30 | | | JANUARY | 108 | 3415 | 1564 | 978 | .63 | 17.7 | 14 | 39 | 35 | 33 | 33 | 32 | | | FEBRUARY | 141 | 2861 | 1367 | 664 | . 49 | 15.4 | 30 | 42 | 38 | 36 | 35 | 34 | | | MARCH | 383 | 2774 | 1260 | 661 | •52 | 14.2 | 60 | 49 | 42 | 40 | 38 | 36 | | | APRIL | 287 | 1406 | 964 | 304 | .32 | 10.9 | 90 | 56 | 48 | 45 | 43 | 41 | | | MAY | 285 | 1337 | 626 | 270 | .43 | 7.1 | 120 | 71 | 59 | 54 | 51 | 48 | | | JUNE | 105 | 544 | 248 | 119 | .48 | 2.8 | 183 | 152 | 116 | 100 | 89 | 77 | | | JULY | 57 | 149 | 91 | 26 | -28 | 1.0 | | | | | | | | | AUGUST | 39 | 158 | 61 | 24 | .40 | .7 | | | | | | | | | SEPTEMBER | 39 | 187 | 67 | 33 | •50 | .8 | | | | | | | | | ANNUAL | 239 | 1253 | 735 | 222 | .30 | 100 | | | | | | | | MAGNITUDE AND PROBABILITY OF INSTANTANEOUS PEAK FLOW BASED ON PERIOD OF RECORD 1956-82 MAGNITUDE AND PROBABILITY OF ANNUAL HIGH FLOW BASED ON PERIOD OF RECORD 1957-82 | | | | | | CE INTER | | PERIOD
(CON- | DISC | INTER | VAL, ÍN ' | YEARS, A | ATED RECUI
ND ANNUAL
IN PERCEI | | |-------------|--------------|------------------|-----------|----------|----------|-----------|------------------------|----------|------------------|-----------|----------|--------------------------------------|-----| | 1.25
80% | 2
50%
 | 5
20 % | 10
10% | 25
4% | 50
2% | 100
1% | SECU-
TIVE
DAYS) | 2
50% | 5
20 % | 10
10% | 25
4% | 50
2% | 100 | | 10000 | 14400 | 21300 | 26500 | 33900 | 40000 | | | | | | | | | | | | | | | | | 1 | 11100 | 16200 | 18800 | 21500 | 23000 | | | WEIGHTE | D SKEW = | .310 | | | | | 3 | 7390 | 10900 | 13000 | 15400 | 17000 | | | | | | | | | | 7 | 4900 | 7190 | 8570 | 10200 | 11200 | | | | | | | | | | 15 | 3270 | 4620 | 5410 | 6320 | 6920 | | | | | | | | | | 30 | 2510 | 3410 | 3930 | 4520 | 4920 | | | | | | | | | | 60 | 1990 | 2700 | 3120 | 3600 | 3940 | | | | | | | | | | 90 | 1690 | 2270 | 2630 | 3050 | 3360 | | DURATION TABLE OF DAILY MEAN FLOW FOR PERIOD OF RECORD 1957-82 | | | DISC | HARGE, | IN CFS, | WHICH WAS | EQUALED | OR EXCE | DED FOR | INDICATED | PERCENT | OF TIME | | | | |------|------|------|--------|---------|-----------|---------|---------|---------|-----------|---------|---------|-----|-----|-------------| | 5% | 10% | 15% | 20% | 25% | 30% | 40% | 50% | 60% | 70% | 75% | 80% | 85% | 90% | 95 % | | 2740 | 1720 | 1300 | 1060 | 872 | 731 | 512 | 329 | 187 | 100 | 79 | 66 | 57 | 49 | 41 | # 14317500 NORTH UMPQUA RIVER ABOVE ROCK CREEK, NEAR GLIDE, OR LOCATION.--Lat 43°19'40", long 123°00'00", in NW¼ sec.12, T.26 S., R.3 W., Douglas County, Hydrologic Unit 17100301, 0.5 mi upstream from Rock Creek and 5 mi northeast of Glide. DRAINAGE AREA .-- 886 mi2. 6010 4660 3870 3290 2840 PERIOD OF RECORD.--July 1924 to September 1945. GAGE.--Water-stage recorder. Altitude of gage is 770 ft, from river-profile map. REMARKS.--No diversion or regulation above station. AVERAGE DISCHARGE.--21 years (water years 1925-45), 2,274 ft3/s, 1,648,000 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.—Maximum discharge, 53,000 ft³/s Feb. 20, 1927, gage height, 20.18 ft, from rating curve extended above 18,000 ft³/s by logarithmic plotting; minimum, 521 ft³/s Oct. 16, 1931, gage height, 1.86 ft. STATISTICAL SUMMARIES | | | MANIMUM | | STAN-
DARD
DEVIA- | COEFFI-
CIENT OF | PERCENT
OF | PERIOD
(CON-
SECU- | DISC | INTERVA | L, IN YE | OR INDICATARS, AND ABILITY, | ANNUAL N | -NC | |-----------------------|------------------------------|---|--|---|--|------------------------|---|--|--|--|---|---|-----------| | MONTH | (CFS) | MAXIMUM
(CFS) | MEAN
(CFS) | TION
(CFS) | VARI-
ATION | ANNUAL
RUNOFF | TIVE
DAYS) | 2
50% | 5
20 % | 10
10% | 20
5% | 50
2% | 100
1% | | OCTOBER | 649 | 1588 | 889 | 252 | .28 | 3.3 | 1 | 675 | 608 | 577 | 553 | | | | OVEMBER | 651 | -6205 | 2208 | 1615 | .73 | 8.1 | 3 | 678 | 614 | 584 | 561 | | | | ECEMBER | 943 | 10250 | 2928 | 2070 | .71 | 10.7 | 7 | 684 | 620 | 590 | 566 | | | | ANUARY | 818 | 7197 | 3377 | 1738 | -51 | 12.4 | 14 | 694 | 630 | 599 | 576 | | | | EBRUARY | 1338 | 7162 | 3684 | 1754 | .48 | 13.5 | 30 | 706 | 643 | 614 | 592 | | | | MARCH | 1399 | 7259 | 3402 | 1469 | •43 | 12.5 | 60 | 731 | 661 | 630 | 606 | | | | APRIL | 1321 | 6063 | 3430 | 1283 | .37 | 12.6 | 90 | 751 | 677 | 644 | 619 | | | | IAY
IUNE | 1183
833 | 4503
4958 | 2778
1980 | 1079
1001 | .39 | 10.2
7.2 | 120
183 | 779
985 | 702
827 | 674
765 | 655
723 | | | | | 696 | | | 249 | .51
.24 | 7.2
3.8 | 183 | 967 | 821 | /02 | 123 | | | | JULY
NUGUST | 588 | 1631
1098 | 1049
813 | 123 | .15 | 3.0 | | | | | | | | | SEPTEMBER | 588 | 997 | 774 | 106 | .14 | 2.8 | | | | | | | | | NNUAL | 1384 | 3942 | 2257 | 672 | .30 | 100 | | | | | | | | | MAGNIT | | | TY OF IN | STANTANE | OUS PEAK F | |
MA | | | | OF ANNUAL | |
.0₩ | | SCHARGE,
YEARS, A | BASE
IN CFS, | PROBABILI
D ON PERI
FOR INDI
L EXCEEDA | TY OF IN
OD OF RE
CATED RE
NCE PROB | ISTANTANE
CORD 192
CURRENCE | OUS PEAK F
5-45
INTERVAL,
IN PERCE |

, IN | PERIOD
(CON- | BASI | ED ON PEI | RIOD OF F | | 25-45
ED RECUF | RENCE | | SCHARGE,
YEARS, A | BASE
IN CFS,
AND ANNUA | PROBABILI
D ON PERI
FOR INDI
L EXCEEDA | TY OF IN
OD OF RE
CATED RE
NCE PROB | ISTANTANE
CORD 192
 | OUS PEAK F
5-45
INTERVAL,
IN PERCEI | FLOW . IN NT | PERIOD
(CON-
SECU- | BASI
DISCI | ARGE, II | RIOD OF F | RECORD 19 DR INDICAT YEARS, AND ABILITY, I | 25-45 ED RECUF ANNUAL N PERCEN | RRENCE | | ISCHARGE,
YEARS, A | BASE
IN CFS, | PROBABILI
D ON PERI
FOR INDI
L EXCEEDA | TY OF IN
OD OF RE
CATED RE
NCE PROB | ISTANTANE
CORD 192
CURRENCE | OUS PEAK F
5-45
INTERVAL,
IN PERCE |

, IN | PERIOD
(CON- | BASI | ED ON PEI | RIOD OF F | RECORD 19
DR INDICAT
(EARS, AND
 25-45
ED RECUF | RRENCE | | YEARS, A | BASE IN CFS, IND ANNUA 2 50% | PROBABILI
D ON PERI
FOR INDI
L EXCEEDA
5
20% | TY OF IN
OD OF RE
CATED RE
NCE PROB | ISTANTANE
CORD 192
 | OUS PEAK F
5-45
INTERVAL,
IN PERCEI | FLOW . IN NT | PERIOD
(CON-
SECU-
TIVE | BASI
DISCH | HARGE, II EXCEEDAN | RIOD OF F | RECORD 19 DR INDICAT YEARS, AND ABILITY, I | ED RECUF
ANNUAL
N PERCEN | RRENCE | | YEARS, A | BASE IN CFS, IND ANNUA 2 50% | PROBABILI
D ON PERI
FOR INDI
L EXCEEDA | TY OF IN
OD OF RE
CATED RE
NCE PROB | ISTANTANE
CORD 192
CURRENCE
IABILITY, | OUS PEAK F
5-45
INTERVAL,
IN PERCEI | FLOW . IN NT | PERIOD
(CON-
SECU-
TIVE | BASI
DISCH | HARGE, II EXCEEDAN | RIOD OF F | RECORD 19 DR INDICAT YEARS, AND ABILITY, I | ED RECUF
ANNUAL
N PERCEN | RRENCE | | YEARS, A | BASE IN CFS, AND ANNUA 2 50% | PROBABILI
D ON PERI
FOR INDI
L EXCEEDA | TY OF IN
OD OF RE
CATED RE
NCE PROB | ISTANTANE
CORD 192
CURRENCE
IABILITY, | OUS PEAK F
5-45
INTERVAL,
IN PERCEI | FLOW . IN NT | PERIOD (CON-
SECU-
TIVE DAYS) | DISCH | HARGE, II
INTERN
EXCEEDAN
5
20% | 10 OF I | RECORD 19 DR INDICAT YEARS, AND ABILITY, 1 | P25-45 TED RECUF ANNUAL N PERCEN 50 2% | RRENCE | | 1.25
80% | BASE IN CFS, AND ANNUA 2 50% | PROBABILI
D ON PERI
FOR INDI
L EXCEEDA
5
20% | TY OF IN
OD OF RE
CATED RE
NCE PROB | ISTANTANE
CORD 192
CURRENCE
IABILITY, | OUS PEAK F
5-45
INTERVAL,
IN PERCEI | FLOW . IN NT | PERIOD
(CON-
SECU-
TIVE
DAYS) | DISCH | HARGE, II
INTERN
EXCEEDAN
5
20\$
24700
18400
13200 | 10 OF II
V CFS, FC
VAL, IN N
VICE PROB/
10
10%
30700
22900
16000 | OR INDICAT
YEARS, AND
ABILITY, I
25
4%
39500
29500
19900 | PED RECUF
D ANNUAL
N PERCEN
50
2% | RRENCE | | 1.25
80% | BASE IN CFS, AND ANNUA 2 50% | PROBABILI
D ON PERI
FOR INDI
L EXCEEDA
5
20% | TY OF IN
OD OF RE
CATED RE
NCE PROB | ISTANTANE
CORD 192
CURRENCE
IABILITY, | OUS PEAK F
5-45
INTERVAL,
IN PERCEI | FLOW . IN NT | PERIOD
(CON-
SECU-
TIVE
DAYS)
 | DISCH
2
50%
17000
12700
9420
7070 | HARGE, II
INTER
EXCEEDAN
5
20%
24700
18400
13200
9630 | 10 OF F | 25 4 3 39500 19900 14100 | PED RECUP
D ANNUAL
N PERCEN
50
2% | RRENCE | | 1.25
80\$ | BASE IN CFS, AND ANNUA 2 50% | PROBABILI
D ON PERI
FOR INDI
L EXCEEDA
5
20% | TY OF IN
OD OF RE
CATED RE
NCE PROB | ISTANTANE
CORD 192
CURRENCE
IABILITY, | OUS PEAK F
5-45
INTERVAL,
IN PERCEI | FLOW . IN NT | PERIOD (CON-
SECU-
TIVE DAYS) 1 3 7 15 30 | DISCH
2 50%
17000
12700
9420
7070
5520 | HARGE, III
INTER
EXCEEDAI
5
20%
24700
18400
13200
9630
7180 | 10 OF IN | RECORD 19 OR INDICAT (FARS, AND ABILITY, I 25 4% 39500 29500 19900 14100 9760 | 25-45 ED RECUF ANNUAL N PERCEN 50 2% | RRENCE | | 1.25
80% | BASE IN CFS, AND ANNUA 2 50% | PROBABILI
D ON PERI
FOR INDI
L EXCEEDA
5
20% | TY OF IN
OD OF RE
CATED RE
NCE PROB | ISTANTANE
CORD 192
CURRENCE
IABILITY, | OUS PEAK F
5-45
INTERVAL,
IN PERCEI | FLOW . IN NT | PERIOD (CON-
SECU-
TIVE DAYS) 1 3 7 15 30 60 | DISCI
2
50%
17000
12700
9420
7070
5520
4450 | 18400
13200
9630
7180
5840 | 30700
22900
116000
11500
8310
6870 | 39500
29500
19900
14100
9760
8310 | PED RECUP
D ANNUAL
N PERCEN
50
2% | RRENCE | | 1.25
80% | BASE IN CFS, AND ANNUA 2 50% | PROBABILI
D ON PERI
FOR INDI
L EXCEEDA
5
20% | TY OF IN OD OF RE | ISTANTANE CORD 192 CURRENCE ABILITY, 25 4% | OUS PEAK F
5-45
INTERVAL
IN PERCEI
50 2% | FLOW . IN NT | PERIOD (CON-
SECU-
TIVE DAYS) 1 3 7 15 30 60 90 | DISCH
2
50%
17000
12700
9420
7070
5520
4450
4040 | HARGE, II INTER EXCEEDAN 5 20 \$ 24700 13200 7180 5840 5290 | 30700
22900
11500
8310
6870
6180 | RECORD 19 OR INDICAT (FARS, AND ABILITY, I 25 4% 39500 29500 19900 14100 9760 | 25-45 ED RECUF ANNUAL N PERCEN 50 2% | RRENCE | | 1.25
80% | BASE IN CFS, AND ANNUA 2 50% | PROBABILI
D ON PERI
FOR INDI
L EXCEEDA
5
20% | TY OF IN OD OF RE CATED RE NCE PROB 10 10 8700 4 | ISTANTANE CORD 192 CURRENCE ABILITY, 25 4% 8100 | OUS PEAK F
5-45
INTERVAL,
IN PERCEN | IEAN FLOW | PERIOD
(CON-
SECU-
TIVE
DAYS)
 | DISCI
2
50%
17000
12700
9420
7070
5520
4450
0F RECC | HARGE, II INTER: EXCEEDAI 5 20 \$ 24700 13200 7180 5840 5290 DRD 1925- | N CFS, F(AL, IN NCE PROB/
10 10%
30700 22900 16000 11500 8310 6870 6180 | 39500
29500
1900
1900
1900
1370
3730 | 25-45 ED RECUF ANNUAL N PERCEN 50 2% | RRENCE | | 1.25
80% | BASE IN CFS, AND ANNUA 2 50% | PROBABILI
D ON PERI
FOR INDI
L EXCEEDA
5
20% | TY OF IN OD OF RE CATED RE NCE PROB 10 10 8700 4 | ISTANTANE CORD 192 CURRENCE ABILITY, 25 4% 8100 | OUS PEAK F
5-45
INTERVAL,
IN PERCEN | FLOW IN NT 100 118 | PERIOD
(CON-
SECU-
TIVE
DAYS)
 | DISCI
2
50%
17000
12700
9420
7070
5520
4450
0F RECC | HARGE, II INTER: EXCEEDAI 5 20 \$ 24700 13200 7180 5840 5290 DRD 1925- | N CFS, F(AL, IN NCE PROB/
10 10%
30700 22900 16000 11500 8310 6870 6180 | 39500
29500
1900
1900
1900
1370
3730 | 25-45 ED RECUF ANNUAL N PERCEN 50 2% | RRENCE | 1920 1480 1170 2460 934 860 807 756 710 **65**6 ### 14317600 ROCK CREEK NEAR GLIDE, OR LOCATION.--Lat 43°20'45", long 122°59'30", in SE‡SE‡ sec.36, T.25 S., R.3 W., Douglas County, Hydrologic Unit 17100301, on left bank 0.3 mi downstream from McComas Creek, 5.8 mi northeast of Glide, and at mile 1.2. DRAINAGE AREA. -- 97.4 mi2. 1300 877 680 557 460 271 382 174 102 62 47 38 31 27 23 PERIOD OF RECORD.--Water years 1956-57 (annual maximums only), June 1957 to June 1973. GAGE.--Water-stage recorder. Altitude of gage is 940 ft, from topographic map. Nov. 8, 1955, to June 16, 1957, nonrecording gage and June 17, 1957, to Sept. 30, 1965, water-stage recorder at site 800 ft downstream at different datum. REMARKS.--No diversion or regulation above station. AVERAGE DISCHARGE.--15 years (water years 1958-72), $373 \text{ ft}^3/\text{s}$, 52.01 in/yr, 270,200 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 22,800 ft³/s Dec. 22, 1964, gage height, 20.3 ft, from floodmark, site and datum then in use, from rating curve extended above 5,400 ft³/s on basis of slope-area measurement at gage height 14.83 ft; minimum, 14 ft³/s Sept. 5-11, 1966. | | MINIMIN | MAXIMUM | MEAN | STAN-
DARD
DEVIA-
TION | COEFFI-
CIENT OF
VARI- | | PERIOD
(CON-
SECU- | DISC | INTERVAL | ., IN YE | OR INDICATARS, AND ABILITY, | ANNUAL N | ON- | |---------------------------------------|---------------------------------|----------------------------------|--|---|----------------------------------|-----------------------------|---|---|--|--|---|--|---------------------| | MONTH | (CFS) | (CFS) | (CFS) | (CFS) | ATION | RUNOFF | TIVE
DAYS) | 2
50% | 5
20% | 10
10% | 20
5% | 50
2% | 100
1% | | OCTOBER
NOVEMBER | 24
105 | 198
833 | 94
469 | 51
251 | .54
.54 | 2.1 | 1 3 | 20
20 | 17
17 | 16
16 | 15
15 | | | | DECEMBER | | 2564 | | | | | |
| | | 15 | | | | | 151 | | 757 | 601 | .79 | 16.9 | 7 | 21 | 18 | 16 | | | | | JANUARY | 118 | 1609 | 876 | 499 | -57 | 19.5 | 14 | 22 | 19 | 17 | 16 | | | | FEBRUARY | 317 | 1254 | 686 | 299 | .44 | 15.3 | 30 | 24 | 20 | 18 | 17 | | | | MARCH | 221 | 1338 | 669 | 340 | •51 | 14.9 | 60 | 28 | 23 | 21 | 20 | | | | APRIL | 164 | 716 | 438 | 157 | .36 | 9.8 | 90 | 31 | 26 | 23 | 22 | | | | MAY | 102 | 679 | 280 | 152 | .54 | 6.2 | 120 | 39 | 31 | 28 | 26 | | | | JUNE | 47 | 174 | 108 | 39 | . 36 | 2.4 | 183 | 80 | 62 | 53 | 46 | | | | JULY | 34 | 87 | 50 | 15 | .30 | 1.1 | | | | | | | | | AUGUST | 19 | 45 | 30 | 6.6 | • 22 | •7 | | | | | | | | | SEPTEMBER | 18 | 62 | 33 | 13 | .39 | •7 | | | | | | | | | ANNUAL | 219 | 567 | 373 | 90 | .24 | 100 | | | | | | | | | MAGNIT | | PROBABILI
D ON PERIO | | | | FLOW | MAG | | | | OF ANNUAL | | .OW | | DISCHARGE, | BASE
IN CFS, | D ON PERIO | OD OF RE | CORD 1957 | 7-72

INTERVAL |
, IN | PERIOD | BASE | D ON PER
HARGE, IN
INTERV | CFS, FO | RECORD 19 OR INDICAT | 958-72

FED RECUR
O ANNUAL | RENCE | | DISCHARGE,
YEARS, A | BASE
IN CFS,
ND ANNUA | FOR INDIC | OD OF RE | CORD 1957
CURRENCE
ABILITY, | INTERVAL | , IN
NT | PERIOD
(CON- | BASE | D ON PER
HARGE, IN
INTERV | CFS, FO | RECORD 19
DR INDICAT | 958-72

FED RECUR
O ANNUAL | RENCE | | DISCHARGE,
YEARS, A | IN CFS,
ND ANNUA | FOR INDIC
L EXCEEDAL | OD OF RE CATED RE NCE PROB | CORD 1957
CURRENCE
ABILITY, | INTERVAL
IN PERCE | , IN
NT | PERIOD
(CON-
SECU- | BASE
DISCH | IARGE, IN INTERV | CFS, FO | RECORD 19 OR INDICAT YEARS, AND ABILITY, I | 958-72
FED RECUP
O ANNUAL
IN PERCEN | RRENCE | | DISCHARGE,
YEARS, A | BASE
IN CFS,
ND ANNUA | FOR INDIC | OD OF RE | CORD 1957
CURRENCE
ABILITY, | INTERVAL | , IN
NT | PERIOD
(CON- | BASE | D ON PER
HARGE, IN
INTERV | CFS, FO | RECORD 19 OR INDICAT | 958-72

FED RECUR
O ANNUAL | RENCE | | DISCHARGE,
YEARS, A | BASE IN CFS, ND ANNUA 2 50% | FOR INDIO | OD OF RE CATED RE NCE PROB | CORD 1957
CURRENCE
ABILITY, | INTERVAL
IN PERCE | , IN
NT | PERIOD
(CON-
SECU-
TIVE | BASE
DISCH | ID ON PER
HARGE, IN
INTERV
EXCEEDAN | CFS, FC
AL, IN CE PROB | RECORD 19 DR INDICAT YEARS, AND ABILITY, I | 958-72 FED RECUF O ANNUAL IN PERCEN | RRENCE
IT
100 | | OISCHARGE,
YEARS, A
1.25
80% | BASE IN CFS, ND ANNUA 2 50% | FOR INDIO | OD OF RE CATED RE NCE PROB | CORD 1957
CURRENCE
ABILITY,
25
4% | INTERVAL
IN PERCE | , IN
NT | PERIOD
(CON-
SECU-
TIVE | BASE
DISCH | ID ON PER
HARGE, IN
INTERV
EXCEEDAN | CFS, FC
AL, IN CE PROB | RECORD 19 DR INDICAT YEARS, AND ABILITY, I | 958-72 FED RECUF O ANNUAL IN PERCEN | RRENCE
IT
100 | | OISCHARGE,
YEARS, A
1.25
80% | IN CFS,
ND ANNUA
2
50% | FOR INDIO | OD OF RE CATED RE NCE PROB | CORD 1957
CURRENCE
ABILITY,
25
4% | INTERVAL
IN PERCE | , IN
NT | PERIOD
(CON-
SECU-
TIVE
DAYS) | DISCH | ID ON PER
HARGE, IN
INTERV
EXCEEDAN
5
20% | CFS, FCAL, IN CE PROB | RECORD 19 OR INDICAT YEARS, AND ABILITY, 1 25 4% | P58-72 FED RECUFO ANNUAL IN PERCEN | RRENCE | | DISCHARGE,
YEARS, A
1.25
80% | IN CFS,
ND ANNUA
2
50% | FOR INDIC
EXCEEDAD | OD OF RE CATED RE NCE PROB | CORD 1957
CURRENCE
ABILITY,
25
4% | INTERVAL
IN PERCE | , IN
NT | PERIOD (CON- SECU- TIVE DAYS) | DISCH | ID ON PER
HARGE, IN
INTERV
EXCEEDAN
5
20% | CFS, FO AL, IN CE PROBA | DR INDICAT
YEARS, AND
ABILITY, I
25
4% | P58-72 FED RECUP O ANNUAL IN PERCEN 50 2% | RRENCE
IT | | DISCHARGE,
YEARS, A
1.25
80% | IN CFS,
ND ANNUA
2
50% | FOR INDIC
EXCEEDAD | OD OF RE CATED RE NCE PROB | CORD 1957
CURRENCE
ABILITY,
25
4% | INTERVAL
IN PERCE | , IN
NT | PERIOD (CON-
SECU-
TIVE
DAYS) | DISCH
2
50%
4410
3260 | INTERVENTION | CFS, FGAL, IN CE PROB. 10 10% | PRECORD 19 DR INDICAT YEARS, AND ABILITY, 1 25 4% 13000 9040 | P58-72 FED RECUF ANNUAL N PERCEN 50 2% | RRENCE
IT | | DISCHARGE,
YEARS, A
1.25
80% | IN CFS,
ND ANNUA
2
50% | FOR INDIC
EXCEEDAD | OD OF RE CATED RE NCE PROB | CORD 1957
CURRENCE
ABILITY,
25
4% | INTERVAL
IN PERCE | , IN
NT | PERIOD
(CON-
SECU-
TIVE
DAYS)
 | DISCH
2
50%
4410
3260
2300
1640 | ARGE, IN INTERVEXCEEDAN 5 20% 6950 5060 3460 2350 | 10 OF I | DR INDICAT
YEARS, AND
ABILITY, I
25
4%
13000
9040
5910
3520 | P58-72 FED RECUF O ANNUAL IN PERCEN 50 2% | RRENCE
IT
100 | | DISCHARGE,
YEARS, A
1.25
80% | IN CFS,
ND ANNUA
2
50% | FOR INDIC
EXCEEDAD | OD OF RE CATED RE NCE PROB | CORD 1957
CURRENCE
ABILITY,
25
4% | INTERVAL
IN PERCE | , IN
NT | PERIOD (CON-
SECU-
TIVE DAYS) | DISCH
2
50%
4410
3260
2300
1640
1220 | ARGE, IN INTERVEXCEEDAN 5 20% 6950 5060 3460 2350 1690 | CFS, FGAL, IN CE PROB/ 10 10% 9240 6610 4430 2850 2040 | DR INDICAT
YEARS, AND
ABILITY, I
25
4%
13000
9040
5910
3520
2530 | P58-72 FED RECUF ANNUAL IN PERCEN 50 2% | RRENCE
IT | | 1.25
80% | IN CFS,
ND ANNUA
2
50% | FOR INDIC
EXCEEDAD | OD OF RE CATED RE NCE PROB | CORD 1957
CURRENCE
ABILITY,
25
4% | INTERVAL
IN PERCE | , IN
NT | PERIOD (CON- SECU- TIVE DAYS) 1 3 7 | DISCH
2
50%
4410
3260
2300
1640 | ARGE, IN INTERVEXCEEDAN 5 20% 6950 5060 3460 2350 | 10 OF I | DR INDICAT
YEARS, AND
ABILITY, I
25
4%
13000
9040
5910
3520 | FED RECUF
D ANNUAL
IN PERCEN
50
2% | RRENCE | | DISCHARGE,
YEARS, A
1.25
80% | IN CFS,
ND ANNUA
2
50% | FOR INDIC
EXCEEDAD | CATED RE NCE PROB | CORD 1957 CURRENCE ABILITY, 25 4% 8400 | INTERVAL
IN PERCE | , IN
NT
100
1% | PERIOD (CON-
SECU-
TIVE DAYS) | DISCH 2 50% 4410 3260 2300 1640 1220 995 855 | IARGE, IN INTERVEX EXCEEDAN 50 5060 3460 1350 1110 | CFS, F(AL, IN CE PROB) 10 10% 9240 6610 4430 2850 2040 1610 1300 | DR INDICAT
YEARS, AND
ABILITY, I
25
4%
13000
9040
5910
3520
2530
1970 | P58-72 FED RECUF ANNUAL IN PERCEN 50 2% | RRENCE | | DISCHARGE,
YEARS, A
1.25
80% | IN CFS,
ND ANNUA
2
50% | FOR INDIC
L EXCEEDAN
5 20% | DOD OF RECOME THE OF RECOME OF THE OF RECOME OF THE OF RECOME OF THE TH | CORD 1957 CURRENCE ABILITY, 25 4% 8400 | INTERVAL
IN PERCE
50
2% | , IN
NT
100
1%
 | PERIOD (CON-
SECU-
TIVE DAYS) | BASE DISCH 2 50% 4410 3260 2300 1640 1220 995 855 | 10 ON PER 10 INTERV EXCEEDAN 5 20% 6950 5060 3460 2350 1690 1350 1110 RD 1958- | CFS, FCAL, IN CE PROB/ 10 10% 9240 6610 4430 2850 2040 1610 1300 | 13000
9040
95910
3520
2530
1970 | P58-72 FED RECUF ANNUAL IN PERCEN 50 2% | RRENCE
IT | ### 14318000 LITTLE RIVER AT PEEL, OR LOCATION.--Lat 43°15'10", long 123°01'30", in NWt sec.2, T.27 S., R.3 W., Douglas County, Hydrologic Unit 17100301, on left bank 0.6 mi southeast of Peel, 0.9 mi from Cavitt Creek, and at mile 6.3. DRAINAGE AREA -- 177 mi2. PERIOD OF RECORD. -- August 1954 to September 1982. GAGE.--Water-stage recorder. Datum of gage is 828.33 ft National Geodetic Vertical Datum of 1929. REMARKS.--No regulation. Small diversions for rural domestic use and irrigation above station. AVERAGE DISCHARGE.--28 years, 468 ft³/s, 35.91 in/yr, 339,100 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.—Maximum discharge, 21,100 ft³/s Dec. 11, 1956, gage height, 19.63 ft, from rating curve extended above 5,900 ft³/s on basis of slope-area measurement at gage height 16.55 ft; minimum, 14 ft³/s Sept. 2, 9, 10, 28, 29, 1967, Sept. 25-27, 1974, Aug. 18, 19, 1977. EXTREMES OUTSIDE PERIOD OF RECORD.—Flood of Nov. 22, 23, 1953, reached a stage of 20.6 ft, from floodmark, discharge, 22,700 ft 3 /s, from rating curve extended above 5,900 ft 3 /s on basis of slope-area measurement at gage height 16.55 ft. ### STATISTICAL SUMMARIES MONTHLY AND ANNUAL MEAN DISCHARGES 1955-82 MAGNITUDE AND PROBABILITY OF ANNUAL LOW FLOW BASED ON PERIOD OF RECORD 1956-82 | | MINIMUM | MAXIMUM | MEAN | STAN-
DARD
DEVIA-
TION | COEFFI-
CIENT OF
VARI- | PERCENT
OF
ANNUAL | PERIOD
(CON-
SECU- | | INTERVAL | CFS, FOF
, IN YEAR
CE PROBAE | RS, AND A | NNUAL N | 0 N- | |-----------|---------|---------|-------|---------------------------------|------------------------------|-------------------------|--------------------------|----------|----------|------------------------------------|-----------|----------|-------------| | MONTH | (CFS) | (CFS) | (CFS) | (CFS) | ATION | RUNOFF | TIVE
DAYS) | 2
50% | 5
20% | 10
10% | 20
5% | 50
2% | 100
1% | | OCTOBER | 24 | 366 | 106 | 87 | .82 | 1.9 | 1 | 19 | 16 | 15 | 14 | . 13 | | | NOVEMBER | 41 | 2162 | 563 | 471 | .84 | 10.0 | 3 | 19 | 16 | 15 | 14 | 13 | | | DECEMBER | 35 | 3090 | 1004 | 719 | .72 | 17.9 | 7 | 20 | 17 | 16 | 15 | 14 | | | JANUARY | 53 | 2122 | 1008 | 609 | .60 | 17.9 | 14 | 20 | 18 | 17 | 16 | 15 | | | FEBRUARY | 70 | 1571 | 775 | 338 | .44 | 13.8 | 30 | 23 | 19 | 18 | 17 | 16 | | | MARCH | 249 | 1757 | 802 | 393 | .49 | 14.3 | 60 | 27 | 22 | 20 | 19 | 18 | | | APRIL | 237 | 1065 | 637 | 207 | .32 | 11.3 | 90 | 32 | 26 | 24 | 23 | 21 | | | MAY | 153 | 956 | 438 | 201 | .46 | 7.8 | 120 | 42 | 34 | 30 | 28 | 26 | | | JUNE | 58 | 371 | 162 | 86 | .53 | 2.9 | 183 | 97 | 69 | 57 | 48 | 40 | | | JULY | 32 | 105 | 55 | 19 | .35 | 1.0 | | | | | | | | | AUGUST | 20 | 89 | 33 | 14 | .42 | .6 | | | | | | | | | SEPTEMBER | 17 | 132 | 36 | 22 | •60 | •6 | | | | | | | | | ANNUAL | 158 | 805 | 467 | 145 | .31 | 100 | | | | | | | | MAGNITUDE AND PROBABILITY OF INSTANTANEOUS PEAK FLOW BASED ON PERIOD OF RECORD 1955-82 MAGNITUDE AND PROBABILITY OF ANNUAL HIGH FLOW BASED ON PERIOD OF RECORD 1955-82 | | | | | | ICE INTER | |
PERIOD
(CON- | | INTER | VAL, ÍN | YEARS, A | ATED RECUI
ND ANNUAL
IN PERCEI | | |-------------|----------|--------------|-----------|----------|-----------|-----------|------------------------|----------|----------|-----------|----------|--------------------------------------|-----| | 1.25
80% | 2
50% | 5
20%
 | 10
10% | 25
4% | 50
2% | 100
1% | SECU-
TIVE
DAYS) | 2
50% | 5
20% | 10
10% | 25
4% | 50
2% | 100 | | 6560 | 9710 | 14100 | 16900 | 20400 | 23000 | | | | | | | | | | | | | | | | | 1 | 6570 | 9760 | 11600 | 13800 | 15200 | | | WEIGHTED | SKEW = | 214 | | | | | 3 | 4600 | 6740 | 8080 | 9680 | 10800 | | | | | | | | | | 7 | 2980 | 4370 | 5280 | 6430 | 7280 | | | | | | | | | | 15 | 2020 | 2850 | 3380 | 4010 | 4460 | | | | | | | | | | 30 | 1570 | 2120 | 2460 | 2850 | 3130 | | | | | | | | • | | 60 | 1240 | 1690 | 1960 | 2270 | 2490 | | | | | | | | | | 90 | 1070 | 1430 | 1650 | 1900 | 2070 | | DURATION TABLE OF DAILY MEAN FLOW FOR PERIOD OF RECORD 1955-82 | | | DISCH | ARGE, II | CFS, | WHICH WAS | EQUALED | OR EXCE | EDED FOR | INDICATED | PERCENT | OF TIME | | | | |----------|------|-------|----------|------|-----------|---------|---------|----------|-----------|---------|---------|-----|-----|-----| |
5% | 10% | 15% | 20% | 25% | 30% | 40% | 50% | 60% | 70% | 75% | 80% | 85% | 90% | 95% | |
1680 | 1110 | 862 | 702 | 581 | 490 | 342 | 215 | 116 | 60 | 46 | 37 | 31 | 26 | 22 | MAGNITUDE AND PROBABILITY OF ANNUAL LOW FLOW 185 ### 14318500 NORTH UMPQUA RIVER NEAR GLIDE, OR LOCATION.--Lat 43°18'20", long 123°07'00", in SW\ sec.13, T.26 S., R.4 W., Douglas County, Hydrologic Unit 17100301, about 1.0 mi downstream from Little River and 1.0 mi west of Glide. DRAINAGE AREA .-- 1,210 mi2. PERIOD OF RECORD. -- September 1915 to March 1919, October 1928 to September 1938. MONTHLY AND ANNUAL MEAN DISCHARGES 1916-38 GAGE.--Staff gage. Altitude of gage is 645 ft, river-profile survey. Sept. 1, 1915, to Oct. 17, 1922, staff gage 150 ft downstream at datum 0.60 ft higher. REMARKS. -- No diversion or regulation above station. AVERAGE DISCHARGE.--14 years (water years 1916-18, 1929-38), 3,115 ft3/s, 2,257,000 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 59,500 ft³/s Mar. 19, 1932, gage height, 17.3 ft; from graph based on gage readings; minimum, 552 ft³/s Aug. 27-30, Sept. 27, 1931, gage height, 0.84 ft. EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage known, 22.6 ft Nov. 22, 1909, discharge, 94,000 ft³/s, from rating curve extended above 40,000 ft³/s by logarithmic plotting. ## STATISTICAL SUMMARIES BASED ON PERIOD OF RECORD 1917-38 DISCHARGE, IN CFS, FOR INDICATED RECURRENCE STAN-DARD COEFFI- PERCENT PERIOD INTERVAL, IN YEARS, AND ANNUAL NON-CIENT OF DEVIA-٥F (CON-EXCEEDANCE PROBABILITY, IN PERCENT MINIMUM MAXIMUM MEAN TION VARI-ANNUAL SECU-MONTH (CES) (CES) (CES) (CES) ATION RUNOFF TIVE 100 2% 50% 20% 10% 5% DAYS) 1% OCTOBER 712 1502 957 229 2.6 716 630 564 635 NOVEMBER 58**2**6 2590 1824 595 565 __ 664 .70 6.9 3 723 --DECEMBER 1159 6869 3703 1715 9.9 7 730 642 603 573 JANUARY 992 10290 4807 2496 .52 12.8 14 742 653 612 581 FEBRUARY 1772 10260 4708 2485 .53 12.6 30 760 671 629 596 MARCH 2525 11730 5692 2377 .42 15.2 60 787 689 644 610 APRIL 1976 9309 5409 2099 .39 14.4 90 818 708 657 618 MAY 1346 7629 3888 1763 . 45 10.4 120 860 742 689 649 JUNE 1049 6406 2650 1608 .61 1180 919 750 7.1 183 819 JULY 743 2497 1324 548 3.5 .41 AUGUST 613 1270 915 192 .21 SEPTEMBER 624 2.2 1087 835 ANNUAL 1879 4283 3114 799 . 26 100 MAGNITUDE AND PROBABILITY OF INSTANTANEOUS PEAK FLOW MAGNITUDE AND PROBABILITY OF ANNUAL HIGH FLOW BASED ON PERIOD OF RECORD 1916-38 BASED ON PERIOD OF RECORD 1916-38 | | | | | RECURRENC
ROBABILITY | | | PERIOD
(CON- | DISC | INTER | VAL, ÍN | OR INDICA [.]
YEARS, ANI
ABILITY. | ANNUAL. | | |-------------|--------------|----------------------|-----------|-------------------------|------------------|-----------|------------------------|----------|------------------|-----------|--|----------|-----| | 1.25
80% | 2
50%
 | 5
20 %
 | 10
10% | 25
4% | 50
2 % | 100
1% | SECU-
TIVE
DAYS) | 2
50% | 5
20 % | 10
10% | 25
4% | 50
2% | 100 | | 26800 | 34600 | 44400 | 50500 | 57700 | | | | | | | | | | | | | | | | | | 1 | 27500 | 36400 | 42800 | 51700 | | | | WEIGHTE | D SKEW = | 085 | | | | | 3 | 19200 | 26300 | 32200 | 41000 | | | | | | | | | | | 7 | 14700 | 19100 | 22200 | 26100 | | | | | | | | | | | 15 | 10900 | 13700 | 15600 | 18100 | | | | | | | | | | | 30 | 8570 | 10200 | 11000 | 12000 | | | | | | | | | | | 60 | 6980 | 8320 | 9050 | 9830 | | | | | | | | | | | 90 | 6180 | 7420 | 8070 | 8730 | | | DURATION TABLE OF DAILY MEAN FLOW FOR PERIOD OF RECORD 1916-38 | | | DISC | HARGE, | IN CFS, | WHICH WAS | EQUALED | OR EXCE | EDED FOR | INDICATED | PERCENT | OF TIME | = | | | |------|------|------|--------|---------|-----------|---------|---------|----------|-----------|---------|---------|-----|-----|-----| | 5% | 10% | 15% | 20% | 25% | 30% | 40% | 50% | 60% | 70% | 75% | 80% | 85% | 90% | 95% | | 8610 | 6680 | 5700 | 4940 | 4230 | 3640 | 2750 | 1950 | 1380 | 1060 | 964 | 892 | 826 | 765 | 697 | ## 14319200 SUTHERLIN CREEK AT SUTHERLIN, OR LOCATION.--Lat 43°23'20", long 123°18'10", in SW½ sec.16, T.25 S., R.5 W., Douglas County, Hydrologic Unit 17100301, on right bank at downstream side of Waite Street bridge in Sutherlin, 1.5 mi upstream from Cooper Creek, and at mile 8.4. DRAINAGE AREA.--16.4 mi2. 122 61 38 28 21 16 PERIOD OF RECORD.--October 1955 to September 1967. GAGE.--Staff gage read once or twice daily and crest-stage gage. Datum of gage is 511.46 ft National Geodetic Vertical Datum of 1929. Prior to Dec. 17, 1963, at datum 1.00 ft higher. REMARKS.--No regulation. A few small diversions by pumping for irrigation above station. AVERAGE DISCHARGE.--12 years, 25.9 ft³/s, 18,750 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 2,250 ft³/s Feb. 10, 1961, gage height, 7.64 ft, datum then in use, from rating curve extended above 750 ft³/s by logarithmic plotting; maximum gage height, 8.24 ft Dec. 21, 1957, datum then in use; no flow for several months each year. STATISTICAL SUMMARIES | М | NTHLY AN | ID ANNUAL | MEAN DISC | CHARGES | 1956-67 | | м, | AGNITUDE A
BASEI | | ABILITY O | | LOW FLO | OW | |----------------------------------|---|---|--|--|--|----------------------|--|---|--|---|---|--|-----------------------| | | MINIMUM | | MEAN | STAN-
DARD
DEVIA-
TION | COEFFI-
CIENT OF
VARI- | OF
ANNUAL | PERIOD
(CON-
SECU- | | INTERVAL
EXCEEDAN | CFS, FOR
, IN YEAR
CE PROBAB | S, AND A | ANNUAL NO |) N-
NT
 | | MONTH | (CFS) | (CFS) | (CFS) | (CFS) | ATION | RUNOFF | TIVE
DAYS) | 2
50 % | 5
20 % | 10
10% | 20
5 % | 50
2 % | 100
1% | | OCTOBER | 0.0 | 18 | 2.3 | 5.1 | 2.22 | .7 | 1 | | | | | | | | NOVEMBER | .4 | 107 | 26 | 30 | 1.14 | 8.3 | 3 | | | | | | | | DECEMBER | 2.6 | 236 | 73 | 71 | •97 | 23.2 | 7 | | | | | | | | JANUARY | 6.4 | 134 | 67 | 47 | •71 | 21.5 | 14 | | | | | | | | FEBRUARY | 13 | 154 | 65 | 43 | •67 | 20.8 | 30 | | | | | | | | MARCH | 5.9 | 96 | 48 | 29 | .59 | 15.3 | 60 | | | | | | | | APRIL | 3.1 | 64 | 17 | 17 | 1.01 | 5.5 | 90 | | | | | | | | MAY | .5 | 50 | 13 _ | 17 | 1.31 | 4.1 | 120 | | | | | | | | JUNE | 0.0 | 7.8 | 1.3 | 2.1 | 1.65 | •4 | 183 | .8 | •2 | .1 | 0.0 | | | | JULY | 0.0 | .2 | 0.0 | .1 | 2.00 | 0.0 | | | | | | | | | AUGUST | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | NOTE: | LOW-FLOW | DATA UN | CERTAIN D | UE TO EX | CESSIVE | ZERO | | | 0.0 | 5.7 | •5 | 1.7 | 3.46 | •2 | | EVENTS. | | | | | | | SEPTEMBER | | | | | | | | | | | | | | | ANNUAL | | 51
PROBABILI | | | | 100
 |
MA | GNITUDE A | | | | | | | MAGNIT | TUDE AND
BASE | PROBABILI
D ON PERI | TY OF INS | STANTANEC
CORD 1956
CURRENCE | DUS PEAK
5-67 | FLOW | PERIOD | BASED

DISCHA | ON PER | CFS, FOR | CORD 19

INDICAT
ARS, AND | 956-67
ED RECUR | RENCE | | MAGNIT | TUDE AND
BASE | PROBABILI
D ON PERI
FOR INDI | TY OF INS | STANTANEC
CORD 1956
CURRENCE | OUS PEAK
5-67
INTERVAL
IN PERCE | FLOW | | BASED

DISCHA | ON PER | CFS, FOR | CORD 19

INDICAT
ARS, AND | 956-67
ED RECUR | RENCE | | MAGNIT | TUDE AND
BASE
IN CFS, | PROBABILI
D ON PERI
FOR INDI
L EXCEEDA | TY OF INS | STANTANEC
CORD 1956
CURRENCE
ABILITY, | OUS PEAK
5-67
INTERVAL
IN PERCE | FLOW
, IN | PERIOD
(CON- | BASED

DISCHA | ON PER | CFS, FOR
AL, IN YE
CE PROBAB | CORD 19

INDICAT
ARS, AND | 956-67
ED RECUR | RENCE | | MAGNIT
DISCHARGE,
YEARS, A | TUDE AND
BASE
IN CFS,
ND ANNUA | PROBABILI
D ON PERI
FOR INDI
L EXCEEDA | TY OF INSOD OF REC | STANTANEC
CORD 1956
CURRENCE
ABILITY, | DUS PEAK
5-67
INTERVAL
IN PERCE | FLOW, IN | PERIOD
(CON-
SECU- | BASED
DISCHA | ON PER | CFS, FOR
AL, IN YE
CE PROBAB | CORD 19 INDICAT ARS, AND | ED RECUR
ANNUAL
N PERCEN | RRENCE | | MAGNIT
DISCHARGE,
YEARS, A | TUDE AND
BASE
IN CFS,
ND ANNUA | PROBABILI
D ON PERI
FOR INDI
L EXCEEDA | TY OF INSOD OF REC | STANTANEC
CORD
1956
CURRENCE
ABILITY, | DUS PEAK
5-67
INTERVAL
IN PERCE | FLOW, IN | PERIOD
(CON-
SECU-
TIVE
DAYS) | DISCHA | O ON PER RGE, IN INTERV EXCEEDANC 5 20% | CFS, FOR
AL, IN YE
CE PROBAB | CORD 19 INDICAT ARS, AND ILITY, 1 25 4% | ED RECUF
ANNUAL
N PERCEN
50
2% | RRENCE
IT | | MAGNIT | TUDE AND BASE IN CFS, ND ANNUA 2 50% | PROBABILI
D ON PERI
FOR INDI
L EXCEEDA
5
20% | TY OF INSOD OF REC | STANTANEC
CORD 1956
CURRENCE
ABILITY, | DUS PEAK
5-67
INTERVAL
IN PERCE | FLOW, IN | PERIOD (CON- SECU- TIVE DAYS) | DISCHA 2 50% | O ON PER RRGE, IN INTERV/ EXCEEDANG 5 20% | CFS, FOR
AL, IN YE
CE PROBAB
10
10% | INDICATARS, ANDILITY, 1 | ED RECUR
ANNUAL
N PERCEN | RRENCE
IT | | MAGNIT | TUDE AND
BASE
IN CFS,
ND ANNUA | PROBABILI
D ON PERI
FOR INDI
L EXCEEDA
5
20% | TY OF INSOD OF REC | STANTANEC
CORD 1956
CURRENCE
ABILITY, | DUS PEAK
5-67
INTERVAL
IN PERCE | FLOW, IN | PERIOD (CON-
SECU-
TIVE DAYS) | BASED DISCHA E 2 50% 864 570 | O ON PER INTERV EXCEEDANG 5 20% 1240 737 | CFS, FOR AL, IN YE PROBAB | INDICATARS, ANDILITY, 1 | P56-67 TED RECUF ANNUAL N PERCEN 50 2% | RRENCE
IT | | MAGNIT | TUDE AND BASE IN CFS, ND ANNUA 2 50% | PROBABILI
D ON PERI
FOR INDI
L EXCEEDA
5
20% | TY OF INSOD OF REC | STANTANEC
CORD 1956
CURRENCE
ABILITY, | DUS PEAK
5-67
INTERVAL
IN PERCE | FLOW, IN | PERIOD (CON-
SECU-
TIVE
DAYS) | BASED DISCHA 2 50% 864 570 336 | 0 ON PER
NRGE, IN
INTERVA
EXCEEDANG
5
20%
1240
737
441 | 100 OF RE CFS, FOR AL, IN YE CE PROBAB 10 10% 1490 816 498 | INDICAT
ARS, AND
ILITY, I | ED RECUF
ANNUAL
N PERCEN
50
2% | RRENCE
IT | | MAGNIT | TUDE AND BASE IN CFS, ND ANNUA 2 50% | PROBABILI
D ON PERI
FOR INDI
L EXCEEDA
5
20% | TY OF INSOD OF REC | STANTANEC
CORD 1956
CURRENCE
ABILITY, | DUS PEAK
5-67
INTERVAL
IN PERCE | FLOW, IN | PERIOD
(CON-
SECU-
TIVE
DAYS)
 | BASED DISCHA E 2 50% 864 570 336 198 | 5
20%
1240
737
441
267 | 100 OF RE CFS, FOR AL, IN YE CE PROBAB 10 10 10 490 816 498 312 | INDICATARS, ANDILITY, 1 | P56-67 TED RECUF ANNUAL N PERCEN 50 2% | RRENCE
IT | | MAGNIT | TUDE AND BASE IN CFS, ND ANNUA 2 50% | PROBABILI
D ON PERI
FOR INDI
L EXCEEDA
5
20% | TY OF INSOD OF REC | STANTANEC
CORD 1956
CURRENCE
ABILITY, | DUS PEAK
5-67
INTERVAL
IN PERCE | FLOW, IN | PERIOD (CON-
SECU-
TIVE DAYS) 1 3 7 7 15 30 | BASED DISCHA 2 50 864 570 336 198 135 | 0 ON PER INTERVAL EXCEEDANCE 5 20% 1240 737 441 267 180 | 100 OF RE CFS, FOR AL, IN YE E PROBAB 10 10% 1490 816 498 312 210 | INDICAT
ARS, AND
ILITY, I | P56-67 TED RECUF ANNUAL N PERCEN 50 2% | RRENCE
IT | | MAGNIT | TUDE AND BASE IN CFS, ND ANNUA 2 50% | PROBABILI
D ON PERI
FOR INDI
L EXCEEDA
5
20% | TY OF INSOD OF REC | STANTANEC
CORD 1956
CURRENCE
ABILITY, | DUS PEAK
5-67
INTERVAL
IN PERCE | FLOW, IN | PERIOD (CON-
SECU-
TIVE DAYS) 1 3 7 15 30 60 | BASED DISCHA 2 50% 864 570 336 198 135 94 | 1240
737
441
267
180 | 100 OF RE CFS, FOR AL, IN YE CE PROBAB 10 10% 1490 816 498 312 210 148 | INDICAT
ARS, AND
ILITY, I | P56-67 TED RECUF ANNUAL N PERCEN 50 2% | RRENCE
IT | | MAGNIT | TUDE AND BASE IN CFS, ND ANNUA 2 50% | PROBABILI
D ON PERI
FOR INDI
L EXCEEDA
5
20% | TY OF INSOD OF RECONCE PROBA- 10 10% | STANTANEC
CORD 1950
CURRENCE
ABILITY,
25
4% | DUS PEAK
5-67
INTERVAL
IN PERCE
50
2% | FLOW , IN NT 100 1% | PERIOD (CON-
SECU-
TIVE DAYS) | BASED DISCHA 2 50% 864 570 336 198 135 94 73 | 1240
737
441
180
124
96 | 100 OF RE CFS, FOR AL, IN YE CE PROBAB 10 10% 1490 816 498 312 210 148 115 | INDICAT
ARS, AND
ILITY, I | P56-67 TED RECUF ANNUAL N PERCEN 50 2% | RRENCE | | MAGNIT | TUDE AND BASE IN CFS, ND ANNUA 2 50% | PROBABILI
D ON PERI
FOR INDI
L EXCEEDA
5
20% | TY OF INSOD OF RECONCE PROBA- 10 10% | STANTANEC
CORD 1950
CURRENCE
ABILITY,
25
4% | DUS PEAK
5-67
INTERVAL
IN PERCE
50
2% | FLOW , IN NT 100 1% | PERIOD (CON-
SECU-
TIVE DAYS) 1 3 7 15 30 60 | BASED DISCHA 2 50% 864 570 336 198 135 94 73 | 1240
737
441
180
124
96 | 100 OF RE CFS, FOR AL, IN YE CE PROBAB 10 10% 1490 816 498 312 210 148 115 | INDICAT
ARS, AND
ILITY, I | P56-67 TED RECUF ANNUAL N PERCEN 50 2% | RRENCE | | MAGNIT | TUDE AND BASE IN CFS, ND ANNUA 2 50% | PROBABILI
D ON PERI
FOR INDI
L EXCEEDA
5
20% | TY OF INSOD OF RECONCE PROBA- 10 10 2300 DURATION | STANTANEC
CORD 1956
CURRENCE
BILITY,
25
4% | DUS PEAK
5-67
INTERVAL
IN PERCE
50
2% | FLOW , IN NT 100 1% | PERIOD (CON-
SECU-
TIVE DAYS) | BASED DISCHA E 2 50% 864 570 336 198 135 94 73 OF RECOR | 1240
737
1441
267
180
196 | 100 OF RE CFS, FOR AL, IN YE CE PROBAB 10 10% 1490 816 498 312 210 148 115 | INDICATARS, ANCILITY, I | P56-67 TED RECUF ANNUAL N PERCEN 50 2% | RRENCE
IT | 7.2 2.4 .5 0.0 0.0 0.0 0.0 ### 14319500 NORTH UMPOUA RIVER AT WINCHESTER, OR LOCATION.--Lat 43°16'20", long 123°24'40", in NW±NE± sec.33, T.26 S., R.6 W., Douglas County, Hydrologic Unit 17100301, on left bank 400 ft downstream from county bridge, 3.0 mi west of Winchester, and at mile 1.8. DRAINAGE AREA .-- 1,344 mi2. PERIOD OF RECORD.--October 1908 to December 1913, October 1923 to September 1929, August 1954 to September 1982. Prior to December 1908, monthly discharge only, published in WSP 1318. GAGE.--Water-stage recorder. Datum of gage is 372.97 ft Mational Geodetic Vertical Datum of 1929 (Douglas County Road Department bench mark). Oct. 1, 1908, to Dec. 31, 1913, and Oct. 1, 1923, to Sept. 30, 1929, nonrecording gage at site 4.8 mi upstream at different datums. Aug. 27, 1954, to Aug. 12, 1965, water-stage recorder on right bank at same datum. REMARKS.--Diurnal fluctuation caused by upstream powerplants; slight regulation by Lemolo Lake and Diamond Lake. Several small diversions for irrigation above station. AVERAGE DISCHARGE.--39 years, 3,730 ft^3/s , 37.69 in/yr, 2,702,000 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.—Maximum discharge, 150,000 ft³/s Dec. 22, 1964, gage helght, 34.2 ft, from floodmark; minimum, 383 ft³/s Sept. 25, 1960; minimum daily, 578 ft³/s Sept. 14, 1959. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of Oct. 29, 1950, reach a stage of 23.2 ft, from floodmark, at site 4.8 mi upstream at different datum, discharge, 88,000 ft³/s. Flood of Nov. 23, 1953, reach a stage of 28.4 ft, from floodmarks, present site and datum, discharge, 93,300 ft³/s. # STATISTICAL SUMMARIES MONTHLY AND ANNUAL MEAN DISCHARGES 1909-82 MAGNITUDE AND PROBABILITY OF ANNUAL LOW FLOW BASED ON PERIOD OF RECORD 1910-82 | | MINIMUM | MAXIMUM | MEAN | STAN-
DARD
DEVIA-
TION | COEFFI-
CIENT OF
VARI- | PERCENT
OF
ANNUAL | PERIOD
(CON-
SECU- | DISCH | INTERVAL | I CFS, FO
., IN YEA
ICE PROBA | RS, AND | ANNUAL N | ON- | |-----------|---------|---------|-------|---------------------------------|------------------------------|-------------------------|--------------------------|----------|------------------|-------------------------------------|----------|----------|-----------| | MONTH | (CFS) | (CFS) | (CFS) | (CFS) | ATION | RUNOFF | TIVE
DAYS) | 2
50% | 5
20 % | 10
10% | 20
5% | 50
2% | 100
1% | | OCTOBER | 855 | 2752 | 1375 | 436 | .32 | 3.1 | 1 | 739 | 664 | 631 | 606 | 580 | | | NOVEMBER | 1070 | 12550 | 4193 | 2800 | .67 | 9.3 | 3 | 777 | 694 | 658 | 630 | 603 | | | DECEMBER | 1005 | 23640 | 6367 | 4587 | .72 | 14.2 | 7 | 813 | 723 | 681 | 650 | 618 | | | JANUARY | 1125 | 15220 | 6983 | 3824 | .55 | 15.6 | 14 | 840 | 749 | 707 | 675 | 641 | | | FEBRUARY | 1019 | 12130 | 6167 | 2546 | .41 | 13.7 | 30 | 872 | 776 | 732 | 697 | 661 | | | MARCH | 2245 | 12880 | 5555 | 2476 | .45 | 12.4 | 60 | 927 | 822 | 772 | 734 | 693 | | | APRIL | 1605 | 7246 | 4718 | 1433 | .30 | 10.5 | 90 | 984 | 867 | 811 | 766 | 719 | | | MAY | 1401 | 7147 | 3801 | 1258 | •33 | 8.5 | 120 | 1070 | 934 | 871 | 821 | 768 | | | JUNE | 913 | 4249 | 2407 | 900 | .37 | 5.4 | 183 | 1470 | 1200 | 1080 | 982 | 885 | | | JULY | 717 | 2824 | 1336 | 387 | . 29 | 3.0 | | | | | | | | | AUGUST | 698 | 1578 | 1002 | 196 | .20 | 2.2 | | | | | | | | | SEPTEMBER | 708 | 1398 | 984 | 168 | • 17 | 2.2 | | | | | | | | | ANNUAL | 1639 | 6116 | 3729 | 1021 | •27 | 100 | | | | | | | | MAGNITUDE AND PROBABILITY OF INSTANTANEOUS PEAK FLOW BASED ON PERIOD OF RECORD 1909-82 MAGNITUDE AND PROBABILITY OF ANNUAL HIGH FLOW BASED ON PERIOD OF RECORD 1909-82 | | • | • | | | NCE INTER | | PERIOD
(CON- | DISC | INTER | VAL, ÍN | YEARS, A | ATED RECU
ND ANNUAL
IN PERCE | | |-------------|----------|------------------|-----------|----------|------------------|-----------|------------------------|----------|------------------|-----------|----------|------------------------------------|-----------| | 1.25
80% | 2
50% | 5
20 % | 10
10% | 25
4% | 50
2 % | 100
1% | SECU-
TIVE
DAYS) | 2
50% | 5
20 % | 10
10% | 25
4% | 50
2% | 100
1% | | 32100 | 47900 | 71600 | 88400 | 111000 | 128000 | | | | | | | | | | | | | | | | | 1 | 38400 | 57200 | 68300 | 81000 | 89400 | | | WEIGHTE | D SKEW = | • .016 | | | | | 3 | 27500 | 41500 | 50600 | 62000 | 70200 | | | | | | | | | | 7 | 18800 | 27800 | 33800 | 41400 | 47200 | | | | | | | | | | 15 | 13200 | 18600 | 22300 | 26900 | 30300 | | | | | | | | | | 30 | 10300 | 13900 | 16200 | 19100 | 21300 | | | | | | | | | | 60 | 8190 | 11100 | 13000 | 15400 | 17200 | | | | | | | | | | 90 | 7190 | 9510 | 11000 | 12900 | 14300 | | DURATION TABLE OF DAILY MEAN FLOW FOR PERIOD OF RECORD 1909-82 | | | DIS | CHARGE, | IN CFS, | WHICH WAS | EQUALED | OR EXC | CEEDED FOR | INDICATED | PERCEN | T OF TIM | E | | |
-------|------|------|---------|---------|-----------|---------|--------|------------|-----------|--------|----------|-----|-----|-----| | 5% | 10% | 15% | 20% | 25% | 30% | 40% | 50% | 60% | 70% | 75% | 80% | 85% | 90% | 95% | | 11100 | 7510 | 6000 | 5110 | 4430 | 3930 | 3140 | 2430 | 1730 | 1310 1 | 170 | 1070 | 981 | 891 | 797 | ### 14320700 CALAPOOYA CREEK NEAR OAKLAND, OR LOCATION.--Lat 43°24'10", long 123°21'45", in NW± sec.13, T.25 S., R.6 W., Douglas County, Hydrologic Unit 17100303, near center of span on downstream side of highway bridge, 0.9 mi downstream from Williams Creek, 2.5 mi northwest of Sutherlin, 3.5 mi southwest of Oakland, and at mile 10.1. DRAINAGE AREA .-- 210 mi2. PERIOD OF RECORD. -- October 1955 to September 1973. GAGE.--Water-stage recorder. Datum of gage is 371.26 ft National Geodetic, Vertical Datum of 1929. Prior to June 22, 1968, nonrecording gage at same site and datum. REMARKS.--No regulation. Diversion above station for municipal supply of cities of Sutherlin and Oakland. Small diversions by pumping for irrigation above station. AVERAGE DISCHARGE.--18 years, 495 ft³/s, 32.01 in/yr, 358,600 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 26,600 ft³/s Nov. 23, 1961, gage height, 21.55 ft; no flow Sept. 9-11, 1966. ## STATISTICAL SUMMARIES MONTHLY AND ANNUAL MEAN DISCHARGES 1956-73 MAGNITUDE AND PROBABILITY OF ANNUAL LOW FLOW | | MINIMUM | MAXIMUM | MEAN | STAN-
DARD
DEVIA-
TION | COEFFI-
CIENT OF
VARI- | PERCENT
OF
ANNUAL | PERIOD
(CON-
SECU- | 11 | NTERVAL, | CFS, FOR
IN YEARS
E PROBABI | , AND AN | NUAL NO | N- | |-----------|---------|---------|-------|---------------------------------|------------------------------|-------------------------|--------------------------|------------------|------------------|-----------------------------------|------------------|------------------|-----| | MONTH | (CFS) | (CFS) | (CFS) | (CFS) | ATION | RUNOFF | TIVE
DAYS) | 2
50 % | 5
20 % | 10
10% | 20
5 % | 50
2 % | 100 | | OCTOBER | 18 | 329 | 76 | 73 | •96 | 1.3 | 1 | | | | | | | | NOVEMBER | 62 | 1240 | 510 | 349 | .68 | 8.6 | 3 | | | | | | | | DECEMBER | 108 | 3856 | 1243 | 977 | •79 | 20.9 | 7 | 6.4 | 3.3 | 2.1 | 1.4 | | | | JANUARY | 120 | 2296 | 1261 | 727 | • 58 | 21.2 | 14 | 7.2 | 4.3 | 3.1 | 2.3 | | | | FEBRUARY | 290 | 2229 | 1004 | 520 | .52 | 16.9 | 30 | 8.4 | 5.2 | 3.9 | 2.9 | | | | MARCH | 208 | 1912 | 943 | 508 | -54 | 15.8 | 60 | 12 | 7.2 | 5.3 | 4.0 | | | | APRIL | 211 | 1342 | 478 | 278 | •58 | 8.0 | 90 | 14 | 9.8 | 7.8 | 6.3 | | | | MAY | 58 | 912 | 288 | 230 | .80 | 4.8 | 120 | 22 | 15 | 12 | 10 | | | | JUNE | 25 | 233 | 95 | 53 | . 56 | 1.6 | 183 | 58 | 39 | 31 | 26 | , | | | JULY | 9.1 | 60 | 27 | 16 | •57 | •5 | | | | | | | | | AUGUST | 2.6 | 29 | 12 | 6.7 | • 56 | •2 | | | | | | | | | SEPTEMBER | 4.3 | 35 | 16 | 8.4 | •52 | .3 | | | | | | | | | ANNUAL | 250 | 905 | 495 | 146 | .29 | 100 | | | | | | | | | | | | | RECURRENC
ROBABILITY | | | PERIOD
(CON- | DISC | INTER | /AL, ÍN ' | OR INDICAT
YEARS, AND
ABILITY, I | ANNUAL | | |-------------|----------|------------------|-----------|-------------------------|------------------|-----------|-----------------|------------------|------------------|-----------|--|------------------|-----| | 1.25
80% | 2
50% | 5
20 % | 10
10% | 25
4% | 50
2 % | 100
1% | SECU-
TIVE | | | | | | | | | 20%
 | 20% | 10% | 4 <i>7</i> 5 | | 179 | DAYS) | 2
50 % | 5
20 % | 10
10% | 25
4 % | 50
2 % | 100 | | 7810 | 12500 | 19300 | 23800 | 29500 | | | | | | | | | | | | | | | | | | 1 | 8540 | 12300 | 14400 | 16400 | | - | | EIGHTE | D SKEW = | 305 | | | | | 3 | 6170 | 8550 | 9720 | 10800 | | | | | | | | | | | 7 | 4070 | 5770 | 6790 | 7960 | | | | | | | | | | | 15 | 2730 | 3800 | 4440 | 5200 | | | | | | | | | | | 30 | 2010 | 2680 | 3090 | 3580 | | | | | | | | | | | 60 | 1570 | 2080 | 2400 | 2800 | | | DURATION TABLE OF DAILY MEAN FLOW FOR PERIOD OF RECORD 1956-73 90 1330 1710 1930 2190 | | | DISC | HARGE, I | N CFS, | WHICH WAS | EQUALED | OR EXCE | EDED FOR | INDICATE | D PERCE | NT OF TH | ME | | | |------|------|------|----------|--------|-----------|---------|-------------|----------|----------|---------|----------|-------------|-----|-----| | 5% | 10% | 15% | 20% | 25% | 30% | 40% | 50 % | 60% | 70% | 75% | 80% | 85 % | 90% | 95% | | 2090 | 1330 | 952 | 706 | 542 | 424 | 267 | 150 | 79 | 40 | 28 | 20 | 15 | 11 | 7.1 | 189 ### 14321000 UMPQUA RIVER NEAR ELKTON, OR LOCATION.--Lat 43°35'10", long 123°33'15", in NW½ sec.8, T.23 S., R.7 W., Douglas County, Hydrologic Unit 17100303, on left bank 3.5 mi south of Elkton, 8.3 mi upstream from Elk Creek, and at mile 56.9. DRAINAGE AREA .-- 3,683 mi2. PERIOD OF RECORD. -- October 1905 to September 1982. 25000 17600 13700 11100 9270 7860 5720 4000 2490 1580 1410 1270 1160 1060 936 GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 90.42 ft National Geodetic Vertical Datum of 1929. Prior to June 29, 1972, at site 2,400 ft downstream at same datum. See WSP 1931 or 2135 for history of changes prior to June 29, 1972. REMARKS.--Regulation by powerplants on North Umpqua River ordinarily does not affect discharge at this station. Diversions for irrigation above station. AVERAGE DISCHARGE.--77 years, 7,480 ft³/s, 27.58 in/yr, 5,419,000 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.---Maximum discharge, 265,000 ft³/s Dec. 23, 1964, gage height, 51.95 ft, from floodmarks, minimum observed, 640 ft³/s July 18, 1926. EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least Dacember 1861, that of Dec. 23, 1964. | | MINIMUM | MAX I MUM | MEAN | STAN-
DARD
DEVIA-
TION | COEFFI-
CIENT OF
VARI- | PERCENT
OF
ANNUAL | PERIOD
(CON-
SECU- | DISC | INTERVA | L, IN YE | FOR INDICEARS, AND
BABILITY, | ANNUAL | NON- | |--|---|--|--|---|---|--|---|---|---|---|--|--|---| | MONTH | (CFS) | (CFS) | (CFS) | (CFS) | ATION | RUNOFF | TIVE
DAYS) | 2
50 % | 5
20 % | 10
10 ≴ | 20
5 % | 50
2 % | 100
1% | | OCTOBER NOVEMBER DECEMBER JANUARY FEBRUARY MARCH APRIL JULY JUNE JULY AUGUST SEPTEMBER | 857
832
1238
1440
1365
3462
2432
1934
1053
742
703
740 | 14200
29500
51220
34900
32800
27100
20480
15800
9526
5063
1867
3475 | 1914
7042
13390
16300
15150
12360
9633
6516
3767
1740
1173
1188 | 1701
5653
9648
8854
6710
5563
4012
2901
1841
733
238
339 | .89
.80
.72
.54
.44
.45
.42
.45
.49
.42
.20 | 2.1
7.8
14.8
18.1
16.8
13.7
10.7
7.2
4.2
1.9
1.3 | 1
3
7
14
30
60
90
120
183 | 964
978
994
1010
1040
1100
1170
1280
2030 | 839
850
863
876
899
946
996
1070 | 776
786
797
810
829
870
910
970
1320 | 727
735
745
757
773
809
841
893
1160 | 674
679
687
700
713
743
767
814
1000 | 639
643
650
663
675
701
720
764
907 | | | | | | | .30
OUS PEAK | 100

FLOW |
MA | | | | OF ANNU | | | | OISCHARGE,
YEARS, A | TUDE AND
BASE | PROBABILI
D ON PERIO | TY OF IN
OD OF RE | STANTANE
CORD 190 | OUS PEAK | FLOW |
PERIOD
(CON- | BAS | ED ON PE

HARGE, I
INTER | RIOD OF

N CFS, F
VAL, IN | OF ANNU RECORD OR INDIC YEARS, A | 1906-82
ATED REC | URRENCE | | MAGNIT | TUDE AND
BASE | PROBABILI
D ON PERIO | TY OF IN
OD OF RE | STANTANE
CORD 190 | OUS PEAK
6-82
INTERVAL
IN PERCE | FLOW | PERIOD | BAS | ED ON PE

HARGE, I
INTER | RIOD OF

N CFS, F
VAL, IN | RECORD
OR INDIC
YEARS, A | 1906-82
ATED REC | URRENCE | | MAGNITODI SCHARGE, YEARS, / | TUDE AND BASE IN CFS, AND ANNUA 2 50% | PROBABILI' D ON PERIO FOR INDI- L EXCEEDA 5 20\$ 40000 17: | TY OF INDO OF RE | STANTANE CORD 190 CURRENCE ABILITY, 25 4% | OUS PEAK
6-82
INTERVAL
IN PERCE
50
2% | FLOW , IN NT 100 1% | PERIOD
(CON-
SECU-
TIVE | BAS DISC 2 50\$ 82200 62600 45100 31900 24400 19300 16800 | HARGE, I INTER EXCEEDA 5 20\$ | N CFS, F
VAL, IN
NCE PROE
10
10\$
146000
110000
74500
36700
29000
25200 | RECORD OR INDIC YEARS, A BABILITY, 25 | 1906-82 ATED REC ND ANNUA IN PERC | URRENCE
L
ENT | | MAGNITODI SCHARGE, YEARS, / | TUDE AND BASE IN CFS, AND ANNUA 2 50% | PROBABILI' D ON PERIO FOR INDIA L EXCEEDA 5 20\$ 40000 17:029 | TY OF IN OD OF RE | STANTANE CORD 190 CURRENCE ABILITY, 25 4% 3000 24 | OUS PEAK 6-82 INTERVAL IN PERCE 50 2% 4000 276 | FLOW , IN NT 100 1% 000 | PERIOD (CON- SECU- TIVE DAYS) 1 3 7 7 15 30 60 90 |
BAS DISC 2 50\$ 82200 62600 45100 31900 24400 19300 0F REC | HARGE, I INTER EXCEEDA 5 20% | N CFS, F VAL, IN NCE PROB 10 10 10 10 10 10 10 10 10 10 10 10 10 | RECORD OR INDIC YEARS, A ABBILITY, 25 4\$ 174000 131000 86900 41300 32700 28600 | 1906-82 ATED REC ND ANNUA IN PERC 50 2\$ 194000 145000 95300 61600 44200 35100 | 212000
159000
103000
65800
37200 | ### 14322000 ELK CREEK NEAR DRAIN. OR LOCATION.--Lat 43°38'30", long 123°17'50", in NE\subsets SW\subsets sec.21, T.22 S., R.5 W., Douglas County, Hydrologic Unit 17100303, on right bank at downstream side of highway bridge, 0.2 mi downstream from Yoncalla Creek, 1.7 mi southeast of Drain, and at mile 26.2. DRAINAGE AREA .-- 104 mi2. 1010 580 393 270 204 157 85 PERIOD OF RECORD. -- October 1955 to September 1973. GAGE.--Water-stage recorder. Datum of gage is 305.96 ft National Geodetic Vertical Datum of 1929. REMARKS.--No regulation. Small diversions by pumping for irrigation above station. Municipal supply for town of Yoncalla is diverted from Wilson Creek above station. AVERAGE DISCHARGE.--18 years, 222 ft^3/s , 29.90 in/yr, 165,900 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.—Maximum discharge, 15,000 ft^3/s Feb. 10, 1961, gage height, 23.7 ft, from floodmark, from rating curve extended above 7,500 ft^3/s ; no flow at times. ### STATISTICAL SUMMARIES | | MINIMA | MAVIMIN | MEAN | STAN-
DARD
DEVIA- | COEFFI-
CIENT OF | PERCENT
OF | PERIOD
(CON-
SECU- | 1 | NTERVAL, | IN YEA | OR INDICAT
ARS, AND A
ABILITY, I | NNUAL N | ON- | |---|---|--|--|--|---|--|---|--|--|--|--|--|-----------| | MONTH | (CFS) | MAXIMUM
(CFS) | MEAN
(CFS) | TION
(CFS) | VARI-
ATION | ANNUAL
RUNOFF | TIVE
DAYS) | 2
50% | 5
20 % | 10
10% | 20
5% | 50
2% | 100
1% | | OCTOBER | 5.5 | 99 | 21 | 24 | 1.11 | .8 | 1 | .2 | 0.0 | 0.0 | 0.0 | | | | IOVEMBER | 8.6 | 611 | 217 | 177 | .82 | 8.1 | 3 | .3 | .1 | 0.0 | 0.0 | | | | ECEMBER | 33 | 1869 | 582 | 476 | .82 | 21.8 | 7 | . 5 | .2 | .1 | 0.0 | | | | ANUARY | 67 | 1212 | 619 | 377 | .61 | 23.2 | 14 | .7 | .3 | .2 | | | | | EBRUARY | 126 | 1375 | 498 | 325 | .65 | 18.6 | 30 | 1.3 | •6 | .3 | | | | | MARCH | 83 | 807 | 408 | 236 | .58 | 15.3 | 60 | 2.0 | 1.0 | .7 | | | | | NPRIL | 63 | 649 | 182 | 142 | .78 | 6.8 | 90 | 3.0 | 1.7 | 1.3 | | | | | MAY | 19 | | 102 | 91 | .89 | 3.8 | 120 | 5.2 | 3.2 | 2.4 | | | | | | | 361 | | | | | | | | | | | | | IUNE | 6.7 | 63 | 30 | 15 | .51 | 1.1 | 183 | 16 | 9.7 | 7.4 | 6.0 | | | | JULY | .9 | 18 | 7.2 | 5.3 | .74 | •3 | | | | | | | | | AUGUST | .1 | 12 | 2.4 | 2.7 | 1.12 | •1 | | | | | | | | | SEPTEMBER | .9 | 10 | 3.5 | 2.7 | .76 | .1 | | | | | | | | | NNUAL | 106 | 404 | 222 | 69 | .31 | 100 | | | | | | | | | | UDE AND | PROBABILI
D ON PERI | TY OF INS | TANTANE | DUS PEAK I | |
MAC | | | | OF ANNUAL | | | | MAGNIT | TUDE AND
BASE | PROBABILI | TY OF INS | STANTANE
CORD 1956 | DUS PEAK 15-73 | FLOW | MAC | BASED
DISCHA | ON PERI | OD OF F
CFS, FO
L, IN Y | | 56-73
ED RECUR | RRENCE | | MAGNIT | TUDE AND
BASE
IN CFS,
ND ANNUA | PROBABILI
D ON PERI
FOR INDI-
L EXCEEDA | TY OF INS
OD OF REC
CATED REC
NCE PROBA | STANTANECORD 1956
CURRENCE WILLITY, | DUS PEAK 1
5-73
INTERVAL
IN PERCEN | FLOW | PERIOD
(CON-
SECU- | BASED
DISCHA
E | ON PERI | OD OF F
CFS, FO
L, IN Y
E PROBA | RECORD 19 OR INDICAT (EARS, AND OBILITY, I | 56-73 ED RECUF ANNUAL N PERCEN | RRENCE | | MAGNIT
ISCHARGE,
YEARS, A | TUDE AND
BASE
IN CFS, | PROBABILI
D ON PERI
FOR INDI | TY OF INS | STANTANEI
CORD 1956
CURRENCE | DUS PEAK (
5-73
INTERVAL,
IN PERCE | FLOW
, IN | PERIOD
(CON-
SECU-
TIVE | BASED DISCHA E | ON PERI
RGE, IN
INTERVA
XCEEDANC | OD OF F | RECORD 19 OR INDICAT (EARS, AND ABILITY, I | 56-73 ED RECUF ANNUAL N PERCEN | RRENCE | | MAGNIT | TUDE AND
BASE
IN CFS,
ND ANNUA | PROBABILI
D ON PERI
FOR INDI-
L EXCEEDA | TY OF INS
OD OF REC
CATED REC
NCE PROBA | STANTANECORD 1956
CURRENCE WILLITY, | DUS PEAK 1
5-73
INTERVAL
IN PERCEN | FLOW | PERIOD
(CON-
SECU- | BASED
DISCHA
E | ON PERI | OD OF F
CFS, FO
L, IN Y
E PROBA | RECORD 19 OR INDICAT (EARS, AND OBILITY, I | 56-73 ED RECUF ANNUAL N PERCEN | RRENCE | | MAGNIT | TUDE AND
BASE
IN CFS,
ND ANNUA | PROBABILI
D ON PERI
FOR INDI-
L EXCEEDA
5
20% | TY OF INS
OD OF REC
CATED REC
NCE PROBA | STANTANECORD 1956
CURRENCE WILLITY, | DUS PEAK 1
5-73
INTERVAL
IN PERCEN | FLOW | PERIOD (CON- SECU- TIVE DAYS) | DISCHA E 2 50% | ON PERI | OD OF F
CFS, FO
L, IN Y
E PROBA | RECORD 19 OR INDICAT PEARS, AND ABILITY, 1 25 44 | 56-73 ED RECUF ANNUAL N PERCEN 50 2% | RRENCE | | MAGNIT | IN CFS, AND ANNUA 2 50% | PROBABILI
D ON PERI
FOR INDI-
L EXCEEDA
5
20% | TY OF INS
OD OF REC
CATED REC
NCE PROBA | STANTANEI
CORD 1956
CURRENCE
(BILITY,
25
4% | DUS PEAK 1
5-73
INTERVAL
IN PERCEN | FLOW | PERIOD
(CON-
SECU-
TIVE
DAYS) | DISCHA E 2 50% | ON PERI | OD OF F
CFS, FO
L, IN Y
E PROBA
10
10% | RECORD 19 OR INDICAT FEARS, AND BILLITY, I 25 4% | ED RECUP
ANNUAL
N PERCEN
50
2% | RRENCE | | MAGNIT
DISCHARGE,
YEARS, A
1.25
80% | IN CFS, AND ANNUA 2 50% | PROBABILI
D ON PERI
FOR INDI-
L EXCEEDA
5
20% | TY OF INS
OD OF REC
CATED REC
NCE PROBA | STANTANEI
CORD 1956
CURRENCE
(BILITY,
25
4% | DUS PEAK 1
5-73
INTERVAL
IN PERCEN | FLOW | PERIOD (CON- SECU- TIVE DAYS) | DISCHA E 2 50% 4630 3250 | ON PERI
RGE, IN I
INTERVAL
XCEEDANC
5
20%
7100
4820 | OD OF F
CFS, FO
L, IN Y
E PROBA
10%
8620
5730 | DR INDICAT
(EARS, AND
BILITY, I
25
4% | 56-73 ED RECUF ANNUAL N PERCEN 50 2% | RRENCE | | MAGNIT
DISCHARGE,
YEARS, A
1.25
80% | IN CFS, AND ANNUA 2 50% | PROBABILI
D ON PERI
FOR INDI-
L EXCEEDA
5
20% | TY OF INS
OD OF REC
CATED REC
NCE PROBA | STANTANEI
CORD 1956
CURRENCE
(BILITY,
25
4% | DUS PEAK 1
5-73
INTERVAL
IN PERCEN | FLOW | PERIOD
(CON-
SECU-
TIVE
DAYS) | DISCHA E 2 50% | ON PERI | OD OF F
CFS, FO
L, IN Y
E PROBA
10
10% | RECORD 19 OR INDICAT FEARS, AND BILLITY, I 25 4% | ED RECUP
ANNUAL
N PERCEN
50
2% | RRENCE | | MAGNIT | IN CFS, AND ANNUA 2 50% | PROBABILI
D ON PERI
FOR INDI-
L EXCEEDA
5
20% | TY OF INS
OD OF REC
CATED REC
NCE PROBA | STANTANEI
CORD 1956
CURRENCE
(BILITY,
25
4% | DUS PEAK 1
5-73
INTERVAL
IN PERCEN | FLOW | PERIOD (CON- SECU- TIVE DAYS) | DISCHA E 2 50% 4630 3250 | ON PERI
RGE, IN I
INTERVAL
XCEEDANC
5
20%
7100
4820 | OD OF F
CFS, FO
L, IN Y
E PROBA
10%
8620
5730 | DR INDICAT
(EARS, AND
BILITY, I
25
4% | ED RECUP
ANNUAL
N PERCEN
50
2% | RRENCE | | MAGNIT | IN CFS, AND ANNUA 2 50% | PROBABILI
D ON PERI
FOR INDI-
L EXCEEDA
5
20% | TY OF INS
OD OF REC
CATED REC
NCE PROBA | STANTANEI
CORD 1956
CURRENCE
(BILITY,
25
4% | DUS PEAK 1
5-73
INTERVAL
IN PERCEN | FLOW | PERIOD (CON- SECU- TIVE DAYS) 1 3 7 | DISCHA E 2 50% 4630 3250 2170 | ON PERI RGE, IN I INTERVAL 5 20% 7100 4820 3160 | OD OF F
CFS, FC
L, IN Y
E PROBA
10
10\$
8620
5730
3760 | RECORD 19 RRINDICAT FEARS, AND BILITY, I 25 4% 10400 6710 4440 | 56-73 ED RECUF ANNUAL N PERCEN 50 2% | RRENCE | | MAGNIT | IN CFS, AND ANNUA 2 50% | PROBABILI
D ON PERI
FOR INDI-
L EXCEEDA
5
20% | TY OF INS
OD OF REC
CATED REC
NCE PROBA | STANTANEI
CORD 1956
CURRENCE
(BILITY,
25
4% | DUS PEAK 1
5-73
INTERVAL
IN PERCEN | FLOW | PERIOD (CON- SECU- TIVE DAYS) 1 3 7 | DISCHA E 2 50% 4630 3250 2170 1410 | ON PERI
RGE, IN INTERVAL
XCEEDANCE
5
20%
7100
4820
3160
2000 | OD OF F
CFS, FC
L, IN Y
E PROBA
10
10\$
8620
5730
3760
2370 | DR INDICAT
(FARS, AND
(BILITY, 1)
25
4%
10400
6710
4440
2790 | 56-73 ED RECUF ANNUAL N PERCEN 50 2% | RRENCE | | MAGNIT
ISCHARGE,
YEARS, A
1.25
80% | IN CFS, AND ANNUA 2 50% | PROBABILI
D ON PERI
FOR INDI-
L EXCEEDA
5
20% | TY OF INS
OD OF REC
CATED REC
NCE PROBA | STANTANEI
CORD 1956
CURRENCE
(BILITY,
25
4% | DUS PEAK 1
5-73
INTERVAL
IN PERCEN | FLOW | PERIOD (CON-
SECU-
TIVE DAYS) | DISCHA E 2 50% 4630 3250 2170 1410 996 | ON PERI RGE, IN I INTERVA XCEEDANC 5 20% 7100 4820 3160 2000 1360 | OD OF F
CFS, FC
L, IN Y
E PROBA
10
10\$
8620
5730
3760
2370
1590 | RECORD 19 OR INDICAT (EARS, AND IBILITY, I 25 4\$ 10400 6710 4440 2790 1870 | 50-73 ED RECUF ANNUAL N PERCEN 50 2% | RRENCE | | MAGNIT
ISCHARGE,
YEARS, A
1.25
80% | IN CFS, AND ANNUA 2 50% | PROBABILI
D ON PERI
FOR INDI-
L EXCEEDA
5
20% | TY OF INSOD OF RECONCE PROBA | STANTANEI
CORD 1950
SURRENCE
BILITY,
25
4% | DUS PEAK 15-73 INTERVAL IN PERCEI | FLOW , IN NT 100 1% |
PERIOD
(CON-
SECU-
TIVE
DAYS)
 | DISCHA E 2 50% 4630 3250 2170 1410 996 762 628 | ON PERI RGE, IN 1 INTERVA XCEEDANC 5 20% 7100 4820 3160 2000 1360 1020 829 | 0D OF F
CFS, FC
L, IN Y
E PROBA
10
10%
5730
3760
2370
1590
1190
953 | RECORD 19 REINDICAT (EARS, AND BILITY, I 25 4% 10400 6710 4440 2790 1870 1390 | 50-73 ED RECUF ANNUAL N PERCEN 50 2% | RRENCE | | MAGNIT
ISCHARGE,
YEARS, A
1.25
80% | IN CFS, AND ANNUA 2 50% | PROBABILI
D ON PERI
FOR INDI
L EXCEEDA
5
20% | TY OF INSOD OF RECONCE PROBA 10 10% 3700 17 | STANTANEICORD 1950 CURRENCE BILLITY, 25 4% | DUS PEAK 15-73 INTERVAL 1N PERCEI 50 2% | FLOW , IN NT 100 1% ————————————————————————————— | PERIOD
(CON-
SECU-
TIVE
DAYS)
 | BASED DISCHA E 2 50% 4630 3250 2170 1410 996 762 628 OF RECOR | ON PERI RGE, IN 1 INTERVA XCEEDANC 5 20% 7100 4820 2000 1360 1020 829 D 1956-7: | OD OF F CFS, FC L, IN Y E PROBA 10 10 5730 3760 2370 1590 1190 953 | DR INDICAT
(FARS, AND
(BILITY, 1)
25
4%
10400
6710
4440
2790
1870
1390
1100 | 50-73 ED RECUF ANNUAL N PERCEN 50 2% | RRENCI | 52 26 6.9 4.7 3.1 1.8 ## TENMILE CREEK BASIN 191 # 14323200 TENMILE CREEK NEAR LAKESIDE, OR LOCATION.--Lat 43°34'40", long 124°11'30", near center of sec.13, T.23 S., R.13 W., Coos County, Hydrologic Unit 17100304, in Siuslaw National Forest, near left bank on downstream side of highway bridge, 200 ft upstream from Eel Creek, 0.8 mi upstream from Saunders Creek, and 1.0 mi west of Lakeside. Records include flow of Eel and Saunders Creeks. DRAINAGE AREA. -- About 87 mi² at measuring section 1.2 mi downstream. PERIOD OF RECORD. -- August 1957 to September 1976. 1240 915 716 590 490 409 277 153 87 47 24 34 17 13 9.4 GAGE.--Water-stage recorder. Auxiliary nonrecording gage 1.4 mi upstream from base gage, read twice daily. Datum of both gages is National Geodetic Vertical Datum of 1929. REMARKS.--Flow affected by natural storage in Tenmile Lake and other lakes tributary to Eel and Saunders Creeks. No diversion above station. Records given herein are for measuring site. AVERAGE OISCHARGE.--19 years (water years 1958-76), 338 ft3/s, 244,900 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 3,330 ft³/s Dec. 26, 1964, elevation 16.46 ft at base gage, 18.78 ft at auxiliary gage; minimum, 2.0 ft³/s Aug. 29, Sept. 2, 1967. EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum known stage at auxiliary gage, 19.83 ft in January 1953, from floodmarks. | М | ONTHLY AN | O ANNUAL | MEAN DIS | SCHARGES | 1958-76 | | | | D ON PERI | | | . LOW FLO
59-76 | | |---|--|---|--|--|--|------------------------|--|--|---|---|---|---------------------------------------|-----------| | | M. M. M. | MAVIMIM | MEAN | STAN-
DARD
DEVIA- | COEFFI-
CIENT OF | | PERIOD
(CON- | | INTERVAL, | . IN YEA | R INDICAT
RS, AND A
BILITY, I | NNUAL N | ON- | | MONTH | MINIMUM
(CFS) | MAXIMUM
(CFS) | MEAN
(CFS) | TION
(CFS) | VARI-
ATION | ANNUAL
RUNOFF | SECU-
TIVE
DAYS) | 2
50% | 5
20% | 10
10% | 20
5% | 50
2% | 100
1% | | OCTOBER | 5.6 | 177 | 45 | 46 | 1.02 | 1.1 | 1 | 8.0 | 4.6 | 3.3 | 2.5 | | | | NOVEMBER | 50 | 1159 | 312 | 280 | •90 | 7.7 | 3 | 8.2 | 4.6 | 3.4 | 2.6 | | | | DECEMBER | 161 | 1503 | 724 | 376 | .52 | 17.8 | 7 | 8.5 | 4.9 | 3.6 | 2.8 | | | | JANUARY | 178 | 1393 | 875 | 377 | .43 | 21.5 | 14 | 9.1 | 5.2 | 3.9 | 3.0 | | | | FEBRUARY | 270 | 1325 | 738 | 268 | •36 | 18.1 | 30 | 11 | 6.5 | 4.8 | 3.8 | | | | MARCH | 246 | 1149 | 603 | 264 | .44 | 14.8 | 60 | 13 | 8.0 | 6.4 | 5.3 | | | | APRIL | 191 | 958 | 401 | 197 | .49 | 9.8 | 90 | 16 | 10 | 8.1 | 6.8 | | | | MAY | 91 | 511 | 212 | 109 | .51 | 5.2 | 120 | 22 | 15 | 12 | 9.7 | | | | JUNE | 41 | 219 | 90 | 40 | .44 | 2.2 | 183 | 53 | 36 | 30 | 25 | | | | JULY | 20 | 85 | 40 | 17 | -42 | 1.0 | | | | | | | | | AUGUST | 5.3 | 42 | 20 | 9.1 | .47 | • 5 | | | | | | | | | SEPTEMBER | 4.3 | 78 | 18 | 18 | •98 | •5 | | | | | | | | | ANNUAL | 189 | 568 | 338 | 80 | .24 | 100 | | | | | | | | | | TUDE AND | PROBABILI | TY OF IN | ISTANTANE | OUS PEAK | |
MA | | | | OF ANNUAL | | | | MAGNI
DISCHARGE | TUDE AND
BASE | PROBABILI
D ON PERI | TY OF IN
OD OF RE | ISTANTANE
CORD 195 | OUS PEAK 8-76 | FLOW
 | PERIOD | BASE
DISCH | O ON PERI
ARGE, IN
INTERVA | OD OF RECEIVED | ECORD 19 | 58-76

ED RECUF
ANNUAL | RRENCE | | MAGNI DISCHARGE YEARS, | TUDE AND
BASE
, IN CFS,
AND ANNUA | PROBABILI
D ON PERI
FOR INDI
L EXCEEDA | TY OF IN
OD OF RE
CATED RE
NCE PROB | ISTANTANE
CORD 195
CURRENCE
BABILITY, | OUS PEAK
8-76
INTERVAL
IN PERCE | FLOW
, IN
NT
 | PERIOD
(CON-
SECU- | BASE
DISCH | D ON PERI
ARGE, IN
INTERVA | OD OF RECEIVED | R INDICATI
EARS, AND | 58-76 ED RECUF ANNUAL N PERCEN | RRENCE | | MAGNI
DISCHARGE
YEARS, | TUDE AND
BASE
, IN CFS,
AND ANNUA | PROBABILI
D ON PERI
FOR INDI | TY OF IN
OD OF RE
CATED RE
NCE PROB | ISTANTANE
CORD 195
CURRENCE
BABILITY, | OUS PEAK
8-76
INTERVAL
IN PERCE | FLOW
,
IN | PERIOD
(CON-
SECU-
TIVE | BASE
DISCH | O ON PERI
ARGE, IN
INTERVA
EXCEEDANC | OD OF RECEPTOR | ECORD 19:
R INDICATI
EARS, AND
BILITY, II | 58-76 ED RECUF ANNUAL N PERCEN | RRENCE | | MAGNI
DISCHARGE
YEARS,
1.25
80% | TUDE AND
BASE
, IN CFS,
AND ANNUA
2
50% | PROBABILI
D ON PERI
FOR INDI
L EXCEEDA
5
20% | TY OF IN
OD OF RE
CATED RE
NCE PROB | STANTANE
CORD 195
CURRENCE
ABILITY,
25
4% | OUS PEAK
8-76
INTERVAL
IN PERCE | FLOW
, IN
NT
 | PERIOD
(CON-
SECU- | BASE
DISCH | D ON PERI
ARGE, IN
INTERVA | OD OF RECEIVED | R INDICATI
EARS, AND | 58-76 ED RECUF ANNUAL N PERCEN | RRENCE | | MAGNI
DISCHARGE
YEARS, | TUDE AND
BASE
, IN CFS,
AND ANNUA | PROBABILI
D ON PERI
FOR INDI
L EXCEEDA
5
20% | TY OF IN
OD OF RE
CATED RE
NCE PROB | ISTANTANE
CORD 195
CURRENCE
BABILITY, | OUS PEAK
8-76
INTERVAL
IN PERCE | FLOW
, IN
NT
 | PERIOD
(CON-
SECU-
TIVE
DAYS) | DISCH | D ON PERI
ARGE, IN
INTERVA
EXCEEDANC
5
20% | OD OF RE | ECORD 19. R INDICAT: EARS, AND BILITY, II 25 4% | 58-76 ED RECUF ANNUAL N PERCEN 50 2% | RRENCE | | MAGNI DISCHARGE YEARS, 1.25 80% | TUDE AND BASE , IN CFS, AND ANNUA 2 50% | PROBABILI
D ON PERI
FOR INDI
L EXCEEDA
5
20% | TY OF IN
OD OF RE
CATED RE
NCE PROB | STANTANE
CORD 195
CURRENCE
ABILITY,
25
4% | OUS PEAK
8-76
INTERVAL
IN PERCE | FLOW
, IN
NT
 | PERIOD (CON- SECU- TIVE DAYS) | DISCH. | D ON PERI
ARGE, IN
INTERVA
EXCEEDANC
5
20% | OD OF RECEPTOR | R INDICATI
EARS, AND
BILITY, II
25
4% | 58-76 ED RECUF ANNUAL N PERCEN 50 2% | RRENCE | | MAGNI DISCHARGE YEARS, 1.25 80% | TUDE AND
BASE
, IN CFS,
AND ANNUA
2
50% | PROBABILI
D ON PERI
FOR INDI
L EXCEEDA
5
20% | TY OF IN
OD OF RE
CATED RE
NCE PROB | STANTANE
CORD 195
CURRENCE
ABILITY,
25
4% | OUS PEAK
8-76
INTERVAL
IN PERCE | FLOW
, IN
NT
 | PERIOD
(CON-
SECU-
TIVE
DAYS) | DISCH. | ARGE,
IN
INTERVA
EXCEEDANC
5
20% | OD OF RECEPTION OF THE PROBAE | R INDICATI
EARS, AND
BILITY, II
25
4% | 58-76 ED RECUF ANNUAL N PERCEN 50 2% | RRENCE | | MAGNI DISCHARGE YEARS, 1.25 80% | TUDE AND BASE , IN CFS, AND ANNUA 2 50% | PROBABILI
D ON PERI
FOR INDI
L EXCEEDA
5
20% | TY OF IN
OD OF RE
CATED RE
NCE PROB | STANTANE
CORD 195
CURRENCE
ABILITY,
25
4% | OUS PEAK
8-76
INTERVAL
IN PERCE | FLOW
, IN
NT
 | PERIOD
(CON-
SECU-
TIVE
DAYS) | DISCH. 2 50% 2210 2120 1870 | D ON PERI
ARGE, IN
INTERVA
EXCEEDANC
5
20%
2830
2710
2380 | OD OF RECEIVED | R INDICATI
EARS, AND
BILITY, II
25
4%
3450
3310
2930 | 58-76 ED RECUF ANNUAL N PERCEN 50 2% | RRENCE | | MAGNI DISCHARGE YEARS, 1.25 80% | TUDE AND BASE , IN CFS, AND ANNUA 2 50% | PROBABILI
D ON PERI
FOR INDI
L EXCEEDA
5
20% | TY OF IN
OD OF RE
CATED RE
NCE PROB | STANTANE
CORD 195
CURRENCE
ABILITY,
25
4% | OUS PEAK
8-76
INTERVAL
IN PERCE | FLOW
, IN
NT
 | PERIOD (CON-
SECU-
TIVE DAYS) | DISCH. 2 50% 2210 2120 1870 1480 | D ON PERI
ARGE, IN
INTERVA
EXCEEDANC
5
20%
2830
2710
2380
1870 | OD OF RE | R INDICATI
EARS, AND
BILITY, II
25
4%
3450
3310
2930
2310 | 58-76 ED RECUF ANNUAL N PERCEN 50 2% | RRENCE | | MAGNI DISCHARGE YEARS, 1.25 80% | TUDE AND BASE , IN CFS, AND ANNUA 2 50% | PROBABILI
D ON PERI
FOR INDI
L EXCEEDA
5
20% | TY OF IN
OD OF RE
CATED RE
NCE PROB | STANTANE
CORD 195
CURRENCE
ABILITY,
25
4% | OUS PEAK
8-76
INTERVAL
IN PERCE | FLOW
, IN
NT
 | PERIOD (CON-
SECU-
TIVE DAYS) 1 3 7 15 30 | BASE DISCH. 2 50% 2210 2120 1870 1480 1150 | 2830
2710
2380
1870
1420 | OD OF RECEIVED | R INDICATI
EARS, AND
BILITY, II
25
4%
3450
3310
2930
2310
1760 | 58-76 ED RECUF ANNUAL N PERCEN 50 2% | RRENCE | | MAGNI DISCHARGE YEARS, 1.25 80% | TUDE AND BASE , IN CFS, AND ANNUA 2 50% | PROBABILI
D ON PERI
FOR INDI
L EXCEEDA
5
20% | TY OF IN
OD OF RE
CATED RE
NCE PROB | STANTANE
CORD 195
CURRENCE
ABILITY,
25
4% | OUS PEAK
8-76
INTERVAL
IN PERCE | FLOW
, IN
NT
 | PERIOD (CON-
SECU-
TIVE DAYS) | DISCH. 2 50% 2210 2120 1870 1480 | D ON PERI
ARGE, IN
INTERVA
EXCEEDANC
5
20%
2830
2710
2380
1870 | OD OF RE | R INDICATI
EARS, AND
BILITY, II
25
4%
3450
3310
2930
2310 | 58-76 ED RECUF ANNUAL N PERCEN 50 2% | RRENCE | | MAGNI DISCHARGE YEARS, 1.25 80% | TUDE AND BASE , IN CFS, AND ANNUA 2 50% | PROBABILI
D ON PERI
FOR INDI
L EXCEEDA
5
20% | TY OF IN OD OF RE | ISTANTANE ICORD 195 CURRENCE BABILITY, 25 4% | OUS PEAK
8-76
INTERVAL
IN PERCE
50
2% | FLOW , IN NT 100 1% | PERIOD (CON- SECU- TIVE DAYS) 1 3 7 15 30 60 | DISCH. 2 50% 2210 2120 1870 1150 954 841 | 2830
2710
2380
1420
1190
1050 | OD OF RECEIVED | R INDICATI
EARS, AND
BILITY, II
25
4%
3450
3310
2930
2310
1760
1490 | 58-76 ED RECUF ANNUAL N PERCEN 50 2% | RRENCE | | MAGNI DISCHARGE YEARS, 1.25 80% | TUDE AND BASE , IN CFS, AND ANNUA 2 50% | PROBABILI
D ON PERI
FOR INDI
L EXCEEDA
5
20%
2910 | TY OF IN OD OF RE | ISTANTANE ICORD 195 ICCURRENCE SABILITY, 25 4% 3730 | OUS PEAK 8-76 INTERVAL IN PERCE 50 2% | FLOW , IN NT 100 1% | PERIOD
(CON-
SECU-
TIVE
DAYS)
 | DISCH. 2 50% 2210 2120 1870 1480 1150 954 841 OF RECOR | 2830
2710
2380
1420
1190
1050
27 10958-7 | OD OF RECEIVED | R INDICATI
EARS, AND
BILITY, II
25
4%
3450
3310
2930
2310
1760
1490
1300 | 58-76 ED RECUF ANNUAL N PERCEN 50 2% | RRENCE | 192 COOS RIVER BASIN ### 14324500 WEST FORK MILLICOMA RIVER NEAR ALLEGANY, OR LOCATION.--Lat 43°28'35", long 124°03'20", in SW±NW± sec.19, T.24 S., R.11 W., Coos County, Hydrologic Unit 17100304, on left bank at highway bridge, 40 ft upstream from Daggett Creek, 3.8 mi north of Allegany, and at mile 6.82. DRAINAGE AREA.--46.9 mi2, at cableway 300 ft downstream. PERIOD OF RECORD. -- September 1954 to September 1981. 1060 669 478 355 269 212 134 82 GAGE.--Water-stage recorder. Datum of gage is 76.95 ft National Geodetic Vertical Datum of 1929. REMARKS.--No regulation. Only minor diversions for irrigation above station. AVERAGE DISCHARGE.--27 years (water years 1955-81), $249 \text{ ft}^3/\text{s}$, 72.10 In/yr, 180,400 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 8,100 ft³/s Nov. 24, 1960, gage height, 15.86 ft; minimum, 1.8 ft³/s Sept. 5, 9, 1965, Sept. 8-10, 1967. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood in January or November 1953 reached a stage of about 17.9 ft, from information by local resident. Flood in December 1981 reached a stage of 15.45 ft. ### STATISTICAL SUMMARIES MONTHLY AND ANNUAL MEAN DISCHARGES 1955-81 MAG MAGNITUDE AND PROBABILITY OF ANNUAL LOW FLOW BASED ON PERIOD OF RECORD 1956-81 13 8.8 6.4 | | Mississing | **** | UEAN | STAN-
DARD
DEVIA- | COEFFI-
CIENT OF | PERCENT
OF | PERIOD
(CON- | 1 | NTERVAL, | IN YEA | RS, AND | TED RECUR
ANNUAL NO
IN PERCEN | N- | |---------------------|--|----------------------|--|----------------------------------|----------------------------------|------------------|---|---|--|---|---|---|-----------| | MONTH | MINIMUM
(CFS) | MAXIMUM
(CFS) | MEAN
(CF\$) | TION
(CFS) | VARI-
ATION | ANNUAL
RUNOFF | SECU-
TIVE
DAYS) | 2
50% | 5
20% | 10
10% | 20
5% | 50
2% | 100 | | CTOBER | 4.2 | 290 | 80 | 75 | .94 | 2.7 | 1 | 3.6 | 2.4 | 2.0 | 1.7 | 1.5 | | | NOVEMBER | 40 | 1065 | 369 | 252 | .68 | 12.3 | 3 | 3.6 | 2.5 | 2.1 | 1.8 | 1.5 | | | DECEMBER | 34 | 1357 | 630 | 331 | .53 | 21.0 | 7 | 3.9 | 2.7 | 2.2 | | | | | IANUARY | 53 | 1066 | 581 | 319 | • 55 | 19.4 | 14 | 4.1 | 2.9 | 2.4 | 2.1 | | | | EBRUARY | 137 | 1152 | 485 | 237 | . 49 | 16.2 | 30 | 4.9 | 3.4 | 2.9 | 2.5 | | | | MARCH | 117 | 809 | 417 | 192 | .46 | 13.9 | 60 | 6.6 | 4.4 | 3.6 | 3.1 | | | | PRIL | 83 | 571 | 239 | 125 | .52 | 8.0 | 90 | 8.9 | 5.8 | 4.9 | 4.3 | | | | AY | 27 | 358 | 111 | 78 | •70 | 3.7 | 120 | 12 | 8.3 | 7.0 | 6.1 | | | | UNE | 16 | 146 | 44 | 2 9 | .65 | 1.5 | 183 | 35 | 23 | 18 | 15 | 12 | | | IULY | 7.6 | 36 | 15 | 7.0 | | •5 | | | | | | | | | UGUST | 3.4 | 57 | 9.9 | | 1.04 | •3 | | | | | | | | | EPTEMBER | 2.5 | 98 | 21 | 24 | 1.17 | .7 | | | | | | | | | NNUAL | 84 | 385 | 249 | 63 | .25 | 100 | | | | | | | | | | BASE | D ON PERIO | OD OF RE | CORD 195 | OUS PEAK F
5-81
 | | MA(| BASED | ON PERI | OD OF R | ECORD 19 | L HIGH FL
955-81

TED RECUR | | | I SCHARGE
YEARS, | BASE
, IN CFS,
AND ANNUA | FOR INDIC | OD OF RE | CORD 195 | 5-81
INTERVAL,
IN PERCEN | , IN | PERIOD
(CON-
SECU- | BASED
DISCHA | ON PERI | OD OF RI | ECORD 19 | 95 5- 81 |
RENCE | | I SCHARGE | BASE
, IN CFS, | D ON PERIO | OD OF RE | CORD 195 | 5-81
INTERVAL,
IN PERCEN | , IN
VT | PERIOD
(CON- | BASED
DISCHA | ON PERI | OD OF RI | ECORD 19 | 955-81

TED RECUR
D ANNUAL | T
100 | | I SCHARGE
YEARS, | BASE
, IN CFS,
AND ANNUA
2 | FOR INDIC | CATED RENCE PROB | CORD 195 | INTERVAL, IN PERCEN | , IN
NT | PERIOD
(CON-
SECU-
TIVE
DAYS) | DISCHA E 2 50% | OON PERI | OD OF RI | R INDICA
EARS, AND
BILITY,
25
4% | 955-81 TED RECUR D ANNUAL IN PERCEN 50 2% | RENCE | | 1.25
80% | BASE , IN CFS, AND ANNUA 2 50% | FOR INDICAL EXCEEDAD | CATED RENCE PROB | CORD 195 | INTERVAL,
IN PERCEN | , IN
NT | PERIOD (CON- SECU- TIVE DAYS) | DISCHA E 2 50% | ON PERI | OD OF RI | R INDICA
R INDICA
EARS, ANI
BILITY,
25
4% | 955-81 TED RECUR D ANNUAL IN PERCEN 50 2% | T
100 | | 1.25
80% | BASE
, IN CFS,
AND ANNUA
2
50% | FOR INDICAL EXCEEDAD | CATED RENCE PROB | CORD 195 | INTERVAL,
IN PERCEN | , IN
NT | PERIOD
(CON-
SECU-
TIVE
DAYS) | DISCHA E 2 50% 3680 2770 | ON PERI | OD OF RI
CFS, FOF
L, IN YI
E PROBAB
10%
5630
4100 | R INDICA
R INDICA
EARS, ANI
BILITY,
25
4% | 955-81 TED RECUR D ANNUAL IN PERCEN 50 2% 6820 4930 | T
100 | | 1.25
80% | BASE , IN CFS, AND ANNUA 2 50% | FOR INDICAL EXCEEDAD | CATED RENCE PROB | CORD 195 | INTERVAL,
IN PERCEN | , IN
NT | PERIOD (CON- SECU- TIVE DAYS) 1 3 7 | DISCHA E 2 50% 3680 2770 1910 | ON PERI
 | OD OF RI
CFS, FOF
L, IN YI
E PROBAR
10
10%
5630
4100
2820 | R INDICA
R INDICA
REARS, ANI
BILITY,
25
4%
6360
4600
3200 | 955-81 TED RECUR D ANNUAL IN PERCEN 50 2% 6820 4930 3450 |
RENCE | | 1.25
80% | BASE , IN CFS, AND ANNUA 2 50% | FOR INDICAL EXCEEDAD | CATED RENCE PROB | CORD 195 | INTERVAL,
IN PERCEN | , IN
NT | PERIOD
(CON-
SECU-
TIVE
DAYS)
 | DISCHA E 2 50% 3680 2770 1910 1260 | ON PERI
 | OD OF RI CFS, FOF L, IN YI E PROBAB 10 10 5630 4100 2820 1820 | R INDICA: EARS, ANI BILITY, 25 4% 6360 4600 3200 2080 | 955-81 TED RECUR D ANNUAL IN PERCEN 50 25 6820 4930 3450 2270 | T
100 | | 1.25
80% | BASE , IN CFS, AND ANNUA 2 50% | FOR INDICAL EXCEEDAD | CATED RENCE PROB | CORD 195 | INTERVAL,
IN PERCEN | , IN
NT | PERIOD (CON-
SECU-
TIVE DAYS) 1 3 7 15 30 | BASED DISCHA E 2 50% 3680 2770 1910 1260 942 | O ON
PERI
IRGE, IN
INTERVA
XCEEDANC
5
20%
4940
3630
2490
1610
1170 | OD OF RI | R INDICA: R INDICA: REARS, ANI BILITY, 25 4 4 6360 4600 3200 2080 1470 | 955-81 TED RECUR D ANNUAL IN PERCEN 50 2% 6820 4930 3450 2270 1580 | RENCE | | 1.25
80% | BASE , IN CFS, AND ANNUA 2 50% | FOR INDICAL EXCEEDAD | CATED RENCE PROB | CORD 195 | INTERVAL,
IN PERCEN | , IN
NT | PERIOD
(CON-
SECU-
TIVE
DAYS)
 | DISCHA E 2 50% 3680 2770 1910 1260 | ON PERI
 | OD OF RI CFS, FOF L, IN YI E PROBAB 10 10 5630 4100 2820 1820 | R INDICA: EARS, ANI BILITY, 25 4% 6360 4600 3200 2080 | 955-81 TED RECUR D ANNUAL IN PERCEN 50 25 6820 4930 3450 2270 | RENCE | | 1.25
80% | BASE , IN CFS, AND ANNUA 2 50% | FOR INDIG | CATED RE- CATED RE- NCE PROB 10 10 10 10 DURATIO | CURRENCE ABILITY, 25 4% 9600 1 | INTERVAL, IN PERCEN 50 1 2% 0400 | IN NT OO 1% | PERIOD (CON- SECU- TIVE DAYS) 1 3 7 15 30 60 90 FOR PERIOD | BASED DISCHA E 2 50% 3680 2770 1910 1260 942 731 645 OF RECOR | RGE, IN INTERVA XCEEDANC 5 20% | OD OF RI CFS, FOR L, IN YI E PROBAE 10 10/5 5630 4100 2820 1820 1310 1060 889 | R INDICA: EARS, ANIBILITY, 25 45 6360 4600 3200 2080 1470 971 | 955-81 TED RECUR D ANNUAL IN PERCEN 50 2\$ 6820 4930 3450 2270 1580 1300 | RENCE | | 1.25
80% | BASE , IN CFS, AND ANNUA 2 50% | FOR INDIG | CATED RE- CATED RE- NCE PROB 10 10 10 10 DURATIO | CURRENCE ABILITY, 25 4% 9600 1 | INTERVAL, IN PERCEN 50 1 2% 0400 | IN NT OO 1% | PERIOD (CON-
SECU-
TIVE DAYS) 1 3 7 15 30 60 90 | BASED DISCHA E 2 50% 3680 2770 1910 1260 942 731 645 OF RECOR | RGE, IN INTERVA XCEEDANC 5 20% | OD OF RI CFS, FOR L, IN YI E PROBAE 10 10/5 5630 4100 2820 1820 1310 1060 889 | R INDICA: EARS, ANIBILITY, 25 45 6360 4600 3200 2080 1470 971 | 955-81 TED RECUR D ANNUAL IN PERCEN 50 2\$ 6820 4930 3450 2270 1580 1300 | RENCE | ## 14324600 SOUTH FORK COQUILLE RIVER ABOVE PANTHER CREEK, NEAR ILLAHE, OR LOCATION.--Lat 42°45'30", long 123°59'10", in SE‡ sec.28, T.32 S., R.11 W., Coos County, Hydrologic Unit 17100304, on left bank 0.7 mi upstream from Panther Creek, 10.0 mi northeast of Illahe, and at mile 88.5. DRAINAGE AREA. -- 31.2 mi². 567 366 269 208 163 129 80 43 23 7.1 5.1 3.7 2.6 1.9 PERIOD OF RECORD. -- October 1956 to September 1970. GAGE.--Water-stage recorder. Datum of gage is 2,117.30 ft National Geodetic Vertical Datum of 1929 (levels by Pacific Power & Light Co.). REMARKS.--No regulation or diversion above station. AVERAGE DISCHARGE. -- 14 years, 144 ft³/s, 62.68 in/yr, 104,300 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 8,840 ft³/s Dec. 22, 1964, gage height, 17.07 ft, from floodmarks, from rating curve extended above 1,100 ft³/s on basis of slope-area measurement at gage height 12.75 ft; minimum, 0.94 ft³/s Sept. 28, 1970. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of Dec. 21, 1955, reached a stage of about 15.7 ft, discharge, about 6,300 ft³/s. | М | ONTHLY AN | ID ANNUAL | MEAN DIS | CHARGES | 1957-70 | | | BASE | ON PERI | OD OF R | ECORD 19 | 58-70 | | |---|---|--|--|---|--|---|---|---|--|--|---|---|-----------| | | MINIMUM | MAXIMUM | MEAN | STAN-
DARD
DEVIA-
TION | COEFFI-
CIENT OF
VARI- | PERCENT
OF
ANNUAL | PERIOD
(CON-
SECU- | 1 | INTERVAL, | IN YEAR | R INDICAT
RS, AND A
BILITY, I | NNUAL N | 0N- | | MONTH | (CFS) | (CFS) | (CFS) | (CFS) | ATION | RUNOFF | TIVE
DAYS) | 2
50% | 5
20% | 10
10% | 20
5% | 50
2 % | 100
1% | | OCTOBER NOVEMBER DECEMBER JANUARY FEBRUARY MARCH APRIL MAY JUNE JULY AUGUST SEPTEMBER | 2.5
13
45
48
163
78
57
20
7.8
5.2
1.7 | 162
270
846
740
734
470
381
275
40
12
6.3
8.7 | 34
150
303
359
335
267
161
90
21
7.6
3.4 | 44
92
221
226
163
112
84
74
8.3
2.4
1.4 | 1.31
.61
.73
.63
.49
.42
.52
.82
.39
.32
.40 | 1.9
8.6
17.5
20.7
19.3
15.4
9.3
5.2
1.2 | 1
3
7
14
30
60
90
120
183 | 1.5
1.6
1.7
2.0
2.7
3.7
5.6 | 1.2
1.2
1.4
1.4
1.6
2.1
3.0
4.3 | 1.1
1.2
1.3
1.3
1.5
1.9
2.6
3.7
8.0 | 1.1
1.1
1.2
1.3
1.5
1.8
2.4
3.3
6.7 |

 | | | NNUAL | 109
TUDE AND | 185

PROBABILI
D ON PERI | | | | 100
 |
MAG | | | | DF ANNUAL
ECORD 19 | | | | MAGNI | TUDE AND
BASE
, IN CFS, | PROBABILI
D ON PERI
FOR INDI
L EXCEEDA | TY OF INSOD OF REC | STANTANEC
CORD 1957
CURRENCE
ABILITY, | OUS PEAK F
7-70
INTERVAL,
IN PERCEN | FLOW | PERIOD
(CON- | BASED
DISCHA | ON PERI | OD OF RECEIVED | _ | 57-70
ED RECUI | RRENCE | | MAGNI | TUDE AND
BASE | PROBABILI
D ON PERI
FOR INDI | TY OF INS | STANTANEC
CORD 1957
CURRENCE | OUS PEAK F
7-70
INTERVAL,
IN PERCEN | FLOW | PERI 0 D | BASED
DISCHA | ON PERI | OD OF RECEIVED | CORD 199 | 57-70
ED RECUI | RRENCE | | MAGNI DISCHARGE YEARS, 1.25 80% | TUDE AND
BASE
, IN CFS,
AND ANNUA | PROBABILI
D ON PERI
FOR INDI
L EXCEEDA | TY OF INSOD OF REC | STANTANEC
CORD 1957
CURRENCE
ABILITY, | DUS PEAK F
7-70
INTERVAL,
IN PERCEN | FLOW | PERIOD
(CON-
SECU-
TIVE | BASEC
DISCHA
E | RGE, IN
INTERVA
XCEEDANC | OD OF RECEIVED | CORD 199
R INDICATE
EARS, AND
BILITY, IF | 57-70
ED RECUI
ANNUAL
N PERCEN | RRENCE | | MAGNI | 109 FUDE AND BASE , IN CFS, AND ANNUA 2 50% | PROBABILI
D ON PERI
FOR INDI
L EXCEEDA
5
20% | TY OF INSOD OF RECONCE PROBA | STANTANEC
CORD 1957
CURRENCE
ABILITY,
25
4% | DUS PEAK F
1-70
INTERVAL
IN PERCEN | IN NT 1000 115 | PERIOD (CON- SECU- TIVE DAYS) 1 3 7 15 30 60 | DISCHA E 2 50% 2350 1760 1220 812 581 445 375 | RGE, IN INTERVA XCEEDANC 5 20% | OD OF RECOMPTION | 25 4% 5210 3830 2470 1370 908 702 | 57-70 ED RECUI ANNUAL N PERCEN 50 2% | RRENCE | | MAGNI DISCHARGE YEARS, 1.25 80% 2820 | 109 FUDE AND BASE , IN CFS, AND ANNUA 2 50% | PROBABILI
D ON PERI
FOR INDI
L EXCEEDA
5
20% | TY OF INSOD OF RECONCE PROBA | CURRENCE ABILITY, 25 44 5720 | DUS PEAK F7-70 INTERVAL, IN PERCEN 50 12% | IN IN IT | PERIOD (CON-
SECU-
TIVE DAYS) | DISCHA E 2 50% 2350 1760 1220 812 581 445 375 OF RECOR | 3100 2370 1650 1030 706 545 456 | OD OF RECEIVED | 25 4 5 210 3830 2470 1370 908 702 575 | 57-70 ED RECUI ANNUAL N PERCEN 50 2% | RRENCE | ### 14324700 SOUTH FORK COQUILLE RIVER NEAR ILLAHE, OR LOCATION.--Lat 42°43'30", long 124°00'40", in NW½ sec.16, T.33 S., R.11 W., Coos County, Hydrologic Unit 17100305, in Siskiyou National Forest, on left bank 1.0 mi downstream from Lockhart Creek, 7.0 mi north of Illahe, and at mile 85.1. DRAINAGE AREA.--40.6 mi², at measuring site 1.2 mi upstream from gage. PERIOD OF RECORD. -- October 1956 to September 1974. GAGE.--Water-stage recorder. Datum of gage is 1,871.04 ft National Geodetic Vertical Datum of 1929 (levels by Pacific Power & Light Co.). REMARKS.--No regulation or diversion above station. Records given herein are for measuring site. AVERAGE DISCHARGE.--18 years, 199 ft3/s, 66.56 in/yr, 144,200 acre-ft/yr.
EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 12,000 ft³/s Dec. 22, 1964, gage height, 11.80 ft, from rating curve extended above 3,000 ft³/s, on basis of slope-area measurement at gage height 9.54 ft; minimum, 1.2 ft³/s Sept. 27-29, 1967, Sept. 28-30, 1974. EXTREMES OUTSIDE PERIOD OF RECORD, -- Flood of Dec. 21, 1955, reached a stage of about 10.8 ft, discharge, about 8,600 ft³/s. ### STATISTICAL SUMMARIES MONTHLY AND ANNUAL MEAN DISCHARGES 1957-74 MAGNITUDE AND PROBABILITY OF ANNUAL LOW FLOW BASED ON PERIOD OF RECORD 1958-74 | | MINIM | MAY (MIN | мсти | STAN-
DARD
DEVIA- | COEFFI-
CIENT OF
VARI- | PERCENT
OF | PERIOD
(CON- | 11 | NTERVAL, | CFS, FOR
IN YEARS
E PROBABI | , AND AN | INUAL N | ON- | |-----------|------------------|------------------|---------------|-------------------------|------------------------------|------------------|------------------------|----------|----------|-----------------------------------|----------|----------|-----------| | MONTH | MINIMUM
(CFS) | MAX1MUM
(CFS) | MEAN
(CFS) | TION
(CFS) | ATION | ANNUAL
RUNOFF | SECU-
TIVE
DAYS) | 2
50% | 5
20% | 10
10% | 20
5% | 50
2% | 100
1% | | OCTOBER | 3.5 | 204 | 38 | 50 | 1.30 | 1.6 | 1 | 2.1 | 1.6 | 1.5 | 1.4 | | | | NOVEMBER | 15 | 951 | 255 | 215 | .84 | 10.6 | 3 | 2.1 | 1.7 | 1.5 | 1.4 | | | | DECEMBER | 55 | 1164 | 438 | 277 | .63 | 18.2 | 7 | 2.3 | 1.8 | 1.6 | 1.5 | | | | JANUARY | 72 | 992 | 498 | 271 | - 54 | 20.7 | 14 | 2.5 | 1.9 | 1.7 | 1.6 | | | | FEBRUARY | 181 | 997 | 413 | 215 | •52 | 17.2 | 30 | 2.8 | 2.3 | 2.0 | 1.9 | | | | MARCH | 95 | 708 | 377 | 154 | .41 | 15.7 | 60 | 3.8 | 3.0 | 2.7 | 2.5 | | | | APRIL | 73 | 480 | 226 | 110 | .49 | 9.4 | 90 | 5.1 | 4.0 | 3.5 | 3.2 | | | | MAY | 25 | 364 | 109 | 92 | •85 | 4.5 | 120 | 7.3 | 5.5 | 4.8 | 4.2 | | | | JUNE | 10 | 54 | 27 | 11 | .42 | 1.1 | 183 | 20 | 13 | 11 | 9.1 | | | | JULY | 5.7 | 16 | 10 | 3.2 | •32 | . 4 | | | | | | | | | AUGUST | 2.6 | 8.1 | 4.7 | 1.7 | .35 | .2 | | | | | | | | | SEPTEMBER | 1.7 | 12 | 5.3 | 3.1 | • 59 | •2 | | | | | | | | | ANNUAL | 133 | 308 | 199 | 43 | •22 | 100 | | | | | | | | MAGNITUDE AND PROBABILITY OF INSTANTANEOUS PEAK FLOW BASED ON PERIOD OF RECORD 1957-74 MAGNITUDE AND PROBABILITY OF ANNUAL HIGH FLOW BASED ON PERIOD OF RECORD 1957-74 | ISCHARGE,
YEARS, AN | | | | RECURRENC
ROBABILITY | | | PERIOD
(CON- | DISCH | INTERV | /AL, ÍN Y | OR INDICAT
EARS, AND
ABILITY, I | ANNUAL | | |------------------------|--------------|----------|-----------|-------------------------|----------|-----------|------------------------|----------|----------|-----------|---------------------------------------|----------|-----| | 1.25
80% | 2
50%
 | 5
20% | 10
10% | 25
4% | 50
2% | 100
1% | SECU-
TIVE
DAYS) | 2
50% | 5
20% | 10
10% | 25
4% | 50
2% | 100 | | 3750 | 4870 | 6440 | 7510 | 8890 | | | | | | | | | | | | | | | | | | 1 | 3260 | 4540 | 5580 | 7120 | | | | WEIGHTED | SKEW = | .244 | | | | | 3 | 2430 | 3340 | 4050 | 5100 | | | | | | | | | | | 7 | 1670 | 2210 | 2600 | 3130 | | | | | | | | | | | 15 | 1090 | 1360 | 1530 | 1740 | | | | | | | | | | | 30 | 775 | 947 | 1060 | 1210 | | | | | | | | | | | 60 | 607 | 749 | 842 | 958 | | | | | | | | | | | 90 | 508 | 626 | 704 | 802 | | | DURATION TABLE OF DAILY MEAN FLOW FOR PERIOD OF RECORD 1957-74 | | | DISC | HARGE, | IN CFS, | WHICH WAS | EQUALED | OR EXCE | DED FOR | INDICATED | PERCENT | OF TIME | | | | |-----|-----|------|--------|---------|-----------|---------|---------|---------|-----------|---------|---------|-----|-----|-----| | 5% | 10% | 15% | 20% | 25% | 30% | 40% | 50% | 60% | 70% | 75% | 80% | 85% | 90% | 95% | | 861 | 515 | 366 | 287 | 226 | 180 | 107 | 57 | 30 | 14 | 9.3 | 7.0 | 5.2 | 3.8 | 2.8 | 195 ## 14324900 SOUTH FORK COQUILLE RIVER NEAR POWERS, OR LOCATION.--Lat 42°47'05", long 124°02'25", in SW\u00e4SW\u00e4 sec.18, T.32 S., R.11 W., Coos County, Hydrologic Unit 17100305, Siskiyou National Forest, on right bank 0.8 mi upstream from Hall Creek, 7.0 mi southeast of Powers, and at mile 76.1. DRAINAGE AREA. -- 93.2 mi2. PERIOD OF RECORD. -- October 1956 to September 1970. GAGE.--Water-stage recorder. Datum of gage is 585.32 ft National Geodetic Vertical Datum of 1929 (levels by Pacific Power & Light Co.). REMARKS.--No regulation or diversion above station. AVERAGE DISCHARGE.--14 years, 514 ft3/s, 74.89 in/yr, 372,400 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 29,600 ft³/s Dec. 22, 1964, gage height, 23.00 ft, from floodmarks, from rating curve extended above 9,300 ft³/s on basis of slope-area measurement of peak flow; minimum, 6.5 ft³/s Oct. 3-5, 1960. ## STATISTICAL SUMMARIES MONTHLY AND ANNUAL MEAN DISCHARGES 1957-70 MAGNITUDE AND PROBABILITY OF ANNUAL LOW FLOW BASED ON PERIOD OF RECORD 1958-70 | | MINIMUM | MAXIMUM | MEAN | STAN-
DARD
DEVIA-
TION | COEFFI-
CIENT OF
VARI- | PERCENT
OF
ANNUAL | PERIOD
(CON-
SECU- | | ARGE, IN
INTERVAL,
EXCEEDANC | IN YEARS | , AND AN | NUAL N | ON- | |-----------|---------|---------|-------|---------------------------------|------------------------------|-------------------------|--------------------------|----------|------------------------------------|-----------|----------|----------|-----------| | MONTH | (CFS) | (CFS) | (CFS) | (CFS) | ATION | RUNOFF | TIVE
DAYS) | 2
50% | 5
20 % | 10
10% | 20
5% | 50
2% | 100
1% | | OCTOBER | 19 | 585 | 150 | 159 | 1.06 | 2.4 | 1 | 13 | 9.7 | 8.2 | 7.2 | | | | NOVEMBER | 60 | 1181 | 611 | 342 | • 56 | 9.8 | 3 | 13 | 9.9 | 8.5 | 7.4 | | | | DECEMBER | 192 | 3246 | 1115 | 819 | .73 | 18.0 | 7 | 13 | 10 | 8.9 | 7.9 | | | | JANUARY | 206 | 2695 | 1260 | 786 | .62 | 20.3 | 14 | 14 | 11 | 9.3 | 8.3 | | | | FEBRUARY | 517 | 2560 | 1172 | 595 | .51 | 18.9 | 30 | 15 | 12 | 11 | 10 | | | | MARCH | 217 | 1711 | 898 | 410 | . 46 | 14.5 | 60 | 17 | 15 | 14 | 14 | | | | APRIL | 201 | 1294 | 522 | 280 | .54 | 8.4 | 90 | 22 | 18 | 17 | 16 | | | | MAY | 76 | 901 | 316 | 243 | •77 | 5.1 | 120 | 30 | 24 | 22 | 20 | | | | JUNE | 36 | 152 | 83 | 29 | .35 | 1.3 | 183 | 71 | 48 | 39 | 33 | | | | JULY | 26 | 53 | 36 | 7.9 | .22 | .6 | | | | | | | | | AUGUST | 12 | 42 | 21 | 7.5 | .36 | .3 | | | | | | | | | SEPTEMBER | 11 | 43 | 23 | 10 | .44 | .4 | | | | | | | | | ANNUAL | 420 | 675 | 514 | 77 | . 15 | 100 | | | | | | | | MAGNITUDE AND PROBABILITY OF INSTANTANEOUS PEAK FLOW BASED ON PERIOD OF RECORD 1957-70 MAGNITUDE AND PROBABILITY OF ANNUAL HIGH FLOW BASED ON PERIOD OF RECORD 1957-70 | | | | | RECURRENC
ROBABILITY | | | PERIOD
(CON- | DISC | INTER | VAL, ÍN | OR INDICAT
YEARS, AND
ABILITY. | ANNUAL | | |-------------|--------------|---------------|-----------|-------------------------|----------------------|-----------|------------------------|----------|----------|-----------|--------------------------------------|----------|-----------| | 1.25
80% | 2
50%
 | 5
20% | 10
10% | 25
4% | 50
2 %
 | 100
1% | SECU-
TIVE
DAYS) | 2
50% | 5
20% | 10
10% | 25
4% | 50
2% | 100
1% | | 9850 | 12700 | 16700 | 19300 | 22800 | | | | | | | | | | | | | | | | | | 1 | 7900 | 10900 | 14100 | 20000 | | | | WEIGHTE | D SKEW = | • .227 | | | | | 3 | 5960 | 8060 | 10200 | 13900 | | | | | | | | | | | 7 | 4240 | 5800 | 7080 | 9010 | | | | | | | | | | | 15 | 2870 | 3740 | 4350 | 5180 | | | | | | | | | | | 30 | 2030 | 2520 | 2890 | 3400 | | | | | | | | | | | 60 | 1560 | 1950 | 2230 | 2610 | | | | | | | | | | | 90 | 1320 | 1620 | 1830 | 2090 | | | DURATION TABLE OF DAILY MEAN FLOW FOR PERIOD OF RECORD 1957-70 | | | DISC | HARGE, I | N CFS, | WHICH WAS | EQUALED | OR EXCEE | ED FOR | INDICATED | PERCENT | OF TIME | | | | |------|------|------|----------|--------|-----------|---------|----------|--------|-----------|---------|------------|-----|-----|-----| | 5% | 10% | 15% | 20% | 25% | 30% | 40% | 50% | 60% | 70% | 75% | 80% | 85% | 90% | 95% | | 2150 | 1290 | 916 | 706 | 560 | 447 | 285 | 164 | 94 | 50 | 36 | 2 9 | 22 | 18 | 15 | # 14325000 SOUTH FORK COQUILLE RIVER AT POWERS, OR LOCATION.--Lat 42°53'30", long 124°04'10", in SEt sec.12, T.31 S., R.12 W., Coos County, Hydrologic Unit 17100305, on left bank 0.6 mi downstream from highway bridge at Powers, 0.9 mi upstream from Woodward Creek, and at mile 64.5. DRAINAGE AREA .-- 169 mi2. PERIOD OF RECORD. -- September 1916 to September 1926. December 1928 to September 1982. GAGE.--Water-stage recorder. Datum of gage is 197.42 ft National Geodetic Vertical Datum of 1929. Prior to Nov. 17, 1938, nonrecording gage at various sites within 1 mi of present site at different datums. REMARKS.--No regulation. Small diversions for irrigation above station. AVERAGE DISCHARGE.--63 years (water years 1917-26, 1930-82), 789 ft³/s, 63.40 in/yr, 571,600 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 48,900 ft³/s Dec. 22, 1964, gage height, 26.51 ft, from floodmarks, from rating curve extended above 19,000 ft³/s on basis of contracted-opening measurement at gage height 18.14 ft and slope-area measurement of peak flow; minimum, 12 ft³/s Sept. 22-25, 27-30, 1939, Oct. 5, 1961, Oct. 16-20, 1974. ### STATISTICAL SUMMARIES | MONTHLY AND ANNUAL MEAN DISCHARGES | 1917-82 | MAGNITUDE AND PROBABILITY OF ANNUAL LOW FLOW | |------------------------------------|---------|--| | | | BASED ON PERIOD OF RECORD 1918-82 | | | MINIMUM | MAXIMUM | MEAN | STAN-
DARD
DEVIA-
TION | COEFFI-
CIENT OF
VARI- | PERCENT
OF
ANNUAL | PERIOD
(CON-
SECU- | | INTERVAL | CFS, FOF
, IN YEAR
CE PROBAE | RS, AND A | NNUAL NO | ⊃N - | |-----------|---------|---------|-------|---------------------------------|------------------------------|-------------------------|--------------------------|----------|------------------|------------------------------------|------------------
------------------|-------------| | MONTH | (CFS) | (CFS) | (CFS) | (CFS) | ATION | RUNOFF | TIVE
DAYS) | 2
50% | 5
20 % | 10
10≴ | 20
5 % | 50
2 % | 100
1% | | OCTOBER | 16 | 1945 | 220 | 338 | 1.54 | 2.3 | 1 | 19 | 15 | 14 | 13 | 11 | 11 | | NOVEMBER | 16 | 4232 | 1018 | 847 | .83 | 10.7 | 3 | 19 | 15 | 14 | 13 | 12 | 11 | | DECEMBER | 44 | 5361 | 1739 | 1078 | .62 | 18.3 | 7 | 20 | 16 | 14 | 13 | 12 | 11 | | JANUARY | 97 | 4244 | 1843 | 1053 | .57 | 19.4 | 14 | 21 | 17 | 15 | 14 | 13 | 12 | | FEBRUARY | 209 | 4151 | 1639 | 795 | .49 | 17.3 | 30 | 23 | 18 | 17 | 15 | 14 | 14 | | MARCH | 330 | 3818 | 1322 | 666 | •50 | 13.9 | ~ 60 | 27 | 21 | 19 | 17 | 16 | 15 | | APRIL | 216 | 2451 | 943 | 525 | .56 | 9.9 | 90 | 32 | 25 | 22 | 20 | 18 | 17 | | MAY | 78 | 1568 | 456 | 345 | •76 | 4.8 | 120 | 43 | 31 | 27 | 24 | 21 | 20 | | JUNE | 51 | 699 | 162 | 113 | .70 | 1.7 | 183 | 105 | 68 | 53 | 44 | 35 | 30 | | JULY | 28 | 186 | 61 | 28 | .46 | .6 | | | | | | | | | AUGUST | 17 | 101 | 34 | 13 | • 39 | .4 | | | | | | | | | SEPTEMBER | 16 | 385 | 46 | 54 | 1.20 | •5 | | | | | | | | | ANNUAL | 237 | 1374 | 789 | 238 | .30 | 100 | | | | | | | | MAGNITUDE AND PROBABILITY OF INSTANTANEOUS PEAK FLOW BASED ON PERIOD OF RECORD 1917-82 ### MAGNITUDE AND PROBABILITY OF ANNUAL HIGH FLOW BASED ON PERIOD OF RECORD 1917-82 | | , IN CFS
AND ANNU | | | | | | PERIOD
(CON- | DISC | INTER | VAL, IN | OR INDICA
YEARS, AI
ABILITY. | ND ANNUA | L | |-------------|----------------------|------------------|-------------------|----------|------------------|-----------------------|------------------------|----------|----------|-----------|------------------------------------|----------|-----------| | 1.25
80% | 2
50 % | 5
20 % | 10
10 % | 25
4% | 50
2 % | 100
1 %
 | SECU-
TIVE
DAYS) | 2
50% | 5
20% | 10
10% | 25
4% | 50
2% | 100
1% | | 10400 | 15200 | 22000 | 26600 | 32400 | 36800 | 41100 | | | | | | | | | | | | | | | | 1 | 11100 | 15700 | 19000 | 23200 | 26400 | 29800 | | WEIGHTE | D SKEW = | 100 | | | | | 3 | 7970 | 11600 | 14200 | 17700 | 20500 | 23500 | | | | | | | | | 7 | 5630 | 7960 | 9560 | 11600 | 13200 | 14900 | | | | | | | | | 15 | 3960 | 5350 | 6250 | 7360 | 8170 | 8970 | | | | | | | | | 30 | 2930 | 3870 | 4440 | 5100 | 5560 | 5990 | | | | | | | | | 60 | 2280 | 3000 | 3410 | 3880 | 4200 | 4500 | | | | | | | | | 90 | 1980 | 2580 | 2930 | 3320 | 3580 | 3820 | DURATION TABLE OF DAILY MEAN FLOW FOR PERIOD OF RECORD 1917-82 | | | DISC | HARGE, | IN CFS, | WHICH WAS | EQUALED | OR EXCEE | DED FOR | INDICATED | PERCENT | OF TIME | | | | |------|------|------|--------|---------|-----------|---------|-------------|---------|-----------|-------------|---------|-------------|-----|-----| | 5% | 10≴ | 15% | 20% | 25% | 30% | 40% | 50 % | 60% | 70% | 75 % | 80% | 85 % | 90% | 95% | | 3250 | 2050 | 1480 | 1160 | 928 | 745 | 465 | 260 | 134 | 67 | 50 | 40 | 32 | 27 | 21 | ## 14326500 MIDDLE FORK COQUILLE RIVER NEAR MYRTLE POINT, OR LOCATION.--Lat 43°01'30", long 124°05'20", in NW\sEt sec.26, T.29 S., R.12 W., Coos County, Hydrologic Unit 17100305, 0.3 mi downstream from Indian Creek, 2 mi upstream from South Fork, and 3.8 mi southeast of Myrtle Point. DRAINAGE AREA .-- 305 m12. PERIOD OF RECORD. -- October 1930 to September 1946. 1450 1080 809 624 366 208 97 47 33 25 19 15 12 2010 3330 GAGE.--Water-stage recorder. Datum of gage is 41.20 ft National Geodetic Vertical Datum of 1929. Prior to Dec. 4, 1930, staff gage at same site and datum. REMARKS.--No diversion above station. Flow regulated during winter and spring months by operation of log ponds. AVERAGE DISCHARGE. -- 16 years, 743 ft3/s. EXTREMES FOR PERIOD OF RECORD.—Maximum discharge, 23,600 ft 3 /s Jan. 2, 1933, gage height, 22.5 ft, from rating curve extended above 9,000 ft 3 /s; minimum daily, 1.0 ft 3 /s July 16, 17, 1931. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of about Oct. 31, 1924, reached a stage of 25.8 ft, discharge, 31,800 ft³/s. | м | | | | | | | | | | | | | | |-------------------------|--|----------------------|------------------|---|------------------------------------|-------------------------|---|---|--|--|---|--|-------------| | ,, | ONTHLY A | ND ANNUAL | MEAN DIS | SCHARGES | 1931-46 | | MA | | | | OF ANNUA | AL LOW FL
1932-46 | OW | | | MINIMUM | MAX I MUM | MEAN | STAN-
DARD
DEVIA-
TION | COEFFI-
CIENT OF
VARI- | | PERIOD
(CON-
SECU- | DISC | INTERVAL | ., IN YE | ARS, AND | ATED RECUI
ANNUAL NO
IN PERCEI | 0 N- | | MONTH | (CFS) | (CFS) | (CFS) | (CFS) | ATION | RUNOFF | TIVE
DAYS) | 2
50 % | 5
20 % | 10
10% | 20
5 % | 50
2 % | 100
1% | | OCTOBER | 9.1 | 225 | 67 | 65 | .98 | •7 | 1 | 12 | 5.9 | 3. | 5 2.1 | | | | NOVEMBER | 11 | 2552 | 824 | 749 | .91 | 9.2 | 3 | 13 | 6.7 | 4. | 2 2.6 | ; | | | DECEMBER | 81 | 3960 | 1607 | 1199 | •75 | 17.9 | 7 | 12 | 7.3 | 5. | 2 3.9 |) | | | JANUARY | 600 | 4218 | 1801 | 968 | •54 | 20.1 | 14 | 13 | 8.0 | 6. | 1 4.8 | š | | | FEBRUARY | 419 | 3922 | 1837 | 979 | •53 | 20.5 | 30 | 14 | 11 | 9. | 2 8.3 | | | | 1ARCH | 215 | 4088 | 1452 | 930 | .64 | 16.2 | 60 | 17 | 12 | 11 | 10 | | | | APRIL | 198 | 1919 | 755 | 428 | •57 | 8.4 | 90 | 20 | 15 | 13 | 11 | | | | MAY | 73 | 1386 | 371 | 321 | .87 | 4.1 | 120 | 29 | 20 | 17 | 14 | | | | JUNE | 59 | 341 | 158 | 97 | .62 | 1.8 | 183 | 79 | 48 | 36 | 28 | | | | JULY | 28 | 124 | 55 | 28 | .51 | •6 | | | | | | | | | AUGUST | 12 | 41 | 24 | 9.2 | .39 | .3 | | | | | | | | | SEPTEMBER | | 86 | 25 | 19 | .78 | .3 | | | | | | | | | ANNUAL | 356 | 1250 | 743 | 244 | .33 | 100 | | | | | | | | | MAGNI | | PROBABILI | | | | FLOW | MA | | | | | L HIGH FI
931-46 | -OW | | YEARS, | BASE
, IN CFS,
AND ANNUA | FOR INDIC | OD OF RE | CORD 193 | I-46
INTERVAL,
IN PERCEI | , IN
NT | PERIOD
(CON- | BASI | ED ON PER
HARGE, IN
INTERV | CIOD OF I | RECORD 1 | 931-46
 | RRENCE | | DISCHARGE | BASE
, IN CFS, | D ON PERIO | OD OF RE | CORD 193 | I-46
INTERVAL,
IN PERCEI | | PERIOD
(CON-
SECU-
TIVE | BASI
DISCI | HARGE, IN INTERV EXCEEDAN | I CFS, FO | RECORD 1 OR INDICA YEARS, AN ABILITY, 25 | 931-46 TED RECUI D ANNUAL IN PERCEN | RRENCE | | OISCHARGE
YEARS, / | BASE
, IN CFS,
AND ANNUA
2
50% | FOR INDIC | OD OF RE | CORD 193 CURRENCE ABILITY, | INTERVAL,
IN PERCEI | , IN
NT
 | PERIOD
(CON-
SECU- | DISCH | HARGE, IN INTERV | CFS, FO | RECORD 1 OR INDICA YEARS, AN ABILITY, | 931-46 TED RECUI D ANNUAL IN PERCEN | RRENCE | | YEARS, /
1.25
80% | BASE
, IN CFS,
AND ANNUA
2
50% | FOR INDIC | OD OF RE | CORD 193 CURRENCE ABILITY, 25 4% | INTERVAL,
IN PERCEI
50
2% | , IN
NT
 | PERIOD
(CON-
SECU-
TIVE
DAYS) | DISCH | HARGE, IN INTERV EXCEEDAN | I CFS, FO | RECORD 1 OR INDICA YEARS, AN ABILITY, 25 | 931-46 TED RECUI D ANNUAL IN PERCEN | RRENCE | | 1.25
80% | BASE
, IN CFS,
AND ANNUA
2
50% | FOR INDICAL EXCEEDAN | OD OF RE | CORD 193 CURRENCE ABILITY, 25 4% | INTERVAL,
IN PERCEI
50
2% | , IN
NT
 | PERIOD
(CON-
SECU-
TIVE
DAYS) | DISCH | HARGE, IN
INTERV
EXCEEDAN
5
20% | I CFS, FC
AL, IN '
ICE PROB
10
10\$ | RECORD 1 DR INDICA YEARS, AN ABILITY, 25 4% | 931-46
TED RECUI
D ANNUAL
IN PERCEN
50
2% | RRENCE | | 1.25
80% | BASE IN CFS, AND ANNUA 2 50% | FOR INDICAL EXCEEDAN | OD OF RE | CORD 193 CURRENCE ABILITY, 25 4% | INTERVAL,
IN PERCEI
50
2% | , IN
NT
 | PERIOD (CON- SECU- TIVE DAYS) | DISCH | HARGE, IN
INTERV
EXCEEDAN
5
20% | CFS, FORAL, IN SIDE PROBLEM 10 10% | DR INDICA YEARS, AN ABILITY, 25 4\$ | 931-46 TED RECUI D ANNUAL IN PERCEN 50 2% | 100
1% | | 1.25
80% | BASE IN CFS, AND ANNUA 2 50% | FOR INDICAL EXCEEDAN | OD OF RE | CORD 193 CURRENCE ABILITY, 25 4% | INTERVAL,
IN PERCEI
50
2% | , IN
NT
 | PERIOD
(CON-
SECU-
TIVE
DAYS) | DISCH | HARGE, IN
INTERV
EXCEEDAN
5
20% | 10D OF I | DR INDICA YEARS, AN ABILITY, 25 4% 19800 14200 | 931-46 TED RECUIT D ANNUAL IN PERCEN | 100
1% | | 1.25
80% | BASE IN CFS, AND ANNUA 2 50% | FOR INDICAL EXCEEDAN | OD OF RE | CORD 193 CURRENCE ABILITY, 25 4% | INTERVAL,
IN PERCEI
50
2% | , IN
NT
 | PERIOD (CON- SECU- TIVE DAYS) 1 3 7 | DISCH | HARGE, IN INTERV EXCEEDAN 20% 14400 10300 7760 | 10 OF I | DR INDICA YEARS, AN ABILITY, 25 4% 19800 14200 10100 | 931-46 TED RECUIT D ANNUAL IN PERCEN | 100
1% | | 1.25
80% | BASE IN CFS, AND ANNUA 2 50% | FOR INDICAL EXCEEDAN | OD OF RE | CORD 193 CURRENCE ABILITY, 25 4% | INTERVAL,
IN PERCEI
50
2% | , IN
NT
 | PERIOD
(CON-
SECU-
TIVE
DAYS) | DISCH
2
50%
10500
7530
5700
4350
3090 | HARGE, IN INTERVEXCEEDAN 5 20% 14400 10300 7760 5880 3950 | 10 CFS, F(AL, IN CE PROB) 10 10 10 10 10 10 10 10 10 10 10 10 10 1 | DR INDICA
YEARS, AN
ABILITY,
25
4%
19800
14200
10100
7380 | 931-46 TED RECUID ANNUAL IN PERCENSO 2% | 100
1% | | 1.25
80% | BASE IN CFS, AND ANNUA 2 50% | FOR INDICAL EXCEEDAN | OD OF RE | CORD 193 CURRENCE ABILITY, 25 4% | INTERVAL,
IN PERCEI
50
2% | , IN
NT
 | PERIOD (CON-
SECU-
TIVE DAYS) 1 3 7 15 30 | DISCH
2
50%
10500
7530
5700
4350 | ED ON PER HARGE, IN INTERV EXCEEDAN 5 20%
14400 10300 7760 5880 | 10 105 10 10 10 10 10 10 10 10 10 10 10 10 10 | DR INDICA YEARS, AN ABILITY, 25 4% 19800 14200 10100 7380 4790 | 931-46 TED RECUID ANNUAL IN PERCEN 50 2% | 100
1% | | 1.25
80% | BASE IN CFS, AND ANNUA 2 50% | FOR INDICAL EXCEEDAN | CATED RENCE PROB | CORD 193 CURRENCE ABILITY, 25 4% 7100 | INTERVAL
IN PERCEI | , IN
NT
100
1% | PERIOD (CON-
SECU-
TIVE DAYS) 1 3 7 15 30 60 | DISCH
2
50%
10500
7530
5700
4350
3090
2470
2100 | HARGE, IN INTERVEXCEEDAN 5 20% 14400 10300 7760 5880 3950 3160 2740 | 10 10% 16900 12100 8890 6640 4380 3500 3080 | DR INDICA YEARS, AN ABILITY, 25 4% 19800 14200 10100 7380 4790 3850 | 931-46 TED RECUID ANNUAL IN PERCEN 50 2% | 100
1% | | 1.25
80% | BASE IN CFS, AND ANNUA 2 50% | FOR INDIG | CATED RENCE PROB | CORD 193 CURRENCE ABILITY, 25 4\$ 7100 | INTERVAL,
IN PERCEI
50 2% | IN NT 100 15 | PERIOD
(CON-
SECU-
TIVE
DAYS)
 | DISCH
2
50%
10500
7530
5700
4350
3090
2470
2100
OF RECC | HARGE, IN INTERVEXCEEDAN 5 20% 14400 10300 7760 5880 3950 3160 2740 DRD 1931- | 10 CFS, F(AL, IN CE PROB) 10 10 10 10 10 10 10 10 10 10 10 10 10 1 | DR INDICA YEARS, AN ABILITY, 25 4% 19800 14200 10100 7380 4790 3850 3430 | 931-46 TED RECUID ANNUAL IN PERCEN 50 2% | 100
1% | # 14326800 NORTH FORK COQUILLE RIVER NEAR FAIRVIEW, OR LOCATION.--Lat 43°11'03", long 124°04'33", in SW\u00e4SE\u00e4 sec.35, T.27 S., R.12 W., Coos County, Hydrologic Unit 17100305, on right bank 0.2 mi downstream from Lost Creek, 2.2 mi south of Fairview, and at mile 22.2. DRAINAGE AREA. -- 73.9 mi2. 1170 763 554 418 325 PERIOD OF RECORD. -- October 1963 to September 1981. GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 79.72 ft National Geodetic Vertical Datum of 1929 (from stadia survey). Prior to Aug. 17, 1978, at site 0.5 mi downstream at datum 16.38 ft lower with supplementary water-stage recorder and crest-stage gage at present site used during periods of backwater. REMARKS.--No regulation. Several diversions for irrigation above station. AVERAGE DISCHARGE.--18 years, 281 ft³/s, 51.57 in/yr, 203,600 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 7,760 ft³/s Mar. 2, 1972; maximum gage height, 18.80 ft, previous site and datum, Jan. 8, 1976, backwater from ponding in valley below; maximum gage height unaffected by backwater, 18.03 ft, previous site and datum, Jan. 8, 1976; minimum discharge, 2.0 ft³/s Sept. 9, 10, 1967. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of December 1981 reached a stage of 14.86 ft from flood mark, discharge, 8,350 ft³/s. ### STATISTICAL SUMMARIES | | MINIMIN | MAYIMINA | | STAN-
DARD
DEVIA- | COEFFI-
CIENT OF | PERCENT
OF | PERIOD
(CON- | | NTERVAL, | IN YEA | R INDICAT
RS, AND A
BILITY, I | NNU AL N | ON- | |--|---|---|---|---|---|---------------------|---|--|---|---|---|---|-----------| | монтн | MINIMUM
(CFS) | MAXIMUM
(CFS) | MEAN
(CFS) | TION
(CFS) | VARI-
ATION | ANNUAL
RUNOFF | SECU-
TIVE
DAYS) | 2
50 % | 5
20% | 10
10% | 20
5% | 50
2% | 100
1% | | OCTOBER | 4.9 | 109 | 43 | 35 | .81 | 1.3 | 1 | 4.1 | 2.9 | 2.4 | 2.1. | | | | NOVEMBER | 29 | 1121 | 358 | 299 | . 84 | 10.6 | 3 | 4.2 | 3.0 | 2.5 | 2.2 | | | | DECEMBER | 21 | 1530 | 729 | 371 | .51 | 21.6 | 7 | 4.5 | 3.3 | 2.8 | 2.6 | | | | IANUARY | 47 | 1331 | 771 | 364 | .47 | 22.8 | 14 | 5.0 | 3.6 | 3.1 | 2.8 | | | | EBRUARY | 105 | 894 | 499 | 240 | .48 | 14.8 | 30 | 5.6 | 4.1 | 3.6 | 3.3 | | | | MARCH | 155 | 987 | 467 | 245 | •52 | 13.8 | 60 | 7.8 | 5.4 | 4.6 | 4 - 1 | | | | APRIL | 121 | 573 | 281 | 124 | .44 | 8.3 | 90 | 9.9 | 6.9 | 5.9 | 5.3 | | | | IAY
IUNE | 42
20 | 310 | 132 | 70
25 | •53 | 3.9 | 120 | 14
34 | 9.7 | 8.4 | 7.5 | | | | IULY | 11 | 130
33 | 53
19 | 25
7 .4 | .47 | 1.6
.6 | 183 | | 25 | 21 | 18 | | | | UGUST | 3.8 | 24 | 11 | 5.3 | •39
•51 | .3 | | | | | | | | | | | 24 | | 7.2 | •) | • • | | | | | | | | | | 3.9 | 60 | 19 | 18 | .94 | •6 | | | | | | | | | SEPTEMBER
ANNUAL | 89
 | 460
 | 281

TY OF IN | 88
 | .31
 | 100 |
MA(| | | | OF ANNUAL | | | | MAGNIT | 89 TUDE AND BASE | 460
PROBABILI
D ON PERIO | 281 TY OF IN OD OF RE | 88 ISTANTANE CORD 196 CURRENCE | .31
 | 100

FLOW
 | MA(PERIOD (CON- | BASED
DISCHA | ON PERI | OD OF R | OF ANNUAL
ECORD 190
R INDICATE
EARS, AND | 64-81

ED RECUI
ANNUAL | RRENCE | | MAGNIT
MAGNIT
SCHARGE,
YEARS, A | 89 TUDE AND BASE IN CFS, AND ANNUA | 460 PROBABILI' D ON PERIO FOR INDIO L EXCEEDAN | 281 TY OF IN OD OF RE CATED RE NCE PROB | 88 ISTANTANE CORD 196 CURRENCE IABILITY, 25 | .31
OUS PEAK F
4-81
INTERVAL,
IN PERCEN | 100
 | PERIOD
(CON-
SECU- | BASEI
DISCHA | ON PERI | OD OF R | ECORD 196 R INDICATE EARS, AND BILITY, IN | 64-81
ED RECUI
ANNUAL
N PERCEI | RRENCE | | EPTEMBER NNUAL MAGNIT ISCHARGE, YEARS, | 89 FUDE AND BASE IN CFS, | 460 PROBABILI D ON PERIO FOR INDIO L EXCEEDA | 281 TY OF IN OD OF RE CATED RE | 88 ISTANTANE CORD 196 | .31
DUS PEAK F
4-81
INTERVAL,
IN PERCEN | 100
FLOW | PERIOD
(CON-
SECU-
TIVE | BASEC
DISCHA
E | ON PERI | OD OF R | ECORD 196 R INDICATE EARS, AND BILITY, II | 64-81 ED RECUI ANNUAL N PERCEI | RRENCE | | EPTEMBER NNUAL MAGNIT ISCHARGE, YEARS, A | 89 TUDE AND BASE IN CFS, AND ANNUA | 460 PROBABILI' D ON PERIO FOR INDIO L EXCEEDAN | 281 TY OF IN OD OF RE CATED RE NCE PROB | 88 ISTANTANE CORD 196 CURRENCE IABILITY, 25 | .31
OUS PEAK F
4-81
INTERVAL,
IN PERCEN | 100
 | PERIOD
(CON-
SECU- | BASEI
DISCHA | ON PERI | OD OF R | ECORD 196 R INDICATE EARS, AND BILITY, IN | 64-81
ED RECUI
ANNUAL
N PERCEI | RRENCE | | EPTEMBER NNUAL MAGNIT ISCHARGE, YEARS, A | 89 TUDE AND BASE IN CFS, AND ANNUA | PROBABILI'
D ON PERIO
FOR INDIO
L EXCEEDAN
5
20% | 281 TY OF IN OD OF RE CATED RE NCE PROB | 88 ISTANTANE CORD 196 CURRENCE IABILITY, 25 | .31
OUS PEAK F
4-81
INTERVAL,
IN PERCEN | 100
 | PERIOD
(CON-
SECU-
TIVE
DAYS) | DISCHA E 2 50% | ON PERI | OD OF R | ECORD 196 R INDICATE EARS, AND BILITY, II 25 4% | 64-81
ED RECUI
ANNUAL
N PERCEI
50
2% | RRENCE | | MAGNIT
ISCHARGE,
YEARS, A | 89 TUDE AND BASE IN CFS, ND ANNUA 2 50% | FOR INDIC
EXCEEDAL | 281 TY OF IN OD OF RE CATED RE NCE PROB | 88 ISTANTANEI CORD 196 CURRENCE BABILITY, 25 4% |
.31
OUS PEAK F
4-81
INTERVAL,
IN PERCEN | 100
 | PERIOD (CON- SECU- TIVE DAYS) | DISCHA E 2 50% | ON PERI | OD OF R CFS, FOI L, IN YI E PROBAI 10 10% | ECORD 196 R INDICATE EARS, AND BILITY, II 25 4% | 64-81 ED RECUI ANNUAL N PERCEI 50 2% | RRENCE | | MAGNIT ISCHARGE, YEARS, A 1.25 80% | 89 FUDE AND BASE IN CFS, AND ANNUA 2 50% | FOR INDIC
EXCEEDAL | 281 TY OF IN OD OF RE CATED RE NCE PROB | 88 ISTANTANEI CORD 196 CURRENCE BABILITY, 25 4% | .31
OUS PEAK F
4-81
INTERVAL,
IN PERCEN | 100
 | PERIOD
(CON-
SECU-
TIVE
DAYS) | DISCHA 2 50% 3340 2700 | ON PERI | OD OF R CFS, FOI L, IN YI E PROBAI 10 10 5530 4120 | ECORD 196 R INDICATE EARS, AND BILITY, II 25 4% 6440 4630 | 64-81
ED RECUI
ANNUAL
N PERCEI
50
2% | RRENCE | | MAGNIT
ISCHARGE,
YEARS, A | 89 TUDE AND BASE IN CFS, ND ANNUA 2 50% | FOR INDIC
EXCEEDAL | 281 TY OF IN OD OF RE CATED RE NCE PROB | 88 ISTANTANEI CORD 196 CURRENCE BABILITY, 25 4% | .31
OUS PEAK F
4-81
INTERVAL,
IN PERCEN | 100
 | PERIOD (CON- SECU- TIVE DAYS) 1 3 7 | DISCHA 2 50% 3340 2700 2030 | ON PERI | OD OF R CFS, FOI L, IN YI E PROBAI 10 10 5530 4120 3130 | R INDICATE
EARS, AND
BILITY, II
25
4%
6440
4630
3590 | 64-81 ED RECUI ANNUAL N PERCEI 50 2% | RRENCE | | MAGNIT ISCHARGE, YEARS, A 1.25 80% | 89 TUDE AND BASE IN CFS, ND ANNUA 2 50% | FOR INDIC
EXCEEDAL | 281 TY OF IN OD OF RE CATED RE NCE PROB | 88 ISTANTANEI CORD 196 CURRENCE BABILITY, 25 4% | .31
OUS PEAK F
4-81
INTERVAL,
IN PERCEN | 100
 | PERIOD
(CON-
SECU-
TIVE
DAYS) | DISCHA 2 50% 3340 2700 | ON PERI | OD OF R CFS, FOI L, IN YI E PROBAI 10 10 5530 4120 | ECORD 196 R INDICATE EARS, AND BILITY, II 25 4% 6440 4630 | 64-81 ED RECUI ANNUAL N PERCEI 50 2% | RRENCE | | MAGNIT
ISCHARGE,
YEARS, A | 89 TUDE AND BASE IN CFS, ND ANNUA 2 50% | FOR INDIC
EXCEEDAL | 281 TY OF IN OD OF RE CATED RE NCE PROB | 88 ISTANTANEI CORD 196 CURRENCE BABILITY, 25 4% | .31
OUS PEAK F
4-81
INTERVAL,
IN PERCEN | 100
 | PERIOD (CON-
SECU-
TIVE DAYS) | BASED DISCHA E 2 50% 3340 2700 2030 1390 | ON PERI RGE, IN INTERVA EXCEEDANC 5 20% 4720 3620 2720 1830 | OD OF R CFS, FOI L, IN YI E PROBAI 10 10 5530 4120 3130 2110 | ECORD 196 R INDICATE EARS, AND BILITY, II 25 4\$ 6440 4630 3590 2420 | 64-81 ED RECUI ANNUAL N PERCEI 50 2% | RRENCE | | MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MAGNIT
MA | 89 TUDE AND BASE IN CFS, ND ANNUA 2 50% | FOR INDIC
EXCEEDAL | 281 TY OF IN OD OF RE CATED RE NCE PROB | 88 ISTANTANEI CORD 196 CURRENCE BABILITY, 25 4% | .31
OUS PEAK F
4-81
INTERVAL,
IN PERCEN | 100
 | PERIOD (CON-
SECU-
TIVE DAYS) | BASED DISCHA 2 50% 3340 2700 2030 1390 1080 | 700 ON PERI | OD OF R CFS, FOI L, IN YI E PROBAI 10 10 5530 4120 3130 2110 1530 | R INDICATE
EARS, AND
BILITY, II
25
4%
6440
4630
3590
2420
1690 | ED RECUI
ANNUAL
N PERCEI
50
2% | RRENCE | 30% 260 40% 166 98 60% 52 26 19 85% 11 90% 7.3 95% 5.1 199 COQUILLE RIVER BASIN 14327000 NORTH FORK COQUILLE RIVER NEAR MYRTLE POINT, OR LOCATION.--Lat 43°04'15", long 124°06'20", in SE4 sec.10, T.29 S., R.12 W., Coos County, Hydrologic Unit 17100305, near center of span on downstream side of highway bridge 1.6 mi northeast of Myrtle Point, and at mile 4.1. DRAINAGE AREA .-- 282 mi2. 4190 2650 1860 1430 1120 891 558 342 184 95 69 PERIOD OF RECORD. -- December 1928 to September 1946, October 1963 to September 1968. GAGE.--Wire-weight gage read once daily and crest-stage gage. Datum of gage is 2.79 ft National Geodetic Vertical Datum of 1929. Prior to Oct. 1, 1930, chain gage at present site and different datum. Oct. 1, 1930, to Sept. 30, 1946, water-stage recorder at site 4.5 mi upstream at datum 8.15 ft higher. REMARKS.--No regulation. Small diversions for irrigation above station. AVERAGE DISCHARGE.--22 years (water years 1930-46, 1964-68), 945 ft³/s, 684,200 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 38,400 ft³/s Dec. 23, 1964, gage height, 37.67 ft; minimum observed, 1.2 ft³/s Aug. 12, 1968. EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage known, 41.2 ft sometime during winter of 1909-10. Flood of Dec. 26, 1955, reached a stage of 37.0 ft, discharge, $20,000 \text{ ft}^3/\text{s}$. | МС | ONTHLY AN | ND ANNUAL | MEAN DIS | SCHARGES | 1930-68 | | MA | | | | OF ANNUAL
RECORD 19 | | OW | |---|--|--|--|---|--|---|--|---|---
--|---|--|-----------| | | MINIMUM | MAXIMUM | MEAN | STAN-
DARD
DEVIA-
TION | COEFFI-
CIENT OF
VARI- | PERCENT
OF
ANNUAL | PERIOD
(CON-
SECU- | DISC | INTERVA | L, IN YE | OR INDICAT
ARS, AND A
ABILITY, I | NNUAL N | 0N- | | MONTH | (CFS) | (CFS) | (CFS) | (CFS) | ATION | RUNOFF | TIVE
DAYS) | 2
50% | 5
20 % | 10
10% | 20
5 % | 50
2 % | 100
1% | | OCTOBER | 22 | 500 | 134 | 121 | •90 | 1.2 | 1 | 22 | 13 | 9.0 | 0 6.6 | | | | IOVEMBER | 24 | 3247 | 1124 | 925 | .82 | 9.9 | 3 | 23 | 13 | 9. | 7 7.3 | | | | DECEMBER | 342 | 6110 | 2096 | 1469 | .70 | 18.4 | 7 | 24 | 14 | 11 | 8.2 | | | | JANUARY | 854 | 4762 | 2479 | 1150 | .46 | 21.8 | 14 | 25 | 15 | 12 | 9.0 | | | | EBRUARY | 530 | 3781 | 2056 | 949 | .46 | 18.1 | 30 | 28 | 18 | 14 | 11 | | | | MARCH | 427 | 3949 | 1670 | 905 | •54 | 14.7 | 60 | 32 | 22 | 18 | 16 | | | | APRIL | 276 | 2404 | 912 | 500 | •55 | 8.0 | 90 | 39 | 28 | 24 | 22 | | | | 4AY | 125 | 1687 | 470 | 323 | •69 | 4.1 | 120 | 53 | 38 | 33 | 30 | | | | JUNE | 83 | 986 | 259 | 216 | .83 | 2.3 | 183 | 126 | 87 | 72 | 62 | | | | JULY | 48 | 183 | 92 | 43 | .47 | .8 | | | | | | | | | NUGUST | 11 | 80 | 45 | 21 | .47 | .4 | | | | | | | | | EPTEMBER | 15 | 219 | 50 | 45 | .90 | .4 | | | | | | | | | DEI TEMBER | • • • | | | | | | | | | | | | | | ANNUAL | 517
 | 1383
PROBABILI | | | .28

OUS PEAK F
0-68 | 100
 |
MAG | | | | OF ANNUAL | | | | MAGNIT
MAGNIT
DISCHARGE,
YEARS, A | 517 FUDE AND BASE IN CFS, | PROBABILI
D ON PERIO
FOR INDIC
L EXCEEDA | TY OF IN
OD OF RE
CATED RE | STANTANE
CORD 193
CURRENCE | OUS PEAK F
0-68
INTERVAL,
IN PERCEN | FLOW | PERIOD | BASI | ED ON PER

HARGE, IN
INTERV | RIOD OF F | | 30-68 ED RECUF | RENCE | | MAGNIT | 517
FUDE AND
BASE | PROBABILI
D ON PERIO | TY OF IN | ISTANTANE
CORD 193 | OUS PEAK F
0-68
INTERVAL,
IN PERCEN | FLOW | PERIOD
(CON-
SECU-
TIVE | DISCH | HARGE, IN
INTERV
EXCEEDAN | CE PROBA | RECORD 19 OR INDICAT YEARS, AND ABILITY, ! | 30-68 ED RECUF ANNUAL N PERCEN | RRENCE | | MAGNIT
SCHARGE,
YEARS, A
1.25
80\$ | 517 FUDE AND BASE IN CFS, AND ANNUA 2 50% | PROBABILI
D ON PERIO
FOR INDIG
L EXCEEDAI | TY OF IN
DD OF RE
CATED RE
NCE PROB | ISTANTANE
ICORD 193
CURRENCE
IABILITY, | OUS PEAK F
0-68
INTERVAL,
IN PERCEN | FLOW | PERIOD
(CON-
SECU- | BASI
DISCH | HARGE, IN EXCEEDAN | CFS, FO | RECORD 19 OR INDICAT YEARS, AND ABILITY, I | 30-68 ED RECUF ANNUAL N PERCEN | RRENCE | | MAGNIT
DISCHARGE,
YEARS, A
1.25
80% | 517 FUDE AND BASE IN CFS, AND ANNUA 2 50% | PROBABILI
D ON PERIO
FOR INDIG
L EXCEEDAI | TY OF IN
DD OF RE
CATED RE
NCE PROB | ISTANTANE
CORD 193
 | OUS PEAK F
0-68
INTERVAL,
IN PERCEN | FLOW | PERIOD
(CON-
SECU-
TIVE | DISCH | ED ON PER
HARGE, IN
INTERV
EXCEEDAN
5
20% | I CFS, FC
VAL, IN N
ICE PROBA | RECORD 19 OR INDICAT (FARS, AND ABILITY, ! 25 4% | 30-68 ED RECUF ANNUAL N PERCEN | RRENCE | | MAGNIT
MAGNIT
DISCHARGE,
YEARS, A
1.25
80% | 517 FUDE AND BASE IN CFS, NND ANNUA 2 50% | PROBABILI
D ON PERIO
FOR INDIG
L EXCEEDAI | TY OF IN
DD OF RE
CATED RE
NCE PROB | ISTANTANE
ICORD 193
CURRENCE
IABILITY, | OUS PEAK F
0-68
INTERVAL,
IN PERCEN | FLOW | PERIOD
(CON-
SECU-
TIVE
DAYS) | DISCH | HARGE, IN
INTERV
EXCEEDAN
5
20% | I CFS, F(VAL, IN) ICE PROBA 10% | RECORD 19 | 30-68 ED RECUF ANNUAL N PERCEN 50 2% | 100 | | MAGNIT
MAGNIT
DISCHARGE,
YEARS, A
1.25
80% | 517 FUDE AND BASE IN CFS, NND ANNUA 2 50% | PROBABILI'D ON PERIO | TY OF IN
DD OF RE
CATED RE
NCE PROB | ISTANTANE
ICORD 193
CURRENCE
IABILITY, | OUS PEAK F
0-68
INTERVAL,
IN PERCEN | FLOW | PERIOD
(CON-
SECU-
TIVE
DAYS) | DISCH | HARGE, IN
INTERN
EXCEEDAN
5
20% | 1 CFS, F(
/AL, IN)
ICE PROB/
10% | RECORD 19 OR INDICAT YEARS, AND ABILITY, 1 25 4% | 30-68 ED RECUF ANNUAL N PERCEN 50 2% | 100 | | MAGNIT
MAGNIT
IISCHARGE,
YEARS, A
1.25
80% | 517 FUDE AND BASE IN CFS, NND ANNUA 2 50% | PROBABILI'D ON PERIO | TY OF IN
DD OF RE
CATED RE
NCE PROB | ISTANTANE
ICORD 193
CURRENCE
IABILITY, | OUS PEAK F
0-68
INTERVAL,
IN PERCEN | FLOW | PERIOD (CON- SECU- TIVE DAYS) | BASI DISCH 2 50% 8920 7530 6220 | HARGE, IN INTERNAL EXCEEDAN 5 20% 13800 10900 8620 | 10 OF F | 26800 18700 12900 | 30-68 ED RECUF ANNUAL N PERCEN 50 2% | 100 | | MAGNIT
DISCHARGE,
YEARS, A
1.25
80% | 517 FUDE AND BASE IN CFS, NND ANNUA 2 50% | PROBABILI'D ON PERIO | TY OF IN
DD OF RE
CATED RE
NCE PROB | ISTANTANE
ICORD 193
CURRENCE
IABILITY, | OUS PEAK F
0-68
INTERVAL,
IN PERCEN | FLOW | PERIOD (CON- SECU- TIVE DAYS) 1 3 7 | BASI DISCH 2 50% 8920 7530 6220 4930 | HARGE, IN INTERVENCE EXCEEDAN 5 20% 13800 10900 8620 6620 6620 | 10 OF F | RECORD 19 OR INDICAT YEARS, AND ABILITY, 1 25 4% | 30-68 ED RECUF ANNUAL N PERCEN 50 2% | TOO 1% | | MAGNIT
MAGNIT
IISCHARGE,
YEARS, A
1.25
80% | 517 FUDE AND BASE IN CFS, NND ANNUA 2 50% | PROBABILI'D ON PERIO | TY OF IN
DD OF RE
CATED RE
NCE PROB | ISTANTANE
ICORD 193
CURRENCE
IABILITY, | OUS PEAK F
0-68
INTERVAL,
IN PERCEN | FLOW | PERIOD (CON-
SECU-
TIVE DAYS) 1 3 7 15 30 | BASI DISCH 2 50% 8920 7530 6220 4930 3600 | HARGE, IN INTERVEXCEEDAN 5 20% 13800 10900 8620 6620 4680 | I CFS, FC
(AL, IN)
ICE PROB/
10
10%
18600
13900
10400
7590
5300 | 26800
18700
18700
18700
18700
18900
8660
5990 | 30-68 ED RECUF ANNUAL N PERCEN 50 2% | TOO 1% | | MAGNIT
ISCHARGE,
YEARS, A
1.25
80% | 517 FUDE AND BASE IN CFS, NND ANNUA 2 50% | PROBABILI'D ON PERIO | TY OF IN
DD OF RE
CATED RE
NCE PROB | ISTANTANE
ICORD 193
CURRENCE
IABILITY, | OUS PEAK F
0-68
INTERVAL,
IN PERCEN | FLOW | PERIOD (CON-
SECU-
TIVE DAYS) | BASI DISCH 2 50% 8920 7530 6220 4930 | HARGE, IN INTERVENCE EXCEEDAN 5 20% 13800 10900 8620 6620 6620 | 10 OF F | DR INDICAT
YEARS, AND
ABILITY, !
25
4%
26800
18700
12900
8660 | 30-68 ED RECUF ANNUAL N PERCEN 50 2% | 100 | | MAGNIT
DISCHARGE,
YEARS, A
1.25
80% | 517 FUDE AND BASE IN CFS, NND ANNUA 2 50% | PROBABILI'D ON PERIO | TY OF IND OF RE | CURRENCE ASSILLITY, 25 4% | OUS PEAK F
0-68
INTERVAL
IN PERCEI | FLOW IN NT 100 1% | PERIOD
(CON-
SECU-
TIVE
DAYS)
 | BASI
DISCI
2
50%
8920
7530
6220
4930
3600
2890
2560 | 13800
10900
8620
4680
3690
3270 | 10 CFS, FC (AL, IN NICE PROBAL) 10 10% 18600 13900 10400 7590 5300 4120 3650 | 26800
18700
18700
18700
18700
12900
8660
5990
4600 | 30-68 ED RECUF ANNUAL N PERCEN 50 2% | TOO 1% | | MAGNIT
DISCHARGE,
YEARS, A
1.25
80% | 517 FUDE AND BASE IN CFS, NND ANNUA 2 50% | PROBABILITO ON PERIOD ON PERIOD ON PERIOD OF STATE STA | TY OF INDO OF RECATED RECEPROB | ISTANTANE CORD 193 CURRENCE ABILITY, 25 4% 6500 | OUS PEAK FOR THE OF DAILY N | FLOW IN IN IN IN IN IN IN IN IN I | PERIOD (CON-
SECU-
TIVE DAYS) | BASI DISCH 2 50% 8920 7530 6220 4930 3600 2890 0560 0F RECC | HARGE, IN INTERVENCEDAN 13800 10900 8620 4680 3690 3270 DRD 1930- | 10 CFS, FC (AL, IN) (CFS, FC (AL, IN) (CFS, FC) I | 26800
18700
12900
8660
5990
4060 | 30-68 ED RECUF ANNUAL N PERCEN 50 2% | 100
1% | 200 ## ROGUE RIVER BASIN ### 14327500 ROGUE RIVER ABOVE BYBEE CREEK, NEAR UNION CREEK, OR LOCATION.--Lat 42°56'05", long 122°25'15", in NEt sec.26, T.30 S., R.3 E., Jackson County, Hydrologic Unit 17100307, on left bank 700 ft upstream from Bybee Creek, 2.3 mi
northeast of village of Union Creek, and at mile 186.1 (river-profile survey). DRAINAGE AREA .-- 156 mi2. 1140 765 578 521 446 355 322 275 262 242 PERIOD OF RECORD. -- January 1930 to September 1952. GAGE.--Water-stage recorder. Altitude of gage is 3,465 ft, from river-proflle map. Prior to Nov. 23, 1934, water-stage recorder at site 200 ft downstream at different datum. $\label{eq:REMARKS.--No regulation or diversion above station.}$ AVERAGE DISCHARGE.--22 years (water years 1931-52), 498 ft³/s, 360,500 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 4,430 ft³/s Nov. 29, 1942 and Dec. 28, 1945, gage height, 7.84 ft, from rating curve extended above 1,600 ft³/s by logarithmic plotting; minimum daily, 180 ft³/s Jan. 7, 1937. | | | | ucau | STAN-
DARD
DEVIA- | COEFFI-
CIENT OF | | PERIOD
(CON-
SECU- | DISC | INTERVAL | , IN YEA | OR INDICAT
ARS, AND A
ABILITY, I | ANNUAL NO | N- | |---------------------------------------|------------------------------|------------------------------------|------------------|---|---------------------------------------|--------------------------|---|---|--|---|---|--|---------------------------| | MONTH | (CFS) | MAXIMUM
(CFS) | MEAN
(CFS) | TION
(CFS) | VARI-
ATION | ANNUAL
RUNOFF | TIVE
DAYS) | 2
50% | 5
20% | 10
10% | 20
5% | 50
2 % | 100
1% | | OCTOBER | 227 | 564 | 317 | 85 | .27 | 5.3 | 1 | 257 | 219 | 201 | 188 | | | | NOVEMBER | 234 | 803 | 414 | 151 | •36 | 6.9 | 3 | 263 | 227 | 210 | 198 | | | | DECEMBER
JANUARY | 254 | 1041 | 481 | 203 | .42 | 8.0
7.5 | 7 | 267 | 23 3
237 | 217
221 | 205
209 | | | | EBRUARY | 238
248 | 729
820 | 448
445 | 144
141 | .32
.32 | 7.4 | 14
30 | 272
277 | 242 | 226 | 213 . | | | | IARCH | 317 | 758 | 500 | 124 | .25 | 8.4 | 60 | 285 | 242 | 230 | 216 | | | | PRIL | 481 | | 735 | 156 | .21 | | 90 | 293 | 253 | 234 | 220 | | | | IAY | 481
373 | 1022
1389 | 735
916 | 291 | •21
•32 | 12.3
15.3 | 120 | 293
301 | 253
259 | 234 | 220
227 | | | | UNE | 271 | 1663 | 718 | 335 | .47 | 12.0 | 183 | 334 | 282 | 261 | 246 | | | | IULY | 222 | 666 | 716
391 | 107 | .27 | 6.5 | 103 | <i></i> | 202 | 201 | 240 | | | | UGUST | 204 | 467 | 315 | 63 | .20 | 5.3 | | | | | | | | | EPTEMBER | 204 | 426 | 300 | 54 | .18 | 5.0 | | | | | | | | | NNUAL | 313 | 692 | 498 | 97 | .20 | 100 | | | | | | | | | MAGNIT | | PROBABILI
D ON PERI | | | | FLOW | MAC | | | | OF ANNUAL
ECORD 19 | | .ow | | OISCHARGE, | BASE
IN CFS,
AND ANNUA | FOR INDIC | OD OF RE | CORD 193 CURRENCE | 1-52
INTERVAL
IN PERCE |
, !N
NT | PERIOD
(CON- | BASE
DISCH | D ON PER

ARGE, IN
INTERV | OD OF R CFS, FO | | 31-52
ED RECUR | RENCE | | I SCHARGE , | BASE
IN CFS, | D ON PERIO | OD OF RE | CORD 193 | 1-52
INTERVAL
IN PERCE | , IN | PERIOD
(CON-
SECU-
TIVE | DISCH | D ON PER ARGE, IN INTERV EXCEEDAN | CFS, FO
AL, IN Y
CE PROBA | ECORD 19 R INDICAT EARS, AND BILITY, I | 31-52
ED RECUR
ANNUAL
N PERCEN | RRENCE | | ISCHARGE
YEARS, /
1.25
80% | BASE IN CFS, AND ANNUA 2 50% | FOR INDIV
L EXCEEDA | OD OF RE | CORD 193 CURRENCE ABILITY, 25 4% | 1-52
INTERVAL
IN PERCE | , IN
NT
 | PERIOD
(CON-
SECU- | DISCH | D ON PER ARGE, IN INTERV EXCEEDAN | CFS, FO
AL, IN Y | ECORD 19 R INDICAT EARS, AND BILITY, I | 31-52
ED RECUR
ANNUAL
N PERCEN | RENCE | | ISCHARGE,
YEARS, / | BASE
IN CFS,
AND ANNUA | FOR INDIV
L EXCEEDA | OD OF RE | CORD 193 CURRENCE ABILITY, | 1-52
INTERVAL
IN PERCE | , IN
NT
 | PERIOD
(CON-
SECU-
TIVE
DAYS) | DISCH | D ON PER ARGE, IN INTERV EXCEEDAN 5 20% | CFS, FO
AL, IN Y
CE PROBA | ECORD 19 R INDICAT EARS, AND BILITY, I 25 4% | 31-52
ED RECUR
ANNUAL
N PERCEN | RRENCE | | 1.25
80% | BASE IN CFS, AND ANNUA 2 50% | FOR INDII
L EXCEEDA
5
20% | OD OF RE | CORD 193 CURRENCE ABILITY, 25 4% | 1-52
INTERVAL
IN PERCE | , IN
NT
 | PERIOD
(CON-
SECU-
TIVE
DAYS) | DISCH | D ON PER
ARGE, IN
INTERV
EXCEEDAN

5
20% | CFS, FO
AL, IN Y
CE PROBA
10
10% | ECORD 19 REINDICAT EARS, AND BILITY, I 25 4% 3640 | ED RECUR
ANNUAL
N PERCEN
2% | RRENCE
IT
100
1% | | I SCHARGE,
YEARS, /
1.25
80% | BASE IN CFS, AND ANNUA 2 50% | FOR INDIV
L EXCEEDA | OD OF RE | CORD 193 CURRENCE ABILITY, 25 4% | 1-52
INTERVAL
IN PERCE | , IN
NT
 | PERIOD
(CON-
SECU-
TIVE
DAYS) | DISCH | D ON PER ARGE, IN INTERV EXCEEDAN 5 20% 2560 2050 | CFS, FO
AL, IN Y
CE PROBA
10
10% | RECORD 19 PR INDICAT FEARS, AND BILITY, I 25 4% 3640 2770 | 31-52
ED RECUR
ANNUAL
N PERCEN | 100
1% | | 1.25
80% | BASE IN CFS, AND ANNUA 2 50% | FOR INDII
L EXCEEDA
5
20% | OD OF RE | CORD 193 CURRENCE ABILITY, 25 4% | 1-52
INTERVAL
IN PERCE | , IN
NT
 | PERIOD (CON- SECU- TIVE DAYS) 1 3 7 | DISCH 2 50% 1850 1540 1300 | D ON PER ARGE, IN INTERV EXCEEDAN 5 20% 2560 2050 1680 | CFS, FO
AL, IN Y
CE PROBA
10
10%
3030
2380
1920 | RECORD 19 | ED RECUR
ANNUAL
N PERCEN
50
2% | 100
1% | | 1.25
80% | BASE IN CFS, AND ANNUA 2 50% | FOR INDII
L EXCEEDA
5
20% | OD OF RE | CORD 193 CURRENCE ABILITY, 25 4% | 1-52
INTERVAL
IN PERCE | , IN
NT
 | PERIOD (CON-
SECU-
TIVE DAYS) | DISCH 2 50% 1850 1540 1300 1160 | D ON PER ARGE, IN INTERV EXCEEDAN 5 20% 2560 2050 1680 1480 | 10D OF R CFS, FO AL, IN Y CE PROBA 10 10 5 3030 2380 1920 1670 | RECORD 19 R INDICAT EARS, AND BILITY, I 25 4% 3640 2770 2230 1900 | ED RECUR
ANNUAL
N PERCEN
50
2% | 100
1% | | 1.25
80% | BASE IN CFS, AND ANNUA 2 50% | FOR INDII
L EXCEEDA
5
20% | OD OF RE | CORD 193 CURRENCE ABILITY, 25 4% | 1-52
INTERVAL
IN PERCE | , IN
NT
 | PERIOD (CON-
SECU-
TIVE DAYS) | DISCH | D ON PER | 10D OF R CFS, FO AL, IN Y CE PROBA 10 10 3030 2380 1920 1670 1470 | R INDICAT
EARS, AND
BILITY, I
 | ED RECUR
ANNUAL
N PERCEN
50
2% | 100
1% | | 1.25
80% | BASE IN CFS, AND ANNUA 2 50% | FOR INDII
L EXCEEDA
5
20% | OD OF RE | CORD 193 CURRENCE ABILITY, 25 4% | 1-52
INTERVAL
IN PERCE | , IN
NT
 | PERIOD (CON-
SECU-
TIVE DAYS) | DISCH 2 50% 1850 1540 1300 1160 | D ON PER ARGE, IN INTERV EXCEEDAN 5 20% 2560 2050 1680 1480 | 10D OF R CFS, FO AL, IN Y CE PROBA 10 10 5 3030 2380 1920 1670 | RECORD 19 R INDICAT EARS, AND BILITY, I 25 4% 3640 2770 2230 1900 | ED RECUR
ANNUAL
N PERCEN
50
2% | 100
1% | | 1.25
80% | BASE IN CFS, AND ANNUA 2 50% | FOR INDII
L EXCEEDA
5
20% | OD OF RECOME | CORD 193 CURRENCE ABILITY, 25 4% 4450 | 1-52 INTERVAL IN PERCE 50 2% | , IN
NT

1%
 | PERIOD
(CON-
SECU-
TIVE
DAYS)
 | DISCH 2 50% 1850 1540 1300 1160 1050 934 824 | D ON PER ARGE, IN INTERV EXCEEDAN 20% 2560 2050 1680 1480 1320 1140 988 | CFS, FO AL, IN Y CE PROBA 10 10 10 3030 2380 1920 1670 1470 1240 1080 | R INDICAT
FARS, AND
BILITY, I
25
4%
3640
2770
2230
1900
1650
1350 | ED RECUR
ANNUAL
N PERCEN
50
2% | 100
1% | | 1.25
80% | BASE IN CFS, AND ANNUA 2 50% | FOR INDII
L EXCEEDA
5
20% | CATED RENCE PROB | CORD 193 CURRENCE ABILITY, 25 4% 4450 N TABLE | 1-52 INTERVAL IN PERCE 50 2% OF DAILY | , IN
NT
100
1% | PERIOD (CON-
SECU-
TIVE DAYS) | DISCH 2 50% 1850 1540 1300 1160 1050 934 824 OF RECO | D ON PER | 10D OF R CFS, FO AL, IN Y CE PROBA 10 10\$ 3030 2380 1920 1670 1470 1240 1080 | RECORD 19 R INDICAT EARS, AND BILITY, I 25 4% 3640 2770 2230 1900 1650 1170 | ED RECUR
ANNUAL
N PERCEN
50
2% | 100
1% | # 14328000 ROGUE RIVER ABOVE PROSPECT, OR LOCATION.--Lat 42°46'30", long 122°29'55", in SE‡NE‡ sec.19, T.32 S., R.3 E., Jackson County, Hydrologic Unit 17100307, Rogue River National Forest, on left bank 1.4 mi upstream from Pacific Power and Light Co. diversion dam, 1.8 mi northwest of Prospect, and at mile 173.4. DRAINAGE AREA. -- 312 mi2. PERIOD OF RECORD.--January 1908 to February 1912, October 1923 to September 1982. Monthly discharge only for some periods, published in WSP 1318. Prior to October 1925, published as "near Prospect." GAGE.--Water-stage recorder. Altitude of gage is 2,620 ft, from river-profile map. Prior to Feb. 17, 1912, nonrecording gage at several sites within a few hundred feet upstream at various datums. REMARKS.--No regulation or diversion above station. AVERAGE DISCHARGE.—62 years (water years 1909-11, 1924-82), 820 ft^3/s , 35.69 in/yr, 594,100 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.—Maximum discharge, 22,400 ft³/s Dec. 22, 1964, gage height, 11.55 ft, from floodmark, from rating curve extended above 9,000 ft³/s on basis of slope-area measurement at 16,600 ft³/s; minimum observed, 200 ft³/s Nov. 20, 1931. ## STATISTICAL SUMMARIES MONTHLY AND ANNUAL MEAN DISCHARGES 1909-82 MAGNITUDE AND PROBABILITY OF ANNUAL LOW FLOW BASED ON PERIOD OF RECORD 1910-82 | | MINIMUM | MAXIMUM | MEAN | STAN-
DARD
DEVIA- | COEFFI-
CIENT OF
VARI- | PERCENT
OF | PERIOD
(CON-
SECU- | | INTERVAL | , IN YEA | R INDICA
RS, AND A
BILITY, | ANNUAL N | ON- | |-----------|---------|---------|---------------|-------------------------|------------------------------|------------------|--------------------------|----------|------------------|-------------------|----------------------------------|------------------|-----------| | MONTH | (CFS) | (CFS) |
MEAN
(CFS) | TION
(CFS) | ATION | ANNUAL
RUNOFF | TIVE
DAYS) | 2
50% | 5
20 % | 10
10 % | 20
5% | 50
2 % | 100
1% | | OCTOBER | 283 | 957 | 453 | 118 | .26 | 4.6 | 1 | 357 | 297 | 269 | 248 | 226 | 213 | | NOVEMBER | 292 | 2062 | 707 | 334 | .47 | 7.2 | 3 | 367 | 306 | 27 8 | 256 | 233 | 219 | | DECEMBER | 313 | 3368 | 929 | 55 5 | .60 | 9.4 | 7 | 371 | 311 | 284 | 263 | 241 | 227 | | JANUARY | 292 | 2158 | 920 | 444 | .48 | 9.3 | 14 | 377 | 316 | 2 88 | 267 | 245 | 231 | | FEBRUARY | 325 | 2093 | 949 | 385 | .41 | 9.6 | 30 | 386 | 323 | 294 | 272 | 250 | 235 | | MARCH | 480 | 2820 | 946 | 356 | .38 | 9.6 | 60 | 396 | 332 | 303 | 281 | 257 | 243 | | APRIL | 649 | 1888 | 1177 | 322 | . 27 | 12.0 | 90 | 408 | 341 | 309 | 286 | 260 | 245 | | MAY | 491 | 2263 | 1372 | 484 | . 35 | 13.9 | 120 | 422 | 351 | 319 | 294 | 269 | 253 | | JUNE | 335 | 2564 | 992 | 455 | . 46 | 10.1 | 183 | 498 | 402 | 360 | 329 | 297 | 278 | | JULY | 253 | 1010 | 545 | 164 | .30 | 5.5 | | | | | | | | | AUGUST | 222 | 659 | 439 | 102 | .23 | 4.5 | | | | | | | | | SEPTEMBER | 230 | 602 | 4 19 | 88 | •21 | 4.3 | | | | | | | | | ANNUAL | 411 | 1268 | 821 | 19 9 | .24 | 100 | | | | | | | | MAGNITUDE AND PROBABILITY OF INSTANTANEOUS PEAK FLOW BASED ON PERIOD OF RECORD 1909-82 MAGNITUDE AND PROBABILITY OF ANNUAL HIGH FLOW BASED ON PERIOD OF RECORD 1909-82 | ISCHARGE,
YEARS, AI | | | | | | | PERIOD
(CON- | DISC | HARGE, IN
INTERV | 'AL, ÍN | YEARS, A | ND ANNUA | L | |------------------------|--------------|------------------|-----------|----------|------------------|-----------|------------------------|----------|---------------------|-----------|----------------------|----------|-----------| | 1.25
80% | 2
50%
 | 5
20 % | 10
10% | 25
4% | 50
2 % | 100
1% | SECU-
TIVE
DAYS) | 2
50% | 5
20% | 10
10% | 25
4% | 50
2% | 100
1% | | 3060 | 4770 | 7660 | 9930 | 13200 | 16000 | 19100 | | | | | | | | | | | | | | | | 1 | 4130 | 6470 | 8180 | 10500 | 12300 | 14200 | | WEIGHTED | SKEW = | .239 | | | | | 3 | 3310 | 5090 | 6410 | 8250 | 9740 | 11300 | | | | | | | | | 7 | 2590 | 3730 | 4520 | 5 58 0 | 6390 | 7240 | | | | | | | | | 15 | 2080 | 2790 | 3240 | 3790 | 4180 | 4570 | | | | | | | | | 30 | 1760 | 2270 | 2560 | 2900 | 3130 | 3340 | | | | | | | | | 60 | 1480 | 1870 | 2080 | 2320 | 2480 | 2620 | | | | | | | | | 90 | 1330 | 1640 | 1810 | 1990 | 2110 | 2220 | DURATION TABLE OF DAILY MEAN FLOW FOR PERIOD OF RECORD 1909-82 | | | DISC | CHARGE, | IN CFS, | WHICH WAS | EQUALED | OR EXCE | EDED FOR | INDICATED | PERCENT | OF TIM | Ξ | | | |------|------|------|---------|---------|-----------|---------|---------|----------|-----------|-------------|--------|-------------|-----|-----| | 5 | 10% | 15% | 20% | 25% | 30% | 40% | 50% | 60% | 70% | 75 % | 80% | 85 % | 90% | 95% | | 1920 | 1520 | 1290 | 1120 | 991 | 891 | 739 | 636 | 550 | 477 | 444 | 418 | 389 | 358 | 323 | ### 14330000 ROGUE RIVER BELOW PROSPECT, OR LOCATION.--Lat 42°43'50", long 122°30'55", in SELNWL sec.6, T.33 S., R.3 E., Jackson County, Hydrologic Unit 17100307, on right bank 600 ft downstream from Prospect No. 1 powerplant, 1.4 mi downstream from Mill Creek, 2.0 mi southwest of Prospect, 2.1 mi upstream from South Fork Rogue River, and at mile 169.4. DRAINAGE AREA .-- 379 mi2. 5% 2780 10% 2320 15% 2050 20% 1890 25% 1750 30% 1640 40% 1470 50% 1340 60% 1230 70% 1120 75% 1060 80% 992 85% 927 90% 868 95% 808 PERIOD OF RECORD. -- August 1913 to September 1930, October 1968 to September 1982. GAGE.--Water-stage recorder. Datum of gage is 1,964.56 ft National Geodetic Vertical Datum of 1929 (Pacific Power and Light Cobench mark). Prior to September 1927 nonrecording gage at site 1,000 ft upstream, above powerplants, at different datum, also concurrent nonrecording gage on headrace to obtain equivalent combined flow. REMARKS.--Small fluctuations caused by powerplant 600 ft above station. Small diversions for irrigation above station. AVERAGE DISCHARGE.--14 years (water years 1969-82), 1,508 ft³/s, 1,092,546 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 10,900 ft³/s Jan. 18, 1971, gage height, 7.62 ft, from high-water mark; minimum, 205 ft³/s Sept. 17, 22, 24, 1980, caused by regulation of diversion gates upstream. EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1890, 12.4 ft Dec. 22, 1964, from floodmarks, discharge, 25,000 ft³/s, from records for station above Prospect and for station below South Fork Rogue River near Prospect after adjusting for estimated intervening tributary inflow. | | ONTHLY AN | ID ANNUAL | MEAN DIS | SCHARGES | 1969-82 | | MAG | | | | OF ANNUAL
RECORD 19 | | OW | |---|--|---|---|--|--|---------------------------|---|--|--|--|--|--|-----------| | | MINIMUM | MAXIMUM | MEAN | STAN-
DARD
DEVIA-
TION | COEFFI-
CIENT OF
VARI- | PERCENT
OF
ANNUAL | PERIOD
(CON-
SECU- | DISCH | INTERVAL | , IN YE | OR INDICA
ARS, AND
ABILITY, | ANNUAL N | -NC | | MONTH | (CFS) | (CFS) | (CFS) | (CFS) | ATION | RUNOFF | TIVE
DAYS) | 2
50 % | 5
20 % | 10
10% | 20
5 % | 50
2 % | 100
1% | | OCTOBER | 795 | 1230 | 978 | 160 | .16 | 5.4 | 1 | 820 | 708 | 659 | 624 | | | | NOVEMBER | 868 | 2100 | 1308 | 333 | •25 | 7.2 | 3 | 839 | 725 | 674 | 637 | | | | ECEMBER | 979 | 2736 | 1668 | 555 | •33 | 9.2 | 7 | 852 | 735 | 684 | 645 | | | | IANUARY | 946 | 2894 | 1833 | 583 | .32 | 10.1 | 14 | 870 | 749 | 696 | 656 | | | | FEBRUARY | 946 | 2651 | 1650 | 408 | .25 | 9.1 | 30 | 893 | 771 | 718 | 679 | | | | MARCH | 1045 | 3627 | 1764 | 618 | .35 | 9.7 | 60 | 918 | 800 | 750 | 713 | | | | \PR1L | 1272 | 2463 | 1770 | 340 | .19 | 9.8 | 90 | 942 | 825 | 775 | 738 | | | | YAY | 1276 | 3282 | 2143 | 626 | .29 | 11.8 | 120 | 969 | 852 | 802 | 766 | | | | JUNE | 1119 | 2923 | 1733 | 617 | . 36 | 9.6 | 183 | 1070 | 949 | 898 | 862 | | | | IULY | 873 | 1660 | 1233 | 288 | •23 | 6.8 | | | | | | | | | AUGUST | 770 | 1337 | 1050 | 210 | .20 | 5.8 | | | | | | | | | EPTEMBER | 761 | 1236 | 983 | 174 | - 18 | 5.4 | ANNUAL
MAGNIT | | | | | .20
OUS PEAK F | 100
 |
MAG | | | | OF ANNUAL | | | | MAGNIT | FUDE AND
BASE | PROBABILI
D ON PERI
FOR INDI | TY OF IN
OD OF RE
CATED RE | ISTANTANE
CORD 196 | OUS PEAK F | FLOW | PERIOD | BASE
DISCH | D ON PER

ARGE, IN
INTERV | CFS, FO | RECORD 19

OR INDICATYEARS, AND | 969-82
TED RECUR
D ANNUAL | RENCE | | MAGNIT | FUDE AND
BASE | PROBABILI
D ON PERI
FOR INDI | TY OF IN
OD OF RE
CATED RE | ISTANTANE
CORD 196 | OUS PEAK F
9-82
INTERVAL,
IN PERCEN | FLOW | | BASE
DISCH | D ON PER

ARGE, IN
INTERV | CFS, FO | RECORD 19 | 969-82
TED RECUR
D ANNUAL | RENCE | | MAGNIT
ISCHARGE,
YEARS, / | TUDE AND
BASE
, IN CFS, | PROBABILI
D ON PERI
FOR INDI
L EXCEEDA | TY OF IN
OD OF RE
CATED RE
NCE PROE | ISTANTANE
CORD 196
CURRENCE | OUS PEAK F
9-82
INTERVAL,
IN PERCEN | FLOW
, IN
NT | PERIOD
(CON-
SECU-
TIVE | BASE
DISCH | D ON PER ARGE, IN INTERV EXCEEDAN | CFS, FOAL, IN CE PROB | RECORD 19 OR INDICATIVE ARS, AND ABILITY, | 969-82
TED RECUP
D ANNUAL
IN PERCEN | RRENCE | | MAGNIT | TUDE AND
BASE
IN CFS,
AND ANNUA | PROBABILI
D ON PERI
FOR INDI
L EXCEEDA | TY OF IN
OD OF RE
CATED RE
NCE PROE | ISTANTANE
CORD 196
CURRENCE
BABILITY, | OUS PEAK F
9-82
INTERVAL,
IN PERCEN | FLOW
, IN
NT | PERIOD
(CON-
SECU- | BASE
DISCH | D ON PER ARGE, IN INTERV EXCEEDAN | CFS, FO | RECORD 19 OR INDICATIVE AND ABILITY, | 969-82
TED RECUF
D ANNUAL
IN PERCEN | RRENCE | | MAGNIT | TUDE AND
BASE
IN CFS,
AND ANNUA | PROBABILI
D ON PERI
FOR INDI
L EXCEEDA
5
20% | TY OF IN
OD OF RE
CATED RE
NCE PROE | ISTANTANE
CORD 196
CURRENCE
BABILITY, | OUS PEAK F
9-82
INTERVAL,
IN PERCEN | FLOW
, IN
NT | PERIOD
(CON-
SECU-
TIVE
DAYS) | BASE DISCH | D ON PER ARGE, IN INTERV EXCEEDAN 5 20% | CFS, FCAL, IN CE PROB | RECORD 19 DR INDICA YEARS, AND ABILITY, 125 4% | 969-82
TED RECUP
D ANNUAL
IN PERCEN
50
2% | RRENCE | | MAGNIT | TUDE AND BASE IN CFS, AND ANNUA 2 50% | PROBABILI
D ON PERI
FOR INDI
L EXCEEDA
5
20% | TY OF IN
OD OF RE
CATED RE
NCE PROE | STANTANE
CORD 196
CURRENCE
BABILITY, | OUS PEAK F
9-82
INTERVAL,
IN PERCEN | FLOW
, IN
NT | PERIOD (CON-
SECU-
TIVE
DAYS) | DISCH | D ON PER ARGE, IN INTERV EXCEEDAN 20% 7940 | CFS, FCAL, IN CE PROB. 10 10 9470 | OR INDICA
YEARS, AND
ABILITY,
25
4% | FED RECUPD ANNUAL IN PERCEN | 100
1% | | MAGNIT
ISCHARGE,
YEARS, /
1.25
80% | FUDE AND
BASE
IN CFS,
AND ANNUA
2
50% | PROBABILI
D ON PERI
FOR INDI
L EXCEEDA
5
20% | TY OF IN
OD OF RE
CATED RE
NCE PROE | STANTANE
CORD 196
CURRENCE
BABILITY, | OUS PEAK F
9-82
INTERVAL,
IN PERCEN | FLOW
, IN
NT | PERIOD
(CON-
SECU-
TIVE
DAYS) | DISCH | D ON PER
ARGE, IN INTERV EXCEEDAN 5 20% 7940 6610 | CFS, FCAL, IN CE PROB/ 10 10 9470 7750 | RECORD 19 OR INDICA YEARS, AND ABILITY, 25 4% 11200 8970 | 969-82 TED RECUF D ANNUAL IN PERCEN 50 2% | 100
1% | | MAGNIT
ISCHARGE,
YEARS, /
1.25
80% | TUDE AND BASE IN CFS, AND ANNUA 2 50% | PROBABILI
D ON PERI
FOR INDI
L EXCEEDA
5
20% | TY OF IN
OD OF RE
CATED RE
NCE PROE | STANTANE
CORD 196
CURRENCE
BABILITY, | OUS PEAK F
9-82
INTERVAL,
IN PERCEN | FLOW
, IN
NT | PERIOD
(CON-
SECU-
TIVE
DAYS) | BASE DISCH 2 50% 5330 4600 3740 | D ON PER INTERV EXCEEDAN 5 20% 7940 6610 5050 | CFS, FG
AL, IN
CE PROB/
10
10%
 | OR INDICA
YEARS, AND
ABILITY, 25
4%
11200
8970
6450 | 969-82 TED RECUF D ANNUAL IN PERCEN 50 2% | 100
1% | | MAGNIT
ISCHARGE,
YEARS, /
1.25
80% | TUDE AND BASE IN CFS, AND ANNUA 2 50% | PROBABILI
D ON PERI
FOR INDI
L EXCEEDA
5
20% | TY OF IN
OD OF RE
CATED RE
NCE PROE | STANTANE
CORD 196
CURRENCE
BABILITY, | OUS PEAK F
9-82
INTERVAL,
IN PERCEN | FLOW
, IN
NT | PERIOD
(CON-
SECU-
TIVE
DAYS) | DISCH 2 50\$ 5330 4600 3740 3090 | D ON PER | 10D OF I
CFS, F(
AL, IN CE PROB)
10
10%
9470
7750
5740
4340 | OR INDICA
YEARS, AND
ABILITY,
25
4%
11200
8970
6450
4740 | 969-82 TED RECUF D ANNUAL IN PERCEN 50 2% | 100
1% | | MAGNIT | TUDE AND BASE IN CFS, AND ANNUA 2 50% | PROBABILI
D ON PERI
FOR INDI
L EXCEEDA
5
20% | TY OF IN
OD OF RE
CATED RE
NCE PROE | STANTANE
CORD 196
CURRENCE
BABILITY, | OUS PEAK F
9-82
INTERVAL,
IN PERCEN | FLOW
, IN
NT | PERIOD (CON-
SECU-
TIVE DAYS) | DISCH 2 50% 5330 4600 3740 3090 2620 | D ON PER | 100 OF 1
CFS, FG
AL, IN CE PROB/
10 10%
9470
7750
5740
4340
3580 | DR INDICA
YEARS, AND
ABILITY,
25
4%
11200
8970
6450
4740
3900 | FED RECUP
D ANNUAL
IN PERCEN
50
2% | 100
1% | | MAGNIT | TUDE AND BASE IN CFS, AND ANNUA 2 50% | PROBABILI
D ON PERI
FOR INDI
L EXCEEDA
5
20% | TY OF IN
OD OF RE
CATED RE
NCE PROE | STANTANE
CORD 196
CURRENCE
BABILITY, | OUS PEAK F
9-82
INTERVAL,
IN PERCEN | FLOW
, IN
NT | PERIOD
(CON-
SECU-
TIVE
DAYS)
 | BASE DISCH 2 50% 5330 4600 3740 3090 2620 2240 | D ON PER | 100 OF 1
CFS, F(
AL, IN'
10 10%
9470
7750
5740
4340
3580
2980 | DR INDICA
YEARS, AND
ABILITY,
25
4%
11200
8970
6450
4740
3900
3250 | FED RECUED ANNUAL IN PERCENSON | 100
1% | | MAGNIT | TUDE AND BASE IN CFS, AND ANNUA 2 50% | PROBABILI
D ON PERI
FOR INDI
L EXCEEDA
5
20% | TY OF IN
OD OF RE
CATED RE
NCE PROE | STANTANE
CORD 196
CURRENCE
BABILITY, | OUS PEAK F
9-82
INTERVAL,
IN PERCEN | FLOW
, IN
NT
100 | PERIOD (CON-
SECU-
TIVE DAYS) | DISCH 2 50% 5330 4600 3740 3090 2620 | D ON PER | 100 OF 1
CFS, FG
AL, IN CE PROB/
10 10%
9470
7750
5740
4340
3580 | DR INDICA
YEARS, AND
ABILITY,
25
4%
11200
8970
6450
4740
3900 | FED RECUP
D ANNUAL
IN PERCEN
50
2% | 100
1% | | MAGNIT
ISCHARGE,
YEARS, /
1.25
80\$ | TUDE AND BASE IN CFS, AND ANNUA 2 50% | PROBABILI
D ON PERI
FOR INDI
L EXCEEDA
5
20% | TY OF IN
OD OF RE
CATED RE
NCE PROE
10
10% | ISTANTANE CORD 196 CURRENCE ABILITY, 25 4% | OUS PEAK F
9-82
INTERVAL,
IN PERCEN
50 1 | FLOW , IN NT 100 1% | PERIOD
(CON-
SECU-
TIVE
DAYS)
 | DISCH 2 50% 5330 4600 3740 3090 2620 2240 2090 | D ON PER ARGE, IN INTERV EXCEEDAN 7940 6610 5050 3930 3250 2720 2520 | 100 OF I CFS, FI AL, IN CE PROB/ 10 10% 9470 7750 5740 4340 3580 2980 2750 | DR INDICA
YEARS, AND
ABILITY,
25
4%
11200
8970
6450
4740
3900
3250 | FED RECUED ANNUAL IN PERCENSON | 100
13 | ### 14330500 SOUTH FORK ROGUE RIVER ABOVE IMNAHA CREEK, NEAR PROSPECT, OR LOCATION.--Lat 42°42'25", long 122°23'20", in NE¼ sec.18, T.33 S., R.4 E., Jackson County, Hydrologic Unit 17100307, on left bank 900 ft upstream from Imnaha Creek, 1,200 ft upstream from South Fork diversion dam, and 6 mi southeast of Prospect. DRAINAGE AREA. -- 52 mi². PERIOD OF RECORD. -- October 1931 to September 1949. GAGE.--Water-stage recorder. Altitude of gage is 3,390 ft, from river-profile map. REMARKS. -- No diversion or regulation above station. AVERAGE DISCHARGE.--18 years, 127 ft3/s, 92,000 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 2,170 ft³/s Dec. 1, 1942, gage height, 6.21 ft, from rating curve extended above 250 ft³/s on basis of former curve defined to 1,000 ft³/s; minimum, 27 ft³/s Oct. 1-21, 1931. | М | ONTHLY AN | ND ANNUAL | MEAN DIS | SCHARGES | 1932-49 | | MAC | | | ABILITY
IOD OF R | OF ANNUAL
ECORD 19 | _ LOW FL(
933-49 | WC | |---------------------------------------|---|---|--|---|---------------------------------------|--|--|---|---|--|--|--|-------| | ~~~~ | MINIMUM | MAXIMUM | MEAN | STAN-
DARD
DEVIA-
TION | COEFFI-
CIENT OF
VARI- | PERCENT
OF
ANNUAL | PERIOD
(CON-
SECU- | | INTERVAL | , IN YEA | R INDICAT
RS, AND A
BILITY, I | NNUAL N | ON- | | MONTH | (CFS) | (CFS) | (CFS) | (CFS) | ATION | RUNOFF | TIVE
DAYS) | 2
50% | 5
20 % | 10
10 % | 20
5 % | 50
2% | 100 | | OCTOBER | 34 | 77 | 53 | 11 | .21 | 3.5 | 1 | 45 | 39 | 36 | 34 | | | | NOVEMBER | 34 | 192 | 80 | 37 | .47 | 5.2 | 3 | 46 | 39 | 37 | 34 | | | | DECEMBER | 34 | 325 | 109 | 70 | .64 | 7.2 | 7 | 46 | 40 | 37 | 35 | | | | JANUARY | 41 | 319 | 118 | 70 | .59 | 7.8 | 14 | 47 | 41 | 38 | 36 | ~~ | - | | EBRUARY | 37 | 241 | 109 | 51 | . 47 | 7.2 | 30 | 49 | 42 | 39 | 36 | | | | MARCH | 60 | 220 | 127 | 46 | . 36 | 8.3 | 60 | 51 | 43 | 40 | 37 - | | | | APRIL | 93 | 303 | 205 | 66 | .32 | 13.5 | 90 | 54 | 45 | 41 | 38 | | _ | | MAY | 77 | 490 | 279 | 106 | .38 | 18.3 | 120 | 57 | 48 | 43 | 40 | | - | | JUNE | 58 | 490 | 215 | 109 | .51 | 14.1 | 183 | 68 | 56 | 51 | 47 | | _ | | JULY | 44 | 162 | 101 | 31 | .30 | 6.6 | 105 | | | ر
 | | | | | AUGUST | 36 | 100 | 69 | 17 | .25 | 4.6 | | | | | | | | | SEPTEMBER | | 80 | 58 | 12 | | 3.8 | | | | | | | | | SEFIEMBER | 34 | 80 | 28 | 12 | .21 | 2.8 | | | | | | | | | ANNUAL | 76 | 202 | 127 | 31 | .24 | 100 | | | | | | | | | MAGNI | | PROBABILIT
D ON PERIC | | | | FLOW | MAG | | | ABILITY (| OF ANNUAL
ECORD 19 | . HIGH FL
32-49 | .ow | | OI SCHARGE | BASE
, IN CFS, | | OD OF RE | CORD 193 | 2-49

INTERVAL, | , 1N | PERIOD | BASE(| ON PER | CFS, FOI | ECORD 19 R INDICAT | 32-49 ED RECUR | RENCE | | DISCHARGE
YEARS, | BASE
, IN CFS,
AND ANNUA
2 | FOR INDIC
L EXCEEDAN | OD OF RECATED RENCE PROB | CORD 193 CURRENCE ABILITY, | INTERVAL,
IN PERCEN | , 1N | PERIOD
(CON-
SECU- | BASE(| O ON PER | CFS, FOI | ECORD 19 R INDICAT EARS, AND BILITY, I | 32-49 ED RECUR | RENCE | | OISCHARGE
YEARS, | BASE
, IN CFS,
AND ANNUA | FOR INDIC | OD OF RE | CORD 193 CURRENCE | 2-49
INTERVAL,
IN PERCEN | , IN
NT | PERIOD
(CON-
SECU-
TIVE | DISCH/ | O ON PER
ARGE, IN
INTERV
EXCEEDANCE | CFS, FOR | ECORD 19 R INDICAT EARS, AND BILITY, I | 32-49 ED RECUR ANNUAL N PERCEN | RENCI | | DISCHARGE
YEARS, | BASE
, IN CFS,
AND ANNUA
2 | FOR INDIC
L EXCEEDAN | OD OF RECATED RENCE PROB | CORD 193 CURRENCE ABILITY, | INTERVAL,
IN PERCEN | , IN
NT
 | PERIOD
(CON-
SECU- | BASE(| O ON PER | CFS, FOI
AL, IN YI | ECORD 19 R INDICAT EARS, AND BILITY, I | 32-49 ED RECUR ANNUAL N PERCEN | RENCI | | DISCHARGE
YEARS, | BASE
, IN CFS,
AND ANNUA
2 | FOR INDIC
L EXCEEDAN | CATED RENCE PROB | CORD 193 CURRENCE ABILITY, | INTERVAL,
IN PERCEN | , IN
NT
 | PERIOD
(CON-
SECU-
TIVE | DISCH/ | O ON PER
ARGE, IN
INTERV
EXCEEDANCE | CFS, FOR | ECORD 19 R INDICAT EARS, AND BILITY, I | 32-49 ED RECUR ANNUAL N PERCEN | RENCI | | 1.25
80% | BASE , IN CFS, AND ANNUA 2 50% | FOR INDIC
L EXCEEDAN | CATED RENCE PROB | CORD 193 CURRENCE HABILITY, 25 4% | INTERVAL,
IN PERCEN | , IN
NT
 | PERIOD
(CON-
SECU-
TIVE | DISCH/ | O ON PER
ARGE, IN
INTERV
EXCEEDANCE | CFS, FOR | ECORD 19 R INDICAT EARS, AND BILITY, I | 32-49 ED RECUR ANNUAL N PERCEN | RENCI | | 01 SCHARGE
YEARS, 1
1.25
80% | BASE , IN CFS, AND ANNUA 2 50% | FOR INDIC
L EXCEEDAN | CATED RENCE PROB | CORD 193 CURRENCE HABILITY, 25 4% | INTERVAL,
IN PERCEN | , IN
NT
 | PERIOD
(CON-
SECU-
TIVE
DAYS) | DISCH/ | O ON PER
ARGE, IN
INTERV
EXCEEDANC
5
20% | CFS, FOR
AL, IN YI
CE PROBAL
10
10% | ECORD 19 R INDICAT EARS, AND BILITY, I 25 4% | 32-49 ED RECUR ANNUAL N PERCEN 50 2% | RENCI | | 01 SCHARGE
YEARS, 1
1.25
80% | BASE , IN CFS, AND ANNUA 2 50% | FOR INDIC
L EXCEEDAN
5
20% | CATED RENCE PROB | CORD 193 CURRENCE HABILITY, 25 4% | INTERVAL,
IN PERCEN | , IN
NT
 | PERIOD
(CON-
SECU-
TIVE
DAYS) | DISCH/ E2 50% | O ON PER ARGE, IN INTERV EXCEEDANC 5 20% | CFS, FOR | ECORD 19 R INDICAT
EARS, AND BILITY, I 25 4% | ED RECUR
ANNUAL
N PERCEN
50
2% | RENCI | | DISCHARGE
YEARS, 1
1.25
80% | BASE , IN CFS, AND ANNUA 2 50% | FOR INDIC
L EXCEEDAN
5
20% | CATED RENCE PROB | CORD 193 CURRENCE HABILITY, 25 4% | INTERVAL,
IN PERCEN | , IN
NT
 | PERIOD (CON- SECU- TIVE DAYS) 1 | DISCH/
E | O ON PER ARGE, IN INTERV EXCEEDANC 5 20% 880 701 | CFS, FOR
AL, IN YI
CE PROBAL
10
10% | ECORD 19 R INDICAT EARS, AND BILITY, I 25 4% 1500 1140 | ED RECUR
ANNUAL
N PERCEN
50
2% | RENCI | | DISCHARGE
YEARS, 1
1.25
80% | BASE , IN CFS, AND ANNUA 2 50% | FOR INDIC
L EXCEEDAN
5
20% | CATED RENCE PROB | CORD 193 CURRENCE HABILITY, 25 4% | INTERVAL,
IN PERCEN | , IN
NT
 | PERIOD (CON- SECU- TIVE DAYS) | DISCH/
2
50%
574
476
404 | 0 ON PER
ARGE, IN
INTERV.
EXCEEDANG
5
20%
880
701
564
478 | CFS, FOI
AL, IN YI
CE PROBAL
10
10% | R INDICAT
EARS, AND
BILITY, I
25
4%
1500
1140
836 | ED RECUR
ANNUAL
N PERCEN
50
2% | RENC | | 01 SCHARGE
YEARS, 1
1.25
80% | BASE , IN CFS, AND ANNUA 2 50% | FOR INDIC
L EXCEEDAN
5
20% | CATED RENCE PROB | CORD 193 CURRENCE HABILITY, 25 4% | INTERVAL,
IN PERCEN | , IN
NT
 | PERIOD (CON-
SECU-
TIVE DAYS) | DISCH/
2
50%
574
476
404
353
320 | 0 ON PER
NRGE, IN
INTERV.
EXCEEDAN.
5
20%
880
701
564
478
424 | CFS, FOI
AL, IN YI
CE PROBAL
10
10%
1130
880
679
558
483 | R INDICAT
EARS, AND
BILITY, I
25
4%
1500
1140
836
658
551 | 32-49 ED RECUR ANNUAL N PERCEN 50 2% | RENC | | 01 SCHARGE
YEARS, 1
1.25
80% | BASE , IN CFS, AND ANNUA 2 50% | FOR INDIC
L EXCEEDAN
5
20% | CATED RENCE PROB | CORD 193 CURRENCE HABILITY, 25 4% | INTERVAL,
IN PERCEN | , IN
NT
 | PERIOD (CON-
SECU-
TIVE DAYS) | DISCH/
E
2
50%
574
476
404
353 | 0 ON PER
ARGE, IN
INTERV.
EXCEEDANG
5
20%
880
701
564
478 | 100 OF RI
CFS, FOI
AL, IN YI
CE PROBAL
10
10%
1130
880
679
558 | ECORD 19 R INDICAT EARS, AND BILITY, I 25 4% 1500 1140 836 658 | 32-49 ED RECUF ANNUAL N PERCEN 50 2% | RENC | | 1.25
80% | BASE , IN CFS, AND ANNUA 2 50% | FOR INDIC
L EXCEEDAN
5
20% | CATED RE | CORD 193 CURRENCE HABILITY, 25 4% | INTERVAL,
IN PERCEN | , IN
NT
1100
1% | PERIOD (CON-
SECU-
TIVE DAYS) | DISCH/
2
50%
574
476
404
353
320
280
242 | 880
701
547
880
701
547
424
366
311 | CFS, FOI
AL, IN YI
E PROBAL
10
10%
1130
880
679
558
483
413
349 | 1500
1140
836
658
551
462 | 32-49 ED RECUF ANNUAL N PERCEN 50 2% | RENC | | 01 SCHARGE
YEARS, 1
1.25
80% | BASE , IN CFS, AND ANNUA 2 50% | FOR INDIC
L EXCEEDAN
5
20% | DO OF RECATED RESIDENCE PROBLEM 10 10% 1390 DURATIO | CURRENCE ABILITY, 25 4% 1780 | INTERVAL, IN PERCEN 50 2% | , IN
NT
100
1% | PERIOD
(CON-
SECU-
TIVE
DAYS)
 | DISCH/
2
50%
574
476
404
353
320
280
242
OF RECOF | 880
701
554
478
424
366
311 | CFS, FOI
AL, IN YI
E PROBAL
10
10%
1130
880
679
558
483
413
349 | R INDICAT
EARS, AND
BILITY, I
25
4%
1500
1140
836
658
551
462
389 | 32-49 ED RECUF ANNUAL N PERCEN 50 2% | RENC | | 1.25
80%
496
WEIGHTEI | BASE , IN CFS, AND ANNUA 2 50% 731 D SKEW = | FOR INDICL EXCEEDAN 5 20% 11110 .225 | DD OF RECEATED RESIDENCE PROBLEM 10 10% 1390 DURATIO | CURRENCE HABILITY, 25 4% 1780 N TABLE | INTERVAL, IN PERCEN 50 2% OF DAILY M | IN NT 100 1% 1% 100 1% 100 1% 100 1% 100 100 | PERIOD (CON- SECU- TIVE DAYS) 1 3 7 15 30 60 90 I FOR PERIOD EXCEEDED FOR | DISCH/ 1 2 50% 574 476 404 353 320 280 242 OF RECOF | 880
701
564
701
564
311
8D 1932-4 | 1130
880
679
558
413
349 | R INDICAT
EARS, AND
BILITY, I
25
4%
1500
1140
836
658
551
462
389 | 32-49 ED RECUF ANNUAL N PERCEN 50 2% | RENCE | | 01 SCHARGE
YEARS, 1
1.25
80% | BASE , IN CFS, AND ANNUA 2 50% | FOR INDICL EXCEEDAN 5 20% 11110 11 .225 | DO OF RECATED RESIDENCE PROBLEM 10 10% 10% 10% 10% 10% 10% 10% 10% 10% | CURRENCE HABILITY, 25 4% 1780 N TABLE CFS, WHILL 25% | INTERVAL, IN PERCEN 50 2% OF DAILY M | IN NT 100 1% 1% 100 1% 100 1% 100 1% 100 100 | PERIOD
(CON-
SECU-
TIVE
DAYS)
 | DISCH/
2
50%
574
476
404
353
320
280
242
OF RECOF | 880
701
554
478
424
366
311 | CFS, FOI
AL, IN YI
E PROBAL
10
10%
1130
880
679
558
483
413
349 | R INDICAT
EARS, AND
BILITY, I
25
4%
1500
1140
836
658
551
462
389 | 32-49 ED RECUF ANNUAL N PERCEN 50 2% | 10 11 | ## 14331000 IMNAHA CREEK NEAR PROSPECT, OR LOCATION.--Lat 42°41'20", long 122°23'00", in NEt sec.18, T.33 S., R.4 E., Jackson County, Hydrologic Unit 17100307, on left bank 1,200 ft upstream from mouth and 6 mi southeast of Prospect. DRAINAGE AREA.--26 mi², approximately. 102 84 70 60 52 47 39 32 28 25 23 22 21 20 19 PERIOD OF RECORD. -- September 1931 to October 1949. GAGE.--Staff gage. Altitude of gage is 3,400 ft, from river-profile map. REMARKS.--No diversion or regulation above station. AVERAGE DISCHARGE.--18 years (water years 1932-49), 42.8 ft³/s. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 500 ft³/s Feb. 13, 1945, gage not read, computed on basis of records for South and Middle Forks Rogue River near Prospect; minimum observed, 11 ft³/s Dec. 14, 1931, gage height, 0.46 ft. STATISTICAL SUMMARIES | |
MINIMUM | | MEAN | STAN-
DARD
DEVIA- | COEFFI-
CIENT OF | PERCENT
OF
ANNUAL | PERIOD
(CON-
SECU- | | INTERVAL | , IN YEAR | R INDICAT
RS, AND A | ANNUAL NO | ON- | |---|--|--|-----------------------------------|---|--|--------------------------|---|--|---|--|--|--|--------------| | MONTH | (CFS) | MAXIMUM
(CFS) | (CFS) | TION
(CFS) | VARI-
ATION | RUNOFF | TIVE
DAYS) | 2
50% | 5
20% | 10
10% | 20
5% | 50
2% | 100
1% | | OCTOBER | 17 | 31 | 22 | 4.0 | .18 | 4.3 | 1 | 19 | 16 | 15 | 15 | | | | NOVEMBER | 19 | 67 | 29 | 12 | .40 | 5.6 | 3 | 19 | 17 | 16 | 15 | | | | DECEMBER | 21 | 107 | 41 | 22 | .54 | 7.9 | 7 | 19 | 17 | 16 | 15 | | ~- | | JANUARY | 19 | 126 | 48 | 28 | .58 | 9.4 | 14 | 20 | 17 | 16 | 16 | | | | FEBRUARY | 21 | 84 | 47 | 17 | .37 | 9.1 | 30 | 20 | 18 | 17 | 16 | | | | MARCH | 2 2 | 81 | 49 | 17 | .34 | 9.5 | 60 | 20 | 18 | 17 | 16 | | | | APRIL | 28 | 115 | 71 | 26 | .37 | 13.6 | 90 | 21 | 18 | 17 | 17 | | | | MAY | 27 | 148 | 78 | 34 | .44 | 15.1 | 120 | 22 | 19 | 18 | 17 | | | | JUNE | 23 | 112 | 56 | 24 | .43 | 10.8 | 183 | 25 | 21 | 19 | 18 | | | | JULY | 19 | 53 | 32 | 8.9 | . 28 | 6.1 | | | | | | | | | AUGUST | 16 | 35 | 23 | 4.8 | .21 | 4.5 | | | | | | | | | SEPTEMBER | 16 | 32 | 22 | 4.1 | . 19 | 4.2 | ANNUAL

MAGN I | | 70
PROBABILI
D ON PERIO | | | | 100

FLOW |
MAG | | | | DF ANNUAL | | .ow | | MAGNI
DISCHARGE
YEARS, | TUDE AND
BASE
, IN CFS,
AND ANNUA | PROBABILI
D ON PERIO
FOR INDIO
L EXCEEDA | TY OF
INDOOR RE | ISTANTANE
CORD 1934
CURRENCE
BABILITY, | DUS PEAK
1-49
INTERVAL
IN PERCE | FLOW
, IN | PERIOD
(CON- | BASEI
DI SCH | ON PERI | CFS, FOF | | 34-49
ED RECUR | RRENCE | | MAGNI | TUDE AND
BASE | PROBABILI
D ON PERIO | TY OF IN | ISTANTANE
CORD 1934 | DUS PEAK
1-49
INTERVAL
IN PERCE | FLOW | PERIOD | BASEI
DI SCH | ON PERI | CFS, FOF | ECORD 19 R INDICATEARS, AND | 34-49
ED RECUR | RRENCE | | MAGNI | TUDE AND
BASE
, IN CFS,
AND ANNUA | PROBABILI
D ON PERIO
FOR INDIC
L EXCEEDA | TY OF INDOD OF RECATED RENCE PROB | ISTANTANE
CORD 1934
CURRENCE
BABILITY, | DUS PEAK
4-49
INTERVAL
IN PERCE | FLOW
, IN
NT | PERIOD
(CON-
SECU-
TIVE | BASEI
DISCHA | O ON PERI
ARGE, IN
INTERVA
EXCEEDANCE | CFS, FOR
AL, IN YECE PROBAE | R INDICATEARS, AND | ED RECUF
ANNUAL
N PERCEN | RRENCE
IT | | MAGNI | TUDE AND
BASE
, IN CFS,
AND ANNUA
2
50% | PROBABILI
D ON PERIO
FOR INDIG
L EXCEEDAL
5
20% | TY OF INDO OF RECATED RENCE PROB | ISTANTANE
CORD 1934
CURRENCE
BABILITY, | OUS PEAK
4-49
INTERVAL
IN PERCE
50
2% | FLOW
, IN
NT | PERIOD
(CON-
SECU-
TIVE | BASEI
DISCHA | O ON PERI
ARGE, IN
INTERVA
EXCEEDANCE | CFS, FOR
AL, IN YECE PROBAE | R INDICATEARS, AND | ED RECUF
ANNUAL
N PERCEN | RRENCE
IT | | MAGNI DISCHARGE YEARS, 1.25 80% | TUDE AND
BASE
, IN CFS,
AND ANNUA
2
50% | PROBABILI
D ON PERIO
FOR INDIG
L EXCEEDAL
5
20% | TY OF INDO OF RECATED RENCE PROB | ISTANTANE
CORD 1934
CURRENCE
BABILITY, | OUS PEAK
4-49
INTERVAL
IN PERCE
50
2% | FLOW
, IN
NT | PERIOD
(CON-
SECU-
TIVE
DAYS) | DISCH | O ON PERI
ARGE, IN
INTERVA
EXCEEDANC
5
20% | CFS, FOF
AL, IN YE
DE PROBAE | ECORD 19 R INDICAT EARS, AND BILITY, ! 25 4% | ED RECUF
ANNUAL
N PERCEN | RRENCE
IT | | MAGNI DISCHARGE YEARS, 1.25 80% | TUDE AND BASE , IN CFS, AND ANNUA 2 50% | PROBABILI'D ON PERIO | TY OF INDO OF RECATED RENCE PROB | ISTANTANE
CORD 1934
CURRENCE
BABILITY, | OUS PEAK
4-49
INTERVAL
IN PERCE
50
2% | FLOW
, IN
NT | PERIOD
(CON-
SECU-
TIVE
DAYS) | DISCH, 2 50% | ARGE, IN
INTERVA
EXCEEDANC
5
20% | CFS, FOF
AL, IN YE
EE PROBAE
10
10% | ECORD 19 R INDICAT EARS, AND BILITY, 1 25 4% | ED RECUP
O ANNUAL
N PERCEN
50
2% | 100
1% | | MAGNI DISCHARGE YEARS, 1.25 80% | TUDE AND BASE , IN CFS, AND ANNUA 2 50% | PROBABILI'D ON PERIO | TY OF INDO OF RECATED RENCE PROB | ISTANTANE
CORD 1934
CURRENCE
BABILITY, | OUS PEAK
4-49
INTERVAL
IN PERCE
50
2% | FLOW
, IN
NT | PERIOD (CON- SECU- TIVE DAYS) 1 | BASEI DISCH, 2 50% 163 141 | ARGE, IN
INTERVA
EXCEEDANC
5
20% | CFS, FOR
CFS, FOR
AL, IN YE
E PROBAE
10
10% | ECORD 19 R INDICAT EARS, AND BILITY, 1 25 4% 501 361 | ED RECUP
O ANNUAL
N PERCEN
50
2% | 100
1% | | MAGNI DISCHARGE YEARS, 1.25 80% | TUDE AND BASE , IN CFS, AND ANNUA 2 50% | PROBABILI'D ON PERIO | TY OF INDO OF RECATED RENCE PROB | ISTANTANE
CORD 1934
CURRENCE
BABILITY, | OUS PEAK
4-49
INTERVAL
IN PERCE
50
2% | FLOW
, IN
NT | PERIOD
(CON-
SECU-
TIVE
DAYS)
 | DISCH/
2
50%
163
141
118 | ARGE, IN
INTERVA
EXCEEDANC
5
20%
277
222
175 | CFS, FOF
AL, IN YE
CE PROBAE
10
10
368
281
214 | 25
45
501
361
264 | ED RECUP
O ANNUAL
N PERCEN
50
2% | 100
1% | | MAGNI
DISCHARGE
YEARS,
1.25
80% | TUDE AND BASE , IN CFS, AND ANNUA 2 50% | PROBABILI'D ON PERIO | TY OF INDO OF RECATED RENCE PROB | ISTANTANE
CORD 1934
CURRENCE
BABILITY, | OUS PEAK
4-49
INTERVAL
IN PERCE
50
2% | FLOW
, IN
NT | PERIOD (CON-
SECU-
TIVE DAYS) | DISCHI
2
50%
163
141
118
104 | 5
20%
277
222
175 | 10 TO SEE | 25 4 501 361 264 208 | ED RECUP
O ANNUAL
N PERCEN
50
2% | 100
1% | | MAGNI DISCHARGE YEARS, 1.25 80% | TUDE AND BASE , IN CFS, AND ANNUA 2 50% | PROBABILI'D ON PERIO | TY OF INDO OF RECATED RENCE PROB | ISTANTANE
CORD 1934
CURRENCE
BABILITY, | OUS PEAK
4-49
INTERVAL
IN PERCE
50
2% | FLOW
, IN
NT | PERIOD
(CON-
SECU-
TIVE
DAYS)
 | DISCH/
2
50%
163
141
118
104
93 | 277
222
175
147
128 | CFS, FOF
LL, IN YE
E PROBAE
10
10%
368
281
214
175
150 | R INDICAT
EARS, AND
BILITY, I
 | ED RECUP
O ANNUAL
N PERCEN
50
2% | 100
1% | | MAGNI DISCHARGE YEARS, 1.25 80% | TUDE AND BASE , IN CFS, AND ANNUA 2 50% | PROBABILI'D ON PERIO | TY OF INDO OF RE | STANTANEC
CORD 1934
CURRENCE
BABILITY,
25
4% | DUS PEAK
4-49
INTERVAL
IN PERCE
50
2% | FLOW , IN NT 1000 11% | PERIOD
(CON-
SECU-
TIVE
DAYS)
 | DISCHi 2 50% 163 141 118 104 93 81 72 | ARGE, IN INTERVAEXCEEDANC 5 20% | CFS, FOFAL, IN YEE PROBACTION 10 10% | R INDICAT
EARS, AND
BILITY, I
25
4%
501
361
264
208
175
145 | ED RECUP
O ANNUAL
N PERCEN
50
2% | 100
1% | | MAGNI DISCHARGE YEARS, 1.25 80% | TUDE AND BASE , IN CFS, AND ANNUA 2 50% | PROBABILI' D ON PERIO FOR INDIO L EXCEEDA 5 20% 290 .042 | TY OF INDD OF RECATED RENCE PROB | ISTANTANEC CORD 1934 CCURRENCE SABILITY, 25 4% 519 | DUS PEAK 1-49 INTERVAL IN PERCE 50 2% | FLOW , IN NT 100 1% | PERIOD (CON-
SECU-
TIVE DAYS) | DISCH/
2
50%
 | 277
222
175
147
128
110
95 | CFS, FOFAL, IN YEE PROBACT 10 10% | R INDICAT
FARS, AND
SILLITY, I
25
4%
501
361
264
208
175
145 | ED RECUP
O ANNUAL
N PERCEN
50
2% | 100
1% | 205 14333000 MIDDLE FORK ROGUE RIVER NEAR PROSPECT, OR LOCATION.--Lat 42°44'05", long 122°24'05", in NEtNEt sec.1, T.33 S., R.3 E., Jackson County, Hydrologic Unit 17100307, on right bank 850 ft downstream from diversion dam and intake of Middle Fork power canal, and 4.5 ml southeast of Prospect. DRAINAGE AREA .-- 56.5 mi2. 316 367 282 254 230 211 181 161 146 134 129 124 119 112 105 PERIOD OF RECORD.--May 1925 to September 1955 (includes flow of Middle Fork power canal since completion Nov. 19, 1931). GAGE.--Water-stage recorder. Datum of gage is 2,619 ft National Geodetic Vertical Datum of 1929 (levels by the California-Oregon Power Co.). Prior to Nov. 10, 1949, water-stage recorder and staff gage at various sites and datums within 150 ft of present gage. REMARKS.--All records given herein include flow In Middle Fork power canal which diverts 850 ft above station for hydroelectric power and returns water to the Rogue River above South Fork Rogue River; practically no storage above diversion dam. AVERAGE DISCHARGE.--30 years (water years 1926-55), 184 ft3/s, 133,200 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 3,120 ft³/s Nov. 23, 1953, from rating curve extended above 250 ft on basis of shape of previous rating curves; minimum daily, 72 ft³/s Aug. 24, to Sept. 5, 1931. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of Dec. 22, 1955, reached a stage of 5.65 ft, discharge, 3,230 ft3/s, by measurement of peak flow over dam. | | 2
50%
869 | .461 | 10
10
10\$
1980
DURATIO | 25
4%
2790
2790
N TABLE | IN PERCEI | NT | PERIOD (CON- SECU- TIVE DAYS) 1 3 7 15 30 60 90 FOR PERIOD | 2
50%
666
557
458
385
345
314
289 | 1020
779
597
415
419
366
3334 | 1310
940
692
532
462
390
356 | R INDICAT
EARS AND
BILITY, 1
25
4\$
1730
1160
816
602
513
413
378 | ANNUAL | | |-------------|-----------------------|---------------------------|-------------------------------------|-------------------------------------|----------------------------|------------------------|---|--|---|---|--|--------------------------------|------------| | YEARS, A | 2
50%
869 | 5
20%
 | 10 10% | 25
4\$
2790 | 50 2% | NT | (CON-
SECU-
TIVE
DAYS)
 | 2
50%
666
557
458
385
345
314
289 | 1020
779
597
475
419
334 | 1310
940
692
532
462
390 | EARS, AND
BILITY, 1
25
4%
1730
1160
816
602
513
413 | 50
2% | 100
1% | | YEARS, A | 2
50%
869 | 5
20%
 | NCE PROB
10
10% | ABILITY,

25
4% | IN PERCEI | NT

100 | (CON-
SECU-
TIVE
DAYS)
 |
2
50%

666
557
458
385
345
314 | 1020
779
597
419
366 | 10
10
10
10
40
940
692
532
462
390 | EARS, AND
BILITY, 1
25
4%
1730
1160
816
602
513
413 | 50
2% | 100
1% | | YEARS, A | 2
50%
869 | 5
20%
 | NCE PROB
10
10% | ABILITY,

25
4% | IN PERCEI | NT

100 | (CON-
SECU-
TIVE
DAYS)
 |
2
50%

666
557
458
385
345
314 | 1020
779
597
419
366 | 10
10
10
10
40
940
692
532
462
390 | EARS, AND
BILITY, 1
25
4%
1730
1160
816
602
513
413 | 50
2% | 100
1% | | 1.25
80% | 2
50%
869 | 5
20%
 | NCE PROB
10
10% | ABILITY,

25
4% | IN PERCEI | NT

100 | (CON-
SECU-
TIVE
DAYS)
 | 2
50%

666
557
458
385
345 | 1NTERV
EXCEEDANG
5
20%
1020
779
597
475
419 | 10
10%
1310
940
692
532
462 | EARS, AND
BILITY, I
 | ANNUAL
N PERCEN
50
2% |
100
1% | | YEARS, A | 2
50%
869 | 5
20%
 | NCE PROB
10
10% | ABILITY,

25
4% | IN PERCEI | NT

100 | (CON-
SECU-
TIVE
DAYS)
 | 2
50%

666
557
458 | 1020
779
597 | 10
10
10
10
13
13
10
940
692 | EARS, AND
BILITY, 1
 | ANNUAL
N PERCEN
50
2% | 100
1% | | YEARS, A | 2
50%
869 | 5
20%
 | NCE PROB
10
10% | ABILITY,

25
4% | IN PERCEI | NT

100 | (CON-
SECU-
TIVE
DAYS) | 2
50 %

666
557 | 1020
779 | 10
10
10%
1310
940 | EARS AND
BILITY, 1
 | ANNUAL
N PERCEN
50
2% | 100
1% | | YEARS, A | 2
50%
869 | 5
20%
 | NCE PROB
10
10% | ABILITY,

25
4% | IN PERCEI | NT

100 | (CON-
SECU-
TIVE
DAYS) | 2
50 %
 | 1 NTERV
EXCEEDANG
5
20% | AL, ÎN Y
CE PROBA
10
10% | EARS, AND
BILITY, I
25
4% | ANNUAL N PERCEN 50 2% | 100
1% | | YEARS, A | AND ANNUÁ
2
50% | L EXCEEDAN
5
20% | NCE PROB
10
10% | ABILITY,

25
4% | IN PERCEI | NT

100 | (CON-
SECU-
TIVE
DAYS) |
2
50 % | INTERVA | AL, ÎN Y
CE PROBA
10
10% | EARS, AND
BILITY, I
25
4% | ANNUAL
N PERCEN
50
2% | 100
19 | | YEARS, A | AND ANNUÁ
2
50% | L EXCEEDAN
5
20% | NCE PROB
10
10% | ABILITY,

25
4% | IN PERCEI | NT

100 | (CON-
SECU-
TIVE | 2 | INTERVA
EXCEEDANG
5 | AL, ÎN Y
CE PROBA
10 | EARS, AND
BILITY, I
25 | ANNUAL
N PERCEN

50 | T
 | | YEARS, A | AND ANNUA | L EXCEEDAN
5 | NCE PROB | ABILITY,

25 | IN PERCEI | NT

100 | (CON-
SECU-
TIVE | 2 | INTERVA
EXCEEDANG
5 | AL, ÎN Y
CE PROBA
10 | EARS, AND
BILITY, I
25 | ANNUAL
N PERCEN

50 | T
 | | YEARS, A | AND ANNUA | L EXCEEDAN
5 | NCE PROB | ABILITY,

25 | IN PERCEI | NT

100 | (CON-
SECU- | | INTERV
EXCEEDANG | AL, IN Y
CE PROBA | EARS, AND
BILITY, I | ANNUAL
N PERCEN | T
 | | YEARS, A | ND ANNUÁ | L EXCEEDAN | NCE PROB | ABILITY, | IN PERCE | NT | (CON- | | INTERV | AL, ÎN Y | EARS 🗭 AND | ANNUAL | | | | | | | | | | | | INTERV | AL, ÎN Y | EARS 🗭 AND | ANNUAL | | | | | | | | | | | | | | | | | | MAGNIT | | PROBABILI
D ON PERIC | | | | FLOW | MA G | | | | OF ANNUAL
ECORD 19 | | .OW | | | | | | 33 | .17 | | | | | | | | | | ANNUAL | 137 | 250 | 193 | | | 100 | | | | | | | | | SEPTEMBER | 90 | 168 | 126 | 20 | .16 | 5.4 | | | | | | | | | NUGUST | 95 | 184 | 135 | 29
22 | .16 | 7.3
5.8 | | | | | | | | | JULY | 102 | 263 | 168 | 39 | .23 | 7.3 | (6) | 127 | 119 | 112 | 108 | | | | MAY
JUNE | 139
114 | 444
4 60 | 296
270 | 6 4
82 | .22
.30 | 12.8
11.7 | 120
183 | 125
137 | 110
119 | 104
112 | 99 | | | | APRIL | 145 | 357 | 254 | 54 | .21 | 11.0 | 90 | 122 | 108 | 102 | 97 | | | | MARCH | 134 | 259 | 189 | 37 | . 19 | 8.2 | 60 | 119 | 106 | 100 | 95 | | | | FEBRUARY | 104 | 451 | 205 | 86 | .42 | 8.9 | 30 | 116 | 103 | 98 | 94 | | | | JANUARY | 104 | 352 | 194 | 65 | .33 | 8.4 | 14 | 114 | 102 | 96 | 92 | | | | DECEMBER | 112 | 359 | 189 | 73 | .39 | 8.2 | 7 | 113 | 101 | 95 | 92 | | | | NOVEMBER | 107 | 270 | 158 | 47 | .30 | 6.8 | 3 | 112 | 99 | 94 | 90 | | | | OCTOBER | 100 | 192 | 129 | 26 | .20 | 5.6 | 1 | 111 | 98 | 92 | 88 | | | | | (0/3/ | (0,5) | (0/3) | (0/3) | ATTON | KUNOFF | DAYS) | 50% | 20% | 10% | 5 % . | 2% | 1% | | 10NTH | MINIMUM
(CFS) | MAXIMUM
(CFS) | MEAN
(CFS) | DEVIA-
TION
(CFS) | CIENT OF
VARI-
ATION | OF
ANNUAL
RUNOFF | (CON-
SECU-
TIVE |
2 | EXCEEDAN
5 | CE PROBA

10 | BILITY, I | N PERCEI | IT
 | | | | | | STAN-
DARD | COEFFI- | PERCENT | PERIOD | DISCH | | | R INDICAT | M(| UNIHLY AN | NO ANNUAL | MEAN DIS | SCHARGES | 1933-55 | | MAG | | | | OF ANNUAL
ECORD 19 | |) W | | | ONTHLY AN | ND ANNUAL I | MEAN DIS | SCHARGES | 1933-55 | | MAG | | | | OF ANNUAL
ECORD 19 | |)W | # 14333500 RED BLANKET CREEK NEAR PROSPECT, OR LOCATION.--Lat 42°46'40", long 122°25'35", in NW±NE± sec.23, T.32 S., R.3 E., Jackson County, Hydrologic Unit 17100307, on right bank 1.8 mi downstream from Lick Creek, 3.7 mi northeast of Prospect, and at mile 4.8. DRAINAGE AREA .-- 45.5 mi2. PERIOD OF RECORD. -- May 1925 to Saptember 1981. GAGE.--Water-stage recorder. Altitude of gage is 2,780 ft, from river-profile map. Prior to Sept. 7, 1949, nonrecording gage at several sites within 2.5 mi of present site at various datums. REMARKS.--No regulation. Small diversions for irrigation above station. AVERAGE DISCHARGE.--56 years (water years 1926-81), $115 \text{ ft}^3/\text{s}$, 83,320 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.—Maximum discharge, 3,190 ft 3 /s Dec. 22, 1964, gage height, 7.85 ft, from rating curve extended above 1,500 ft 3 /s; minimum observed, 34 ft 3 /s Sept. 3, 4, 25, 0ct. 9, 16, 1931. ### STATISTICAL SUMMARIES MONTHLY AND ANNUAL MEAN DISCHARGES 1926-81 MAGNITUDE AND PROBABILITY OF ANNUAL LOW FLOW BASED ON PERIOD OF RECORD 1935-81 | | MINIMUM | MAVIMUM | MEAN | STAN-
DARD
DEVIA- | COEFFI-
CIENT OF
VARI- | PERCENT
OF | PERIOD
(CON-
SECU- | | INTERVAL | CFS, FOR
IN YEAR
CE PROBAB | S, AND A | NNUAL N | ON- | |-----------|---------|------------------|-------|-------------------------|------------------------------|------------------|--------------------------|----------|------------------|----------------------------------|----------|-----------------|-----------| | MONTH | (CFS) | MAXIMUM
(CFS) | (CFS) | TION
(CFS) | ATION | ANNUAL
RUNOFF | TIVE
DAYS) | 2
50% | 5
20 % | 10
10% | 20
5% | 50
2% | 100
1% | | OCTOBER | 48 | 118 | 70 | 17 | .24 | 4.9 | 1 | 56 | 47 | 43 | 40 | 37 | 35 | | NOVEMBER | 51 | 207 | 102 | 39 | .39 | 7.2 | 3 | 57 | 48 | 43 | 40 | 37 | 35 | | DECEMBER | 54 | 482 | 132 | 78 | .59 | 9.3 | 7 | 58 | 49 | 45 | 41 | 38 | 36 | | JANUARY | 49 | 279 | 133 | 57 | .43 | 9.4 | 14 | 59 | 50 | 46 | 42 | 39 | 37 | | FEBRUARY | 54 | 265 | 130 | 45 | .34 | 9.1 | 30 | 61 | 51 | 47 | 44 | 40 | 38 | | MARCH | 73 | 354 | 127 | 48 | .38 | 8.9 | 60 | 63 | 53 | 49 | 45 | 42 | 40 | | APRIL | 75 | 227 | 146 | 39 | .27 | 10.3 | 90 | 66 | 55 | 51 | 47 | 44 | 42 | | MAY | 76 | 285 | 178 | 50 | .28 | 12.5 | 120 | 69 | 58 | 53 | 49 | 46 | 44 | | JUNE | 59 | 274 | 164 | 60 | .37 | 11.5 | 183 | 80 | 66 | 60 | 56 | 52 | 49 | | JULY | 49 | 198 | 99 | 34 | .34 | 6.9 | | | | | | | | | AUGUST | 42 | 117 | 74 | 19 | .26 | 5.2 | | | | | | | | | SEPTEMBER | 40 | 97 | 66 | 15 | •22 | 4.7 | | | | | | | | | ANNUAL | 71 | 177 | 118 | 29 | .24 | 100 | | | | | | | | ## MAGNITUDE AND PROBABILITY OF INSTANTANEOUS PEAK FLOW BASED ON PERIOD OF RECORD 1934-81 MAGNITUDE AND PROBABILITY OF ANNUAL HIGH FLOW BASED ON PERIOD OF RECORD 1934-81 | SCHARGE,
YEARS, A | | | | | | | PERIOD
(CON- | | INTERV | I CFS, FO
VAL, IN Y | EARS, AN | D ANNUAL | | |----------------------|----------|------------------|-----------|----------|----------|-----------|------------------------|----------|----------|------------------------|-----------------|----------|------| | 1 • 25
80% | 2
50% | 5
20 % | 10
10% | 25
4% | 50
2% | 100
1% | SECU-
TIVE
DAYS) | 2
50% | 5
20% | 10
10% | 25
4% | 50
2% | 100 | | 327 | 560 | 993 | 1360 | 1910 | 2400 | 2960 | | | | | | | | | | | | | | | | 1 | 465 | 784 | 1050 | 1470 | 1840 | 2260 | | WE I GHTED | SKEW = | .215 | | | | | 3 | 376 | 608 | 808 | 1120 | 1410 | 1740 | | | | | | | | | 7 | 299 | 447 | 568 | 752 | 913 | 1100 | | | | | | | | | 15 | 249 | 344 | 413 | 507 | 583 | 664 | | | | | | | | | 30 | 220 | 288 | 331 | 384 | 423 | 461 | | | | | | | | | 60 | 192 | 247 | 281 | 321 | 349 | 377 | | | | | | | | | 90 | 175 | 220 | 247 | 279 | 300 | 320 | DURATION TABLE OF DAILY MEAN FLOW FOR PERIOD OF RECORD 1934-81 | | | DISC | HARGE, | IN CFS, | WHICH WAS | EQUALED | OR EXCE | EDED FOR | INDICATED | PERCENT | OF TIME | | | | |-------------|-----|------|--------|---------|-----------|---------|---------|----------|-----------|---------|---------|-----|-----|-----| | 5% | 10% | 15% | 20% | 25% | 30% | 40% | 50% | 60% | 70% | 75% | 80% | 85% | 90% | 95% | | 2 45 | 204 | 179 | 160 | 145 | 131 | 113 | 98 | 87 | 77 | 73 | 68 | 64 | 59 | 53 | ### 14334700 SOUTH FORK ROGUE RIVER, SOUTH OF PROSPECT, OR LOCATION.--Lat 42°42'45", long 122°30'20", in NW\SE\ sec.7, T.33 S., R.3 E., Jackson County, Hydrologic Unit 17100307, on right bank 200 ft upstream from unnamed tributary, 0.6 mi upstream from Smith Creek, 1.2 mi downstream from Beaver Creek, 2.8 mi southwest of Prospect, and at mile 2.4. DRAINAGE AREA. -- 246 mi2. PERIOD OF RECORD. -- October 1968 to September 1982. GAGE.--Water-stage recorder. Altitude of gage is 2,030 ft, from topographic map. REMARKS.--Some regulation by South Fork canal dam upstream. Power diversions above station from South Fork Rogue River, Middle Fork Rogue River, and Red Blanket Creek divert water to Rogue River via Main Canal. During summer base flow all of streamflow is diverted for power except that for fish life. Base flow at station is principally from springs downstream from power diversions. AVERAGE DISCHARGE.--14 years, 382 ft³/s, 276,800 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 9,880 ft 3 /s Mar. 3, 1972, gage height, 12.71 ft, from floodmark; minimum, 54 ft 3 /s Aug. 16-19, 1977; minimum daily, 54 ft 3 /s Sept. 24-30, 1970. EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1890, 20.1 ft, Dec. 22, 1964, from floodmarks at gage, discharge, 28,500 ft³/s. ### STATISTICAL SUMMARIES MONTHLY AND ANNUAL MEAN DISCHARGES 1969-82 MAGNITUDE AND PROBABILITY OF ANNUAL LOW FLOW BASED ON PERIOD OF RECORD 1970-82 STAN DISCHARGE, IN CFS, FOR
INDICATED RECURN | | MINIMUM | MAXIMUM | MEAN | STAN-
DARD
DEVIA- | COEFFI-
CIENT OF
VARI- | PERCENT
OF | PERIOD
(CON-
SECU- | | INTERVAL | CFS, FOF
, IN YEAR
CE PROBAE | RS, AND A | NNUAL N | ON- | |-----------|---------|---------|---------------|-------------------------|------------------------------|------------------|--------------------------|----------|----------|------------------------------------|-----------|----------|-----------| | MONTH | (CFS) | (CFS) | MEAN
(CFS) | (CFS) | ATION | ANNUAL
RUNOFF | TIVE
DAYS) | 2
50% | 5
20% | 10
10% | 20
5% | 50
2% | 100
1% | | OCTOBER | 65 | 175 | 105 | 32 | .30 | 2.3 | 1 | 75 | 60 | 54 | 49 | | | | NOVEMBER | 69 | 761 | 264 | 191 | •72 | 5.7 | 3 | 76 | 61 | 54 | 50 | | | | DECEMBER | 86 | 1327 | 475 | 390 | .82 | 10.3 | 7 | 77 | 61 | 55 | 50 | | | | JANUARY | 85 | 1143 | 628 | 344 | •55 | 13.6 | 14 | 78 | 62 | 56 | 51 | | | | FEBRUARY | 81 | 1246 | 473 | 292 | .62 | 10.3 | 30 | 82 | 65 | 58 | 53 | | | | MARCH | 99 | 2240 | 572 | 531 | .93 | 12.4 | 60 | 88 | 70 | 62 | 57 | | | | APRIL | 134 | 878 | 486 | 226 | .47 | 10.5 | 90 | 92 | 72 | 64 | 58 | | | | MAY | 253 | 1049 | 655 | 284 | .43 | 14.2 | 120 | 97 | 76 | 68 | 62 | | | | JUNE | 150 | 962 | 506 | 310 | .61 | 11.0 | 183 | 141 | 110 | 99 | 92 | | | | JULY | 71 | 429 | 211 | 133 | .63 | 4.6 | | | | | | | | | AUGUST | 61 | 243 | 124 | 57 | .46 | 2.7 | | | | | | | | | SEPTEMBER | 59 | 174 | 112 | 40 | .36 | 2.4 | | | | | | | | | ANNUAL | 114 | 672 | 384 | 171 | .45 | 100 | | | | | | | | MAGNITUDE AND PROBABILITY OF INSTANTANEOUS PEAK FLOW BASED ON PERIOD OF RECORD 1969-82 MAGNITUDE AND PROBABILITY OF ANNUAL HIGH FLOW BASED ON PERIOD OF RECORD 1969-82 | | | | | RECURRENC
ROBABILITY | | | PERIOD
(CON- | | INTERV | 'AL, ÎN Y | R INDICAT
EARS, AND
BILITY, I | ANNUAL | | |-------------|--------------|------------------|-----------|-------------------------|-----------------|---------------|------------------------|----------|------------------|-----------|-------------------------------------|----------|-----------| | 1.25
80% | 2
50%
 | 5
20 % | 10
10% | 25
4% | 50
2% | 100
1%
 | SECU-
TIVE
DAYS) | 2
50% | 5
20 % | 10
10% | 25
4% | 50
2% | 100
1% | | 1530 | 2880 | 5390 | 7460 | 10500 | | | | | | | | | | | | | | | | | | 1 | 2490 | 4660 | 6260 | 8370 | | | | VE I GHTED | SKEW = | 029 | | | | | 3 | 2150 | 3780 | 4900 | 6270 | | | | | | | | | | | 7 | 1740 | 2840 | 3510 | 4280 | | | | | | | | | | | 15 | 1290 | 2020 | 2480 | 3000 | | | | | | | | | | | 30 | 981 | 1520 | 1850 | 2220 | | | | | | | | | | | 60 | 755 | 1130 | 1340 | 1570 | | | | | | | | | | | 90 | 677 | 1020 | 1220 | 1430 | | | DURATION TABLE OF DAILY MEAN FLOW FOR PERIOD OF RECORD 1969-82 |
 | | DISCH | ARGE, IN | CFS, W | HICH WAS | EQUALED | OR EXCEE | ED FOR | INDICATED | PERCENT | OF TIME | | | | |----------------|-----|-------|----------|--------|----------|---------|----------|--------|-----------|---------|---------|-----|-----|-------------| |
5 % | 10% | 15% | 20% | 25% | 30% | 40% | 50% | 60% | 70% | 75% | 80% | 85% | 90% | 95 % | | 1110 | 840 | 706 | 609 | 526 | 447 | 326 | 234 | 166 | 126 | 112 | 100 | 88 | 76 | 65 | ## 14335000 ROGUE RIVER BELOW SOUTH FORK ROGUE RIVER, NEAR PROSPECT, OR LOCATION.--Lat 42°42'00", long 122°35'40", in SW±NW± sec.16, T.33 S., R.2 E., Jackson County, Hydrologic Unit 17100307, on left bank 130 ft upstream from highway bridge, 0.5 mi downstream from Cascade Gorge, 3.1 mi downstream from South Fork Rogue River, 6.6 mi southwest of Prospect, and at mile 160.4 (river-profile survey). DRAINAGE AREA .-- 650 mi2. PERIOD OF RECORD.--October 1928 to September 1965. Prior to May 1929 monthly discharge only, published in WSP 1318. GAGE.--Staff gage. Datum of gage is 1,707.57 ft National Geodetic Vertical Datum of 1929 (Bureau of Reclamation bench mark). Prior to June 23, 1961, water-stage recorder at sites 195 ft downstream; prior to Aug. 31, 1957, water-stage recorder at datum 0.69 ft higher and Aug. 31, 1957 to June 22, 1961, water-stage recorder at datum 0.31 ft lower. REMARKS.--Considerable diurnal fluctuation caused by powerplant 5.5 mi above station. Small diversions for irrigation above station. AVERAGE DISCHARGE.--37 years, 1,799 ft3/s, 1,302,000 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 55,000 ft³/s Dec. 22, 1964, gage height, 23.0 ft, from floodmark, from rating curve extended above 18,000 ft³/s by logarithmic plotting; minimum since intake was lowered Aug. 18, 1934, 493 ft³/s Sept. 1, 1934 (prior to Aug. 18, 1934, minimum not determined). STATISTICAL SUMMARIES | STAN- | STAN- DARD COEFFI - PERCENT PERCENT FOR INDICATED RECURRENCE PERCENT PER | 80 %
5520 | | .286 | DURATIO | N TABLE | OF DAILY ! | | 3
7
15
30
60
90
FOR PERIOD | 5590
4490
3780
3370
3010
2780
OF RECO | 8920
6670
5200
4400
3840
3460
 | 11900
8580
6290
5090
4360
3860 | 16800
11600
7870
5980
4970
4310 | 21500
14500
9190
6650
5 42 0 | | |--|--|---------------------|-----------|-------|---------|---------|------------|---------------|--|---|--|---|--|---|-------------| | STAN- | STAN- | 80 %
5520 | | | | | |
MEAN FLOW | 3
7
15
30
60
90 | 5590
4490
3780
3370
3010
2780 | 8920
6670
5200
4400
3840
3460 | 11900
8580
6290
5090
4360
3860 | 16800
11600
7870
5980
4970 | 21500
14500
9190
6650
5
42 0 | | | STAN- | STAN- | 80%

5520 | | | 16200 2 | | 5400 |
 | 3
7
15
30
60 | 5590
4490
3780
3370
3010 | 8920
6670
5200
4400
3840 | 11900
8580
6290
5090
43 60 | 16800
11600
7870
5980
4970 | 21500
14500
9190
6650
5 42 0 | | | STAN- | STAN- | 80%

5520 | | | 16200 2 | 1200 2 | 5400 | | 3
7
15
30 | 5590
4490
3780
3370 | 8920
6670
5200
4400 | 11900
8580
6290
5090 | 16800
11600
7870
5980 | 21500
14500
9190
6650 | | | STAN- | STAN- | 80%

5520 | | | 16200 2 | 21200 2 | 5400 | | 3
7
15 | 5590
4490
3780 | 8920
6670
5200 | 11900
8580
6290 | 16800
11600
7870 | 21500
14500
9190 | | | STAN- | STAN- | 80%

5520 | | | 16200 2 | 21200 2 | 5400 | | 3 7 | 5590
4490 | 8920
6670 | 11900
8580 | 16800
11600 | 21500
14500 | | | BASED ON PERIOD OF RECORD 1930-65 | BASED ON PERIOD OF RECORD 1930-65 | 80%

5520 | | | 16200 2 | 1200 2 | 5400 | | 3 | 5590 | 8920 | 11900 | 16800 | 21500 | | | STAN- | BASED ON PERIOD OF RECORD 1930-65 | 80%

5520 | | | 16200 2 | 1200 2 | 5400 | | | | | | | | | | STAN- | BASED ON PERIOD OF RECORD 1930-65 | 80% | 8250 | 12800 | 16200 2 | 1200 2 | 5400 | | 1 | 6720 | 11300 | 15600 | 23100 | 30500 | | | STAN- | STAN- | 80% | | | | | | | | | | | | | | | STAN | STAN- | | | | | | | | DATSI | JUB | | | ٦ <i>p</i>
 | 2,6 | | | STAN- | STAN- | | JU}s
- | ZU76 | 1∪76 | 4% | 27b | 1/0 | | | - | | | | | | STAN- | STAN- | | | | | | | | | |
5 | 10 | 2F |
E0 | 100 | | STAN- | STAN- | 1EANS, / | | | | | | | (CON- | | | | | | İТ | | STAN- | STAN- | | | | | | | | DEDLOR | DISCH | | | | | RENCE | | STAN- DARD COEFFI- PERCENT DARD COEFFI- PERCENT DARD COEFFI- PERCENT DARD COEFFI- PERCENT DARD COEFFI- PERCENT DARD COEFFI- PERCENT DEVIA- CIENT OF CON- EXCEEDANCE PROBABILITY, IN PERCENT DAYS | STAN- | MAGNI | | | | | | FLOW | MAG | | | | | | .0 W | | STAN- | STAN- | | 950 | 2990 | 1/9/ | 422 | • 2 3 | 100 | | | | | | | | | STAN- | STAN- | | | | | | | | | | | | | | | | STAN- | STAN- | | | | | | | | | | | | | | | | STAN- | STAN- | | | | | | | | | | | | | | | | STAN- | STAN- | | | | | | | | 183 | 1180 | 963 | 864 | 790 | 713 | | | STAN- | STAN- | | | | | | | | | | | | | | | | STAN- | STAN- | | | | | | | | | | | | | | | | STAN- | STAN- | | | 3949 | | | | 9.5 | | | | | | | | | STAN- DISCHARGE, IN CFS, FOR INDICATED RECURRENCE DARD COEFFI- PERCENT PERIOD INTERVAL, IN YEARS, AND ANNUAL NON- EXCEEDANCE PROBABILITY, IN PERCENT PERCENT EVALUATION | STAN- | | | 4788 | 2111 | 907 | .43 | | 30 | | 808 | | | | | | STAN- | STAN- | JANUARY | 809 | 4448 | 1921 | 938 | .49 | 8.9 | 14 | 927 | 792 | 726 | 674 | 618 | | | STAN- DISCHARGE, IN CFS, FOR INDICATED RECURRENCE | STAN- DISCHARGE, IN CFS, FOR INDICATED RECURRENCE | DECEMBER | 782 | 7361 | 2008 | 1320 | .66 | 9.3 | 7 | 913 | 780 | 715 | 665 | 611 | | | STAN- DISCHARGE, IN CFS, FOR INDICATED RECURRENCE DARD COEFFI- PERCENT PERIOD INTERVAL, IN YEARS, AND ANNUAL NON- DEVIA- CIENT OF OF (CON- MINIMUM MAXIMUM MEAN TION VARI- ANNUAL SECU- ONTH (CFS) (CFS) (CFS) (CFS) ATION RUNOFF TIVE 2 5 10 20 50 100 DAYS) 50% 20% 10% 5% 2% 1% | STAN- DARD COEFFI- PERCENT PERIOD INTERVAL, IN YEARS, AND ANNUAL NON- DEVIA- CIENT OF OF (CON- MINIMUM MAXIMUM MEAN TION VARI- ANNUAL SECU- MONTH (CFS) (CFS) (CFS) ATION RUNOFF TIVE 2 5 10 20 50 100 DAYS) 50% 20% 10% 5% 2% 1% | | | | | | | | | | | | | | | | STAN- DISCHARGE, IN CFS, FOR INDICATED RECURRENCE DARD COEFFI- PERCENT PERIOD INTERVAL, IN YEARS, AND ANNUAL NON- DEVIA- CIENT OF CON- EXCEEDANCE PROBABILITY, IN PERCENT MINIMUM MAXIMUM MEAN TION VARI- ANNUAL SECU | STAN- DISCHARGE, IN CFS, FOR INDICATED RECURRENCE DARD COEFFI- PERCENT PERIOD INTERVAL, IN YEARS, AND ANNUAL NON- DEVIA- CIENT OF OF (CON- EXCEEDANCE PROBABILITY, IN PERCENT MINIMUM MAXIMUM MEAN TION VARI- ANNUAL SECU | OCTOBER | 680 | 1897 | 1055 |
255 | . 24 | 4.9 | 1 | 878 | 749 | 689 | 643 | · 595 | | | BASED ON PERIOD OF RECORD 1930-65 STAN- DISCHARGE, IN CFS, FOR INDICATED RECURRENCE DARD COEFFI- PERCENT PERIOD INTERVAL, IN YEARS, AND ANNUAL NON- DEVIA- CIENT OF (CON- EXCEEDANCE PROBABILITY, IN PERCENT MINIMUM MAXIMUM MEAN TION VARI- ANNUAL SECU | BASED ON PERIOD OF RECORD 1930-65 STAN- DISCHARGE, IN CFS, FOR INDICATED RECURRENCE DARD COEFFI- PERCENT PERIOD INTERVAL, IN YEARS, AND ANNUAL NON- DEVIA- CIENT OF OF (CON- EXCEEDANCE PROBABILITY, IN PERCENT MINIMUM MAXIMUM MEAN TION VARI- ANNUAL SECU | .57771 | (0, 0) | (0,0) | (0,0) | (0,0) | 7,1151 | NONO! ! | | - | - | | | | | | BASED ON PERIOD OF RECORD 1930-65 STAN- DISCHARGE, IN CFS, FOR INDICATED RECURRENCE DARD COEFFI- PERCENT PERIOD INTERVAL, IN YEARS, AND ANNUAL NON- DEVIA- CIENT OF (CON- EXCEEDANCE PROBABILITY, IN PERCENT | BASED ON PERIOD OF RECORD 1930-65 STAN- DISCHARGE, IN CFS, FOR INDICATED RECURRENCE DARD COEFFI- PERCENT PERIOD INTERVAL, IN YEARS, AND ANNUAL NON- DEVIA- CIENT OF (CON- EXCEEDANCE PROBABILITY, IN PERCENT | MONTH | | | | | | | | 2 |
5 | 10 | 20 | 50 | 100 | | BASED ON PERIOD OF RECORD 1930-65 STAN- DISCHARGE, IN CFS, FOR INDICATED RECURRENCE | BASED ON PERIOD OF RECORD 1930-65 STAN- DISCHARGE, IN CFS, FOR INDICATED RECURRENCE | | | | | | | | | | EXCEEDA | NCE PROB | ABILITY, | IN PERCEI | ١T | | BASED ON PERIOD OF RECORD 1930-65 | BASED ON PERIOD OF RECORD 1930-65 | | | | | | COEFF1- | PERCENT | PERIOD | 5 | | | | | | | | | | | | | STAN- | | | | DISCI | HARGE. II | N CES. E | OR INDIC | ATED RECUI | RENCE | ### 14335500 SOUTH FORK BIG BUTTE CREEK NEAR BUTTE FALLS, OR LOCATION.--Lat 42°32°25", long 122°33'15", in NE‡SW‡ sec.11, T.35 S., R.2 E., Jackson County, Hydrologic Unit 17100307, on right bank 10 ft downstream from Ginger Creek, 0.6 mi east of town of Butte Falls, and at mile 14.0. DRAINAGE AREA .-- 138 mi2. PERIOD OF RECORD.--September 1910 to October 1911 (published as "at Butte Falls"), August to October 1915, October 1917 to September 1922, March 1925 to September 1982. Monthly discharge only August, September 1915, published in WSP 1318. GAGE.--Water-stage recorder. Concrete control since Oct. 1, 1968. Altitude of gage is 2,360 ft, from river-profile map. Sept. 21, 1910, to Sept. 30, 1922, nonrecording gage at site 300 ft upstream at different datums. REMARKS.--Flow slightly regulated since 1952 by Willow Creek Reservoir, capacity, 7,320 acre-ft. Diversions for irrigation above station and for municipal water supply for Medford (since 1927) and Butte Falls. AVERAGE DISCHARGE.--63 years (water years 1911, 1918-22, 1926-82), 155 ft³/s, 112,300 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.—Maximum discherge, 12,600 ft³/s Dec. 22, 1964, gage height, 7.65 ft, from rating curve extended above 1,600 ft³/s on basis of slope-area measurement of peak flow; minimum, 29 ft³/s Sept. 26, 1981. ### STATISTICAL SUMMARIES MONTHLY AND ANNUAL MEAN DISCHARGES 1928-82 MAGNITUDE AND PROBABILITY OF ANNUAL LOW FLOW BASED ON PERIOD OF RECORD 1929-82 | | MINIMUM | MAXIMUM | MEAN | STAN-
DARD
DEVIA-
TION | COEFFI-
CIENT OF
VARI- | PERCENT
OF
ANNUAL | PERIOD
(CON-
SECU- | | INTERVAL | CFS, FOF
, IN YEAR
CE PROBAE | RS, AND A | NNUAL NO | -NC | |-----------|---------|---------|--------|---------------------------------|------------------------------|-------------------------|--------------------------|----------|------------|------------------------------------|-----------|----------|-----------| | MONTH | (CFS) | (CFS) | (CFS) | (CFS) | ATION | RUNOFF | TIVE
DAYS) | 2
50% | 5
20% | 10
10% | 20
5% | 50
2% | 100
1% | | OCTOBER | 44 | 127 |
78 | 19 | .24 | 4.3 | 1 | 65 | 52 | 45 | 40 | 34 | 31 | | NOVEMBER | 49 | 218 | 100 | 34 | .34 | 5.5 | 3 | 66 | 52 | 45 | 40 | 35 | 31 | | DECEMBER | 60 | 1073 | 182 | 165 | .91 | 10.0 | 7 | 67 | 5 3 | 47 | 41 | 36 | 33 | | JANUARY | 54 | 785 | 214 | 149 | .70 | 11.8 | 14 | 68 | 55 | 48 | 43 | 38 | 34 | | FEBRUARY | 59 | 532 | 221 | 118 | .53 | 12.2 | 30 | 70 | 57 | 51 | 46 | 41 | 38 | | MARCH | 67 | 740 | 240 | 126 | .53 | 13.2 | 60 | 72 | 60 | 54 | 49 | 44 | 41 | | APRIL | 73 | 435 | 229 | 89 | .39 | 12.6 | 90 | 74 | 62 | 5 6 | 52 | 47 | 45 | | MAY | 71 | 333 | 184 | 6 9 | . 38 | 10.1 | 120 | 76 | 64 | 58 | 54 | 49 | 47 | | JUNE | 53 | 287 | 125 | 48 | .38 | 6.9 | 183 | 84 | 69 | 63 | 58 | 53 | 50 | | JULY | 52 | 134 | 89 | 19 | .22 | 4.9 | | | | | | | | | AUGUST | 46 | 127 | 80 | 16 | .20 | 4.4 | | | | | | | | | SEPTEMBER | 45 | 106 | 77 | 14 | . 18 | 4.2 | | | | | | | | | ANNUAL | 64 | 297 | 151 | 52 | .35 | 100 | | | | | | | | MAGNITUDE AND PROBABILITY OF INSTANTANEOUS PEAK FLOW BASED ON PERIOD OF RECORD 1911-82 MAGNITUDE AND PROBABILITY OF ANNUAL HIGH FLOW BASED ON PERIOD OF RECORD 1928-82 | SCHARGE,
YEARS, A | | | | | | | PERIOD
(CON- | | IARGE, IN
INTERV
EXCEEDAN | AL, IN Y | EARS, AN | D ANNUAL | • | |----------------------|----------|----------|-----------|----------|----------|-----------|------------------------|----------|---------------------------------|-----------|----------|----------|------| | 1.25
80% | 2
50% | 5
20% | 10
10% | 25
4% | 50
2% | 100
1% | SECU-
TIVE
DAYS) | 2
50% | 5
20 % | 10
10% | 25
4% | 50
2% | 100 | | 415 | 757 | 1510 | 2250 | 3530 | 4800 | 6400 | | | | | | | | | | | | | | | | 1 | 624 | 1190 | 1720 | 2600 | 3430 | 4450 | | WEIGHTED | SKEW = | .480 | | | | | 3 | 533 | 974 | 1380 | 2040 | 2660 | 3410 | | | | | | | | | 7 | 446 | 76 9 | 1040 | 1470 | 1850 | 2290 | | | | | | | | | 15 | 373 | 601 | 777 | 1030 | 1230 | 1460 | | | | | | | | | 30 | 319 | 492 | 616 | 781 | 910 | 1040 | | | | | | | | | 60 | 271 | 408 | 504 | 628 | 723 | 820 | | | | | | | | | 90 | 249 | 367 | 447 | 547 | 621 | 695 | DURATION TABLE OF DAILY MEAN FLOW FOR PERIOD OF RECORD 1928-82 | | | DISC | HARGE, I | IN CFS, | WHICH WAS
 EQUALED | OR EXCE | DED FOR | INDICATE | D PERCEN | NT OF TH | ΜE | | | |-----|-----|------|----------|---------|-----------|---------|---------|---------|----------|----------|----------|-----|-----|-----| | 5% | 10% | 15% | 20% | 25% | 30% | 40% | 50% | 60% | 70% | 75% | 80% | 85% | 90% | 95% | | 367 | 291 | 243 | 209 | 182 | 158 | 124 | 105 | 93 | 83 | 78 | 74 | 70 | 65 | 59 | ### 14337500 BIG BUTTE CREEK NEAR MCLEOD, OR LOCATION.--Lat 42°39'05", long 122°41'25", in NE±NW± sec.3, T.34 S., R.1 E., Jackson County, Hydrologic Unit 17100307, on right bank 225 ft upstream from county road bridge, 0.9 mi south of McLeod, and at mile 0.64. DRAINAGE AREA .-- 245 mi2. PERIOD OF RECORD. -- October 1945 to September 1957. October 1967 to September 1982. GAGE.--Water-stage recorder. Datum of gage is 1,525.95 ft National Geodetic Vertical Datum of 1929. Oct. 9, 1945, to Sept. 30, 1957, nonrecording gage at site 260 ft downstream at datum 0.53 ft higher. REMARKS.--Slight regulation by fish hatchery 600 ft above station. Several diversions in the vicinity of Butte Falls, the two largest being the city of Medford diversion and Eagle Point Irrigation District Canal. AVERAGE DISCHARGE. -- 27 years, 283 ft3/s, 205,000 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.—Maximum discharge, 8,950 ft 3 /s Dec. 22, 1955, gage height, 12.75 ft, site and datum then in use, from rating curve extended above 3,300 ft 3 /s on basis of slope-area measurement of peak flow; minimum, 6.4 ft 3 /s June 23, 24, 1977. EXTREMES OUTSIDE PERIOD OF RECORD.——Flood of Dec. 22, 1964, reached a stage of 18.6 ft, present site, from floodmark by İocal resident, discharge, 16,800 ft³/s, from rating curve, at former site, extended above 9,000 ft³/s and field estimate of overflow. ### STATISTICAL SUMMARIES MONTHLY AND ANNUAL MEAN DISCHARGES 1946-82 MAGNITUDE AND PROBABILITY OF ANNUAL LOW FLOW BASED ON PERIOD OF RECORD 1947-82 | | MINIMUM | MAXIMUM | MEAN | STAN-
DARD
DEVIA-
TION | COEFFI-
CIENT OF
VARI- | PERCENT
OF
ANNUAL | PERIOD
(CON-
SECU- | | INTERVAL | CFS, FOF
, IN YEAR
CE PROBAE | RS, AND A | NNUAL N | ON- | |-----------|---------|---------|---------------|---------------------------------|------------------------------|-------------------------|--------------------------|------------------|------------------|------------------------------------|-----------|------------|-----------| | MONTH | (CFS) | (CFS) | MEAN
(CFS) | (CFS) | ATION | RUNOFF | TIVE
DAYS) | 2
50 % | 5
20 % | 10
10 % | 20
5% | 50
2% | 100
1% | | OCTOBER | 65 | 330 | 133 |
55 | .41 | 3.9 | 1 | 60 | 41 | 32 | 25 | 18 | | | NOVEMBER | 66 | 535 | 217 | 1 <i>2</i> 6 | .58 | 6.4 | 3 | 59 | 43 | 36 | 31 | 25 | | | DECEMBER | 58 | 1334 | 440 | 325 | .74 | 12.9 | 7 | 60 | 45 | 39 | 34 | 2 9 | | | JANUARY | 64 | 1325 | 552 | 342 | .62 | 16.2 | 14 | 61 | 47 | 40 | 35 | 31 | | | FEBRUARY | 92 | 1121 | 512 | 274 | .54 | 15.0 | 30 | 63 | 48 | 42 | 37 | 32 | | | MARCH | 126 | 1362 | 535 | 311 | •58 | 15.7 | 60 | 66 | 51 | 45 | 40 | 35 | | | APRIL | 74 | 723 | 396 | 175 | .44 | 11.6 | 90 | 71 | 55 | 47 | 42 | 37 | | | MAY | 57 | 492 | 249 | 122 | -49 | 7.3 | 120 | 80 | 61 | 52 | 46 | 39 | | | JUNE | 44 | 450 | 145 | 85 | .59 | 4.3 | 183 | 99 | 74 | 64 | 57 | 50 | | | JULY | 37 | 148 | 85 | 30 | .35 | 2.5 | | | | | | | | | AUGUST | 43 | 121 | 71 | 22 | .31 | 2.1 | | | | | | | | | SEPTEMBER | 44 | 106 | 72 | 17 | .24 | 2.1 | | | | | | | | | ANNUAL | 80 | 501 | 283 | 115 | .41 | 100 | MAGNITUDE AND PROBABILITY OF INSTANTANEOUS PEAK FLOW BASED ON PERIOD OF RECORD 1946-82 MAGNITUDE AND PROBABILITY OF ANNUAL HIGH FLOW BASED ON PERIOD OF RECORD 1946-82 | | | | | | CE INTER | | PERIOD
(CON- | | INTERV | AL, ÎN Y | EARS, AN | TED RECUI
D ANNUAL
IN PERCEI | | |-------------|------------------|----------------------|-------------------|----------------------|------------------|-----------|------------------------|------------------|------------------|-----------|----------|------------------------------------|-----| | 1.25
80% | 2
50 % | 5
20 %
 | 10
10 % | 25
4 %
 | 50
2 % | 100
1% | SECU-
TIVE
DAYS) | 2
50 % | 5
20 % | 10
10% | 25
4% | 50
2% | 100 | | 1780 | 3150 | 5300 | 6830 | 8800 | 10300 | | | | | | | | | | | | | | | | | 1 | 2250 | 3890 | 4950 | 6200 | 7060 | | | WEIGHTED | SKEW = | 334 | | | | | 3 | 1770 | 2960 | 3660 | 4440 | 4930 | | | | | | | | | | 7 | 1360 | 2160 | 2610 | 3070 | 3350 | | | | | | | | | | 15 | 1000 | 1550 | 1850 | 2160 | 2350 | | | | | | | | | | 30 | 781 | 1190 | 1410 | 1660 | 1810 | | | | | | | | | | 60 | 634 | 962 | 1150 | 1340 | 1460 | | | | | | | | | | 90 | 584 | 878 | 1040 | 1200 | 1290 | | DURATION TABLE OF DAILY MEAN FLOW FOR PERIOD OF RECORD 1946-82 |
 | | DISCH | ARGE, IN | CFS, WH | IICH WAS | EQUALED | OR EXCEE | DED FOR | INDICATED | PERCENT | OF TIME | | | | |--------|-----|-------|----------|---------|----------|---------|----------|---------|-----------|---------|---------|-----|-----|-----| |
5% | 10% | 15% | 20% | 25% | 30% | 40% | 50% | 60% | 70% | 75% | 80% | 85% | 90% | 95% | | 867 | 632 | 510 | 427 | 359 | 296 | 207 | 158 | 123 | 93 | 83 | 75 | 67 | 59 | 49 | MAGNITUDE AND PROBABILITY OF ANNUAL LOW FLOW BASED ON PERIOD OF RECORD 1967-76 ### 14337600 ROGUE RIVER NEAR MCLEOD, OR LOCATION.--Lat 42°39'20", long 122°42'50", in SW½ sec.33, T.33 S., R.1 E., Jackson County, Hydrologic Unit 17100307, on left bank at Obstinate J Ranch, 1.3 mi downstream from Big Butte Creek, 1.6 mi southwest of McLeod, and at mile 154.0. DRAINAGE AREA .-- 938 mi2. PERIOD OF RECORD. -- October 1965 to September 1982. GAGE.--Water-stage recorder. Datum of gage is 1,489.08 ft National Geodetic Vertical Datum of 1929. REMARKS.--Flow regulated since February 1977 by Lost Creek Lake. Diversions for irrigation above station; most of low flow of Big Butte Creek is diverted near Butte Falls. AVERAGE DISCHARGE.--17 years, 2,100 ft³/s, 1,521,000 acre-ft/yr. MONTHLY AND ANNUAL MEAN DISCHARGES 1966-76 EXTREMES FOR PERIOD OF RECORD.—Maximum discharge, 30,000 ft³/s Mar. 3, 1972, gage height, 12.24 ft; minimum, 468 ft³/s Feb. 18, 1977, result of closure of Lost Creek Dam, minimum prior to that time, 604 ft³/s Sept. 5, 1968. EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1928, 20.35 ft Dec. 22, 1964, from floodmarks, discharge, 74,300 ft³/s from slope-area measurement of peak flow. ## STATISTICAL SUMMARIES | | MINIMUM | MAXIMUM | MEAN | STAN-
DARD
DEVIA-
TION | COEFFI-
CIENT OF
VARI- | PERCENT
OF
ANNUAL | PERIOD
(CON-
SECU- | DISC | INTERVA | L, IN YEA | R INDICAT
RS, AND A
BILITY, I | NNUAL NO | ON- | |-----------|-------------------|-----------------|----------|---------------------------------|------------------------------|-------------------------|--------------------------|----------|------------------|-------------------|---|-------------------|-------| | MONTH | (CFS) | (CFS) | (CFS) | (CFS) | ATION | RUNOFF | TIVE
DAYS) | 2
50% | 5
20 % | 10
10% | 20
5 % | 50
2% | 100 | | OCTOBER | 917 | 1508 | 1229 | 179 | .15 | 4.5 | 1 | 1030 | 893 | 830 | 781 | | | | NOVEMBER | 1038 | 3932 | 1848 | 836 | . 45 | 6.7 | 3 | 1040 | 903 | 838 | 788 | | | | ECEMBER | 1127 | 4293 | 2333 | 953 | .41 | 8.5 | 7 | 1060 | 914 | 847 | 795 | | | | ANUARY | 1434 | 5290 | 3429 | 1472 | .43 | 12.5 | 14 | 1080 | 930 | 859 | 805 | | | | EBRUARY | 1523 | 4586 | 2720 | 833 | .31 | 9.9 | 30 | 1100 | 943 | 874 | 822 | | | | ARCH | 1941 | 8565 | 3301 | 1926 | .58 | 12.0 | 60 | 1130 | 973 | 902 | 848 | | | | PRIL | 1603 | 4240 | 2861 | 884 | .31 | 10.4 | 90 | 1150 | 993 | 918 | 860 | | | | 1AY | 1574 | 4503 | 3270 | 946 | . 29 | 11.9 | 120 | 1180 | 1010 | 935 | 878 | | | | UNE | 1164 | 4025 | 2555 | 1037 | .41 | 9.3 | 183 | 1380 | 1160 | 1070 | 1000 | | | | ULY | 903 | 2196 | 1577 | 445 | . 28 | 5.7 | | | | | | | | | UGUST | 887 | 1618 | 1255 | 274 | •22 | 4.6 | | | | | | | | | EPTEMBER | 843 | 1473 | 1162 | 217 | • 19 | 4.2 | | | | | | | | | NNUAL | 1377 | 3340 | 2294 | 652 | •28 | 100 | | | | | | | | | OISCHARGE | BASE
, IN CFS, | D ON PERI | OD OF RE | CORD 196 | INTERVAL
IN PERCE | , IN
NT | PERIOD
(CON-
SECU- | BASE | HARGE, IN | RIOD OF R | OF ANNUAL
ECORD 19
R INDICAT
EARS, AND | 66-76
ED RECUR | RENCI | | 80% | 50 % | 20 %
 | 10% | 4%
 | 2 %
 | 100
1%
 | TIVE
DAYS) | 2
50% | 5
20 % | 10
10 % | 25
4% | 50
2% | 100 | | 7300 | 11700 | 19100 2 | 24900 | | | | 1 | 9450 | 16000 | 21600 | | | | | | D SKEW = | .171 | | | | | • | | | | | | | | WE KERLE | D SVEW ≖ | - 1 / 1 | | | | | 3 | 8060 | 13400 | 18200 | | | - | DURATION TABLE OF DAILY MEAN FLOW FOR PERIOD OF RECORD 1966-76 15 30 60 6670 5370 4370 3670 3360 10300 7760 5990 4900 4480 13300 9580 7190 5810 5280 |
 | | DISC | HARGE, I | N CFS, | WHICH WAS | EQUALED | OR EXCE | EDED FOR | INDICATE | D PERCEN | T OF TIM | 4E | | | |----------|------|------|----------|--------|-----------|---------|---------|----------|----------|----------|----------|-------------|------|-----| |
5% | 10% | 15% | 20% | 25% | 30% | 40% | 50% | 60% | 70% | 75% | 80% | 85 % | 90% | 95% | |
4760 | 4010 | 3520 | 3140 | 2850 | 2590 | 2160 | 1820 | 1570 | 1390 | 1320 | 1220 | 1120 | 1050 | 977 | ### 14338000 ELK CREEK NEAR TRAIL. OR LOCATION.--Lat 42°39'50", long 122°44'50", in SW\u00e4 sec.30, T.33 S., R.1 E., Jackson County, Hydrologic Unit 17100307, on right bank 3.3 mi northeast of Trail and at mile 0.4. DRAINAGE AREA .-- 133 mi2. PERIOD OF RECORD. --October 1945 to September 1982. Prior to March 1946 monthly discharge only, published in WSP 1318. GAGE.--Water-stage recorder. Datum of gage is 1,456.56 ft National Geodetic
Vertical Datum of 1929. Prior to July 5, 1946, nonrecording gage at various sites within 1.0 mi of present site at different datums. July 5, 1946, to June 22, 1950, nonrecording gage, and June 23, 1950, to May 23, 1954, water-stage recorder, at site 0.3 mi upstream at datum 12.14 ft higher. REMARKS. -- No regulation. Diversions for Irrigation above station. AVERAGE DISCHARGE. -- 37 years, 230 ft3/s, 166,600 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 19,200 ft³/s Dec. 22, 1964, gage height, 18.84 ft, from rating curve extended above 4,700 ft³/s on basis of slope-area measurement of peak flow; minimum, 0.40 ft³/s Aug. 16, 1965. ### STATISTICAL SUMMARIES MONTHLY AND ANNUAL MEAN DISCHARGES 1947-82 MAGNITUDE AND PROBABILITY OF ANNUAL LOW FLOW BASED ON PERIOD OF RECORD 1948-82 | | | | M54 | STAN-
DARD
DEVIA- | CIENT OF | PERCENT | PERIOD
(CON- | 11 | NTERVAL,
KCEEDANCI | CFS, FOR
IN YEARS
E PROBABI | , AND AN
LITY, IN | INUAL NO | N- | |----------|------------------|------------------|---------------|-------------------------|----------------|------------------|------------------------|-----------|-----------------------|-----------------------------------|----------------------|----------|-----| | MONTH | MINIMUM
(CFS) | MAXIMUM
(CFS) | MEAN
(CFS) | TION
(CFS) | VARI-
ATION | ANNUAL
RUNOFF | SECU-
TIVE
DAYS) | 2
50% | 5
20 % | 10
10% | 20
5% | 50
2% | 100 | | OCTOBER | 3.2 | 404 | 38 | 69 | 1.83 | 1.4 | 1 | 2.4 | 1.5 | 1.2 | 1.0 | .9 | | | NOVEMBER | 9.1 | 1008 | 193 | 196 | 1.02 | 7.0 | 3 | 2.7 | 1.7 | 1.4 | 1.1 | .9 | | | DECEMBER | 13 | 1851 | 457 | 408 | •89 | 16.5 | 7 | 2.9 | 1.9 | 1.5 | 1.3 | 1.0 | | | JANUARY | 20 | 1283 | 567 | 391 | •69 | 20.5 | 14 | 3.3 | 2.1 | 1.7 | 1.4 | 1.1 | | | EBRUARY | 23 | 1131 | 519 | 255 | .49 | 18.8 | 30 | 3.9 | 2.5 | 2.0 | 1.7 | 1.4 | | | ARCH | 121 | 1074 | 439 | 248 | . 56 | 15.9 | 60 | 5.1 | 3.4 | 2.8 | 2.3 | 1.9 | | | PRIL | 66 | 565 | 297 | 125 | .42 | 10.7 | 90 | 6.4 | 4.6 | 4.0 | 3.5 | 3.1 | | | ΙΑΥ | 38 | 358 | 169 | 91 | .54 | 6.1 | 120 | 9.2 | 6.8 | 5.9 | 5.2 | 4.6 | | | UNE | 15 | 254 | 57 | 43 | •75 | 2.1 | 183 | 25 | 17 | 14 | 12 | 11 | | | ULY | 3.7 | 36 | 15 | 7.7 | .53 | •5 | | | | | | | | | UGUST | 1.4 | 25 | 6.7 | 4.6 | .68 | .2 | | | | | | | | | EPTEMBER | 1.5 | 25 | 7.1 | 4.2 | .60 | • 3 | | | | | | | | | NNUAL | 42 | 438 | 229 | 92 | .40 | 100 | | | | | | | | | MAGNI | | PROBABILI | | | | -LDW | MAG | NITUDE AI | | BILITY OF | | | OW | | DISCHARGE,
YEARS, A | | | | | CE INTER | | PERIOD
(CON- | | INTERV | /AL, ÍN Y | EARS, AN | TED RECUI
ID ANNUAL
IN PERCEI | | |------------------------|--------------|----------|-----------|----------|------------------|-----------|------------------------|----------|------------------|-----------|----------|-------------------------------------|-----| | 1.25
80% | 2
50%
 | 5
20% | 10
10% | 25
4% | 50
2 % | 100
1% | SECU-
TIVE
DAYS) | 2
50% | 5
20 % | 10
10% | 25
4% | 50
2 % | 100 | | 3240 | 5200 | 8350 | 10700 | 13900 | 16500 | | = | | | | | | | | | | | | | | | 1 | 3880 | 60 60 | 7160 | 8210 | 8780 | | | WE IGHTED | SKEW = | 003 | | | | | 3 | 2630 | 4240 | 5180 | 6200 | 6850 | | | | | | | | | | 7 | 1720 | 2710 | 3290 | 3940 | 4370 | | | | | | | | | | 15 | 1180 | 1730 | 2020 | 2310 | 2480 | | | | | | | | | | 30 | 883 | 1270 | 1480 | 1690 | 1810 | | | | | | | | | | 60 | 692 | 978 | 1120 | 1260 | 1350 | | | | | | | | | | 90 | 601 | 836 | 955 | 1070 | 1140 | | DURATION TABLE OF DAILY MEAN FLOW FOR PERIOD OF RECORD 1947-82 | | | DISC | HARGE, | IN CFS, | WHICH WAS | EQUALED | OR EXCE | EDED FOR | INDICAT | D PERCE | NT OF TIM | IE | | | |-----|-----|------|--------|---------|-----------|---------|---------|----------|---------|---------|-----------|-----|-----|-----| | 5% | 10% | 15% | 20% | 25% | 30% | 40% | 50% | 60% | 70% | 75% | 80% | 85% | 90% | 95% | | 910 | 581 | 432 | 340 | 270 | 215 | 132 | 70 | 34 | 17 | 13 | 9.4 | 6.8 | 5.0 | 3.5 | ## 14339000 ROGUE RIVER AT DODGE BRIDGE, NEAR EAGLE POINT, OR LOCATION.--Lat 42°31'30", long 122°50'30", in SEt sec.17, T.35 S., R.1 W., Jackson County, Hydrologic Unit 17100307, on right bank 50 ft upstream from Dodge Bridge, 0.7 mi downstream from Reese Creek, 4.3 mi northwest of Eagle Point, and at mile 138.61. DRAINAGE AREA .-- 1,215 mi2. 5920 4700 4120 3710 3360 3050 2500 2010 1660 1430 1350 1090 PERIOD OF RECORD. -- October 1938 to September 1982. GAGE.--Water-stage recorder. Datum of gage is 1,271.39 ft National Geodetic Vertical Datum of 1929. Prior to Dec. 21, 1938, nonrecording gage, Dec. 21, 1938, to Aug. 15, 1968, water-stage recorder, at datum 2.27 ft higher, Aug. 16, 1968, to Sept. 30, 1976, water-stage recorder, at datum 1.00 ft higher. REMARKS.--Flow regulated since February 1977 by Lost Creek Lake. Diversions for irrigation above station; most of low flow of Big Butte Creek is diverted near Butte Falls. AVERAGE DISCHARGE.--44 years, 2,597 ft³/s, 1,882,000 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 87,600 ft³/s Dec. 22, 1964, gage height, 12.78 ft, datum then in use, from rating curve extended above 23,000 ft³/s; minimum, 567 ft³/s Feb. 18, 1977, result of closure of Lost Creek dam, minimum prior to that time 611 ft³/s Aug. 6, 14, 29, Sept. 9, 1940. | | | | | | | | | | | | OF AMAIL | | OW | |--|--|---|---|--|--|------------------------|--|---|--|--|--|--|------------| | М | ONTHLY AN | ND ANNUAL | MEAN DIS | SCHARGES | 1939-76 | | MA | | | BABILITY
RIOD OF | RECORD | | | | | MINIMUM | MAXIMUM | MEAN | STAN-
DARD
DEVIA-
TION | COEFFI-
CIENT OF
VARI- | | PERIOD
(CON-
SECU- | DISC | INTERVA | , IN YE | ARS, AND | ATED RECU
ANNUAL N
IN PERCE | ON- | | MONTH | (CFS) | (CFS) | (CFS) | (CFS) | ATION | RUNOFF | TIVE
DAYS) | 2
50% | 5
20 % | 10
10% | 20
5 % | 50
2 % | 100
19 | | OCTOBER | 934 | 3099 | 1354 | 399 | .29 | 4.2 | 1 | 1070 | 937 | 875 | 827 | . 777 | | | NOVEMBER | 1012 | 5719 | 2151 | 1007 | .47 | 6.7 | 3 | 1080 | 949 | 886 | 838 | 787 | | | DECEMBER | 1164 | 11290 | 3479 | 2228 | .64 | 10.8 | 7 | 1090 | 957 | 894 | 845 | 793 | _ | | JANUARY | 1489 | 8151 | 4021 | 2124 | .53 | 12.5 | 14 | 1100 | 968 | 905 | 856 | 805 | _ | | EBRUARY | 1798 | 8382 | 3922 | 1383 | .35 | 12.2 | 30 | 1120 | 983 | 919 | 869 | 818 | _ | | MARCH | 1784 | 9610 | 3676 | 1523 | .41 | 11.4 | 60 | 1150 | 1010 | 945 | 896 | 844 | - | | APRIL | 1689 | 5220 | 3476 | 833 | .24 | 10.8 | 90 | 1190 | 1040 | 969 | 916 | 860 | | | YAN | 1595 | 5287 | 3484 | 921 | .26 | 10.8 | 120 | 1230 | 1070 | 1000 | 943 | 885 | | | JUNE | 1201 | 4534 | 2629 | 881 | .34 | 8.2 | 183 | 1490 | 1260 | 1150 | 1080 | 1000 | - | | JULY | 928 | 2431 | 1557 | 382 | .25 | 4.8 | | | | | | | | | AUGUST | 888 | 1711 | 1254 | 244 | .19 | 3.9 | | | | | | | | | SEPTEMBER | 853 | 1535 | 1177 | 189 | .16 | 3.7 | | | | | | | | | SEF TEMBER | 0)) | | | | | | | | | | | | | | ANNUAL | 1568
TUDE AND | | | | .26

EOUS PEAK | 100

FLOW |
MA | | | | |
AL HIGH FI
1939-76 | LDW | | MAGNIT
MAGNIT
DISCHARGE,
YEARS, A | 1568 TUDE AND BASE , IN CFS, | PROBABILI
D ON PERI
FOR INDI | TY OF
IN
OD OF RE
CATED RE
INCE PROB | ISTANTANE
CORD 193
CURRENCE | EOUS PEAK
19-76
E INTERVAL
IN PERCE | FLOW
, IN
NT | PERIOD
(CON- | BASE | HARGE, IN | RIOD OF F | RECORD OR INDICATE YEARS, AN | | RRENCI | | MAGNIT
DISCHARGE,
YEARS, A | 1568 TUDE AND BASE , IN CFS, | PROBABILI
D ON PERI
FOR INDI
L EXCEEDA | TY OF IN
OD OF RE
CATED RE | ISTANTANE
CORD 193
CURRENCE
ABILITY, | EOUS PEAK
59-76
E INTERVAL
IN PERCE | FLOW , IN NT 100 | PERIOD
(CON-
SECU- | BASE
DISCE | ARGE, INTERN | N CFS, FO | RECORD OR INDICATE | 1939-76
ATED RECUI
ND ANNUAL
IN PERCEI | RRENCI | | MAGNIT | 1568 TUDE AND BASE , IN CFS, | PROBABILI
D ON PERI
FOR INDI | TY OF IN
OD OF RE
CATED RE
INCE PROB | ISTANTANE
CORD 193
CURRENCE | EOUS PEAK
19-76
E INTERVAL
IN PERCE | FLOW
, IN
NT | PERIOD
(CON- | BASE | HARGE, IN | RIOD OF F | RECORD OR INDICATE YEARS, AN | 1939-76

ATED RECUIND ANNUAL | RRENC | | MAGNIT | TUDE AND
BASE
, IN CFS,
AND ANNUA
2
50% | PROBABILI
D ON PERI
FOR INDI
L EXCEEDA
5
20% | TY OF IN
OD OF RE
CATED RE
INCE PROB | ISTANTANE
CORD 193
CURRENCE
ABILITY, | EOUS PEAK
59-76
E INTERVAL
IN PERCE | FLOW , IN NT 100 | PERIOD
(CON-
SECU-
TIVE | DISCH | HARGE, IN
INTERN
EXCEEDAN | RIOD OF F
N CFS, FC
/AL, IN N
NCE PROB/ | RECORD OR INDICA YEARS, AN ABILITY, 25 | 1939-76 ATED RECUIND ANNUAL IN PERCEI | RRENC | | MAGNITUSCHARGE, YEARS, A | 1568 TUDE AND BASE , IN CFS, AND ANNUA 2 50% | PROBABILI
D ON PERI
FOR INDI
L EXCEEDA
5
20% | TY OF IN
OD OF RE
CATED RE
INCE PROB | ISTANTANE
CORD 193
CURRENCE
ABILITY, | EOUS PEAK
19-76
E INTERVAL
IN PERCE
50
2% | FLOW , IN NT 100 | PERIOD
(CON-
SECU-
TIVE
DAYS) | DISCH | HARGE, IN
INTERN
EXCEEDAN
5
20% | RIOD OF F
N CFS, F(
NAL, IN N
NCE PROB/
10% | OR INDICATE ARS, AN ABILITY, | 1939-76 ATED RECUI ND ANNUAL IN PERCEI 50 2% | RRENC | | MAGNITUSCHARGE, YEARS, A | TUDE AND
BASE
, IN CFS,
AND ANNUA
2
50% | PROBABILI
D ON PERI
FOR INDI
L EXCEEDA
5
20% | TY OF IN
OD OF RE
CATED RE
INCE PROB | ISTANTANE
CORD 193
CURRENCE
ABILITY, | EOUS PEAK
19-76
E INTERVAL
IN PERCE
50
2% | FLOW , IN NT 100 | PERIOD
(CON-
SECU-
TIVE
DAYS) | DISCH | HARGE, IN
INTERV
EXCEEDAN
5
20% | N CFS, FC
VAL, IN N
NCE PROBA | RECORD OR INDIC/ YEARS, AN ABILITY, 25 4% | ATED RECUI
ND ANNUAL
IN PERCEI
50
2% | RRENC | | MAGNITONISCHARGE, YEARS, A | 1568 TUDE AND BASE , IN CFS, AND ANNUA 2 50% | PROBABILI
D ON PERI
FOR INDI
L EXCEEDA
5
20% | TY OF IN
OD OF RE
CATED RE
INCE PROB | ISTANTANE
CORD 193
CURRENCE
ABILITY, | EOUS PEAK
19-76
E INTERVAL
IN PERCE
50
2% | FLOW , IN NT 100 | PERIOD (CON- SECU- TIVE DAYS) 1 3 7 | DISCH
2
50%
16000
12400
9050 | HARGE, IN
INTERV
EXCEEDAN
5
20%
26700
20400
14200 | 10 OF F | RECORD OR INDIC/ YEARS, AN ABILITY, 25 4% 47500 36300 24200 | 1939-76 ATED RECUIND ANNUAL IN PERCEI 50 2% 57900 44400 29300 | RRENC | | MAGNITUSCHARGE, YEARS, A | 1568 TUDE AND BASE , IN CFS, AND ANNUA 2 50% | PROBABILI
D ON PERI
FOR INDI
L EXCEEDA
5
20% | TY OF IN
OD OF RE
CATED RE
INCE PROB | ISTANTANE
CORD 193
CURRENCE
ABILITY, | EOUS PEAK
19-76
E INTERVAL
IN PERCE
50
2% | FLOW , IN NT 100 | PERIOD (CON-
SECU-
TIVE DAYS) | DISCH | HARGE, IN
INTERN
EXCEEDAN
5
20% | 10 OF F | RECORD OR INDIC/ YEARS, AN ABILITY, 25 4% 47500 36300 | 1939-76 ATED RECUI ND ANNUAL IN PERCEI 50 2% 57900 44400 | RRENC | | MAGNITUSCHARGE, YEARS, A | 1568 TUDE AND BASE , IN CFS, AND ANNUA 2 50% | PROBABILI
D ON PERI
FOR INDI
L EXCEEDA
5
20% | TY OF IN
OD OF RE
CATED RE
INCE PROB | ISTANTANE
CORD 193
CURRENCE
ABILITY, | EOUS PEAK
19-76
E INTERVAL
IN PERCE
50
2% | FLOW , IN NT 100 | PERIOD (CON-
SECU-
TIVE DAYS) 1 3 7 15 30 | DISCH
2
50%
16000
12400
9050
6820
5470 | ARGE, IN INTER EXCEEDAN 5 20% 26700 204200 14200 7580 | 10 10%
35200 26800 18300 9150 | RECORD OR INDIC/ (EARS, AI BILITY, 25 47500 36300 24200 15700 11300 | 1939-76 ATED RECUIND ANNUAL IN PERCEITS 50 2% 57900 44400 29300 18400 13100 | RRENC | | MAGNITUSCHARGE, YEARS, A | 1568 TUDE AND BASE , IN CFS, AND ANNUA 2 50% | PROBABILI
D ON PERI
FOR INDI
L EXCEEDA
5
20% | TY OF IN
OD OF RE
CATED RE
INCE PROB | ISTANTANE
CORD 193
CURRENCE
ABILITY, | EOUS PEAK
19-76
E INTERVAL
IN PERCE
50
2% | FLOW , IN NT 100 | PERIOD (CON-
SECU-
TIVE DAYS) | DISCH
2
50%
16000
12400
9050
6820 | HARGE, IN INTERVEXCEEDAN 5 20% 26700 20400 14200 10000 | 10 OF F | AF500 36300 24200 15700 | 1939-76 ATED RECUIND ANNUAL IN PERCEI 50 2\$ 57900 44400 29300 18400 | 100
11: | | MAGNITO | 1568 TUDE AND BASE , IN CFS, AND ANNUA 2 50% | PROBABILI
D ON PERI
FOR INDI
L EXCEEDA
5
20% | TY OF IN
OD OF RE
CATED RE
INCE PROB | ISTANTANE
CORD 193
CURRENCE
ABILITY, | EOUS PEAK
19-76
E INTERVAL
IN PERCE
50
2% | FLOW , IN NT 100 | PERIOD (CON-
SECU-
TIVE DAYS) 1 3 7 15 30 | DISCH
2
50%
16000
12400
9050
6820
5470 | ARGE, IN INTER EXCEEDAN 5 20% 26700 204200 14200 7580 | 10 10%
35200 26800 18300 9150 | RECORD OR INDIC/ (EARS, AI BILITY, 25 47500 36300 24200 15700 11300 | 1939-76 ATED RECUIND ANNUAL IN PERCEITS 50 2% 57900 44400 29300 18400 13100 | RRENCI | | MAGNITUSCHARGE, YEARS, A | 1568 TUDE AND BASE , IN CFS, AND ANNUA 2 50% | PROBABILI
D ON PERI
FOR INDI
L EXCEEDA
5
20% | TY OF IN OD OF RE | ISTANTANE
CORD 193
CURRENCE
IABILITY,
25
4% | EOUS PEAK
19-76 E INTERVAL
IN PERCE 50 2% | FLOW , IN NT 100 1% | PERIOD (CON-
SECU-
TIVE DAYS) | DISCH
2
50%
16000
12400
9050
6820
5470
4620
4270 | ARGE, INTERNEXCEEDAN 26700 20400 14200 10000 7580 6180 5600 | 35200
26800
112400
9150
7310
6500 | 25 4% 47500 36300 24200 11300 8850 | 1939-76 ATED RECUIND ANNUAL IN PERCEI 50 2% 57900 44400 29300 18400 13100 10100 | 100
11: | | MAGNITUSCHARGE, YEARS, A | 1568 TUDE AND BASE , IN CFS, AND ANNUA 2 50% | PROBABILID ON PERI FOR INDI LEXCEEDA 5 20% 35300 4 | TY OF IN OD OF RE CATED RE NCE PROB | ISTANTANE CORD 193 CURRENCE ABILITY, 25 4% 4900 8 | EOUS PEAK
19-76 E INTERVAL
IN PERCE 50 2% 60300 | FLOW , IN NT 100 1% | PERIOD (CON-
SECU-
TIVE DAYS) | DISCH 2 50% 16000 12400 9050 6820 5470 4620 4270 OF RECC | ARGE, IN INTERN EXCEEDAN 20400 14200 10000 7580 6180 1939- | 35200
26800
10%
35200
26800
12400
9150
7310
6500 | 25 47500 36300 15700 11300 8850 7680 | 1939-76 ATED RECUIND ANNUAL IN PERCEI 50 2% 57900 44400 29300 18400 13100 10100 | 100
11; | # 14339500 SOUTH FORK LITTLE BUTTE CREEK AT BIG ELK RANGER STATION, OR LOCATION.--Lat 42°20'40", long 122°21'30", in NW½ sec.21, T.37 S., R.4 E., Jackson County, Hydrologic Unit 17100307, 1.0 mi south of Big Elk ranger station, 2.5 mi upstream from Big Draw Creek, and 15 mi southeast of Lake Creek Post Office. DRAINAGE AREA .-- About 17 mi2. PERIOD OF RECORD.--October 1926 to September 1950. GAGE.--Water-stage recorder. Altitude of gage is 4,660 ft, by barometer. Prior to Oct. 28, 1942, water-stage recorder 600 ft downstream at same datum. REMARKS.--No diversion or regulation above station. COOPERATION.---Records for 1932-50, furnished by the Oregon Water Resources Department. AVERAGE DISCHARGE.--24 years, 17.9 ft³/s, 12,970 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.—Maximum discharge recorded, 145 ft³/s May 25, 1942, gage height, 2.80 ft, from rating curve extended above 25 ft³/s; minimum recorded, 4 ft³/s July 8-15, 1931. | | | | | | | | | | ON PERI | | | | | |-----------------------|-------------------|------------------------|--|---------------------------------|------------------------------|---------------------|-------------------------------------|--|---|---|--|---------------------------------|-----------| | | MINIMUM | MAXIMUM | MEAN | STAN-
DARD
DEVIA-
TION | COEFFI-
CIENT OF
VARI- | | PERIOD
(CON-
SECU- | - 1 | NTERVAL, | CFS, FOR
IN YEARS
E PROBAB | S, AND A | NNUAL NO | N- | | MONTH | (CFS) | (CFS) | (CFS) | (CFS) | ATION | RUNOFF | TIVE
DAYS) | 2
50% | 5
20% | 10
10% | 20
5% | 50
2% | 100
1% | | OCTOBER | 5.9 | 13 | 9.7 | 1.8 | .18 | 4.6 | 1 | 7.4 | 5.8 | 5.0 | 4.4 | | | | NOVEMBER | 6.2 | 14 | 9.9 | 2.1 | .21 | 4.6 | 3 | 7.5 | 5.8 | 5.1 | 4.5 | | | | DECEMBER | 6.3 | 16 | 10 | 2.6 | . 25 | 4.7 | 7 | 7.6 | 6.0 | 5.2 | 4.6 | | | | JANUARY | 6.0 | 17 | 9.8 | 2.9 | .30 | 4.6 | 14 | 7.7 | 6.1 | 5.4 | 4.9 | | | | FEBRUARY | 6.0 | 21 | 11 | 3.3 | •30 | 5.1 | 30 | 8.0 | 6.5 | 5.8 | 5.2 | | | | MARCH | 7.6 | 34 | 15 | 6.2 | .41 | 7.1 | 60 | 8.5 | 6.9 | 6.2 | 5.6 | | | | APRIL | 11 | 63 | 31 | 14 | .44 | 14.5 | 90 | 8.8 | 7.2 | 6.4 | 5.8 | | | | MAY | 8.1 | 88 | 53 | 25 | . 47 | 24.8 | 120 | 9.2 | 7.4 | 6.5 | 5.8 | | | | JUNE | 5.3 | 78 | 28 | 17 | .61 | 13.1 | 183 | 9.7 | 8.0 | 7.2 | 6.5 | | | | JULY | 4.7 | 21 | 14 | 4.2 | .30 | 6.6 | | | | | | | | | AUGUST | 5.5 | 17 | 12 | 3.0 | . 26 | 5.5 | | | | | | | | | SEPTEMBER | 5.0 | 15 | 11 | 2.4 | .22 | 5.0 | | | | | | | | | | | | | _ | | | | | | | | | | | ANNUAL | 6.6 | 26 | 18 | 5.0 | .28 | 100 | | | | | | | | | YEARS, | | FOR INDIC | CATED RE | LIDDENCE | | | | | | | | | | | 1.25 | | | | ABILITY, | IN PERCE | NT |
PERIOD
(CON- | | INTERVA | CFS, FOR
L, IN YEA | ARS, AND | ANNUAL | | | 80% | 2
50% | 5
20% | 10
10% | | IN PERCE | | | | INTERVA | L, IN YE | ARS, AND | ANNUAL | | | | | 5 | 10 | ABILITY,
25 | IN PERCE
50 | NT

100 | (CON-
SECU-
TIVE | E | I NTERVA
XCEEDANC | L, IN YEA
E PROBABI | ARS, AND
ILITY, IN
25 | ANNUAL
N PERCEN
50 | T
100 | | 80% | 50% | 5
20% | 10
10% | 25
4% | IN PERCE
50 | NT

100 | (CON-
SECU-
TIVE | E | I NTERVA
XCEEDANC | L, IN YEA
E PROBABI | ARS, AND
ILITY, IN
25 | ANNUAL
N PERCEN
50 | 100 | | 80 %
70 | 50% | 5
20%
124 | 10
10% | 25
4% | IN PERCE
50 | NT

100 | (CON-
SECU-
TIVE
DAYS) | 2
50% | I NTERVA
XCEEDANC
5
20% | L, IN YE/
E PROBABI
10
10% | ARS, AND
ILITY, IN
25
4% | ANNUAL
N PERCEN
50
2% | 100 | | 80 %
70 | 50 %
95 | 5
20%
124 | 10
10% | 25
4% | IN PERCE
50 | NT

100 | (CON-
SECU-
TIVE
DAYS) | 2
50%
80 | INTERVA
XCEEDANC
5
20% | L, IN YE/
E PROBABI
10
10% | ARS, AND
ILITY, IN
25
4% | ANNUAL
N PERCEN
50
2% | T
100 | | 80 %
70 | 50 %
95 | 5
20%
124 | 10
10% | 25
4% | IN PERCE
50 | NT

100 | (CON-
SECU-
TIVE
DAYS) | 2
50%
80
77 | INTERVA
XCEEDANCI
5
20%
116
113 | 10
10%
131
127 | ARS, AND ILITY, IN 25 4% 144 139 | ANNUAL
N PERCEN
50
2% | 100
1% | | 80 %
70 | 50 %
95 | 5
20%
124 | 10
10% | 25
4% | IN PERCE
50 | NT

100 | (CON-
SECU-
TIVE
DAYS)
 | 2
50%
80
77
75 | 1 NTERVA
XCEEDANCI
5
20%
116
113
107 | 10
10%
131
127 | ARS, AND
ILITY, IN
25
4%
 | ANNUAL
N PERCEN
50
2% | 100 | | 80%
70 | 50 %
95 | 5
20%
124 | 10
10% | 25
4% | IN PERCE
50 | NT

100 | (CON-
SECU-
TIVE
DAYS)
 | 2
50%
80
77
75
71
63 | 1 NTERVA
XCEEDANCI 5 20% 116 113 107 101 89 | 10
10%
131
127
120
112
99 | ARS, AND
ILITY, IN
25
4%
139
130
121
107 | ANNUAL
N PERCEN
50
2% | 100 | | 80 %
70 | 50 %
95 | 5
20%
124 | 10
10% | 25
4% | IN PERCE
50 | NT

100 | (CON-
SECU-
TIVE
DAYS)
 | 2
50%
80
77
75
71 | 1 NTERVA
XCEEDANCI
5
20%
116
113
107
101 | 10
10
10%
131
127
120
112 | ARS, AND
ILITY, IN
25
4%
144
139
130
121 | ANNUAL
N PERCEN
50
2% | 100
1% | | 80 %
70 | 50 %
95 | 5
20%
124 | 10
10% | 25
4%
160 | 1N PERCE
50
2% | NT100 | (CON-
SECU-
TIVE
DAYS)
 | 2
50%
80
77
75
71
63
49 | 1 NTERVA
XCEEDANCI
5
20%
 | 131
127
120
112
99
74
59 | 144
139
130
121
107
79 | ANNUAL
N PERCEN
50
2% | 100 | | 80 %
70 | 50 %
95 | 5
20%
124
418 | 10 10 10 10 10 10 10 10 10 10 10 10 10 1 | 25
4%
160 | IN PERCE
50
2% | NT100 | (CON-
SECU-
TIVE
DAYS)
 | 2
50%
80
77
75
71
63
49
40
0F RECOR | 1NTERVA
XCEEDANC
5
20%
116
113
107
101
89
68
53 | 10
10
10%
127
120
112
99
74
59 | 144
139
130
121
107
79
62 | ANNUAL
N PERCEN
50
2% | 100 | | 80 %
70 | 50 %
95 | 5
20%
124
418 | 10 10 10 10 10 10 10 10 10 10 10 10 10 1 | 25
4%
160 | IN PERCE 50 2% OF DAILY | NT
100
1%
 | (CON-
SECU-
TIVE
DAYS)
 | 2
50%
80
77
75
71
63
49
40
0F RECOR | 1NTERVA
XCEEDANC
5
20%
116
113
107
101
89
68
53 | 10
10
10%
127
120
112
99
74
59 | 144
139
130
121
107
79
62 | ANNUAL
N PERCEN
50
2% | 100
1% | | 80%
70
WEIGHTEI | 95
O SKEW = | 5
20%
124
418 | 10 10 10 10 10 10 10 10 10 10 10 10 10 1 | ABILITY, 25 4% 160 N TABLE (| IN PERCE 50 2% OF DAILY | NT 100 1% | (CON-
SECU-
TIVE
DAYS)
 | 2
50%
80
77
75
71
63
49
40
0F RECOR | 1NTERVA
XCEEDANC
5
20%
 | 131
127
120
110
127
120
112
99
74
59 | ARS, AND
ILITY, IN
25
4%
144
139
130
121
107
79
62 | ANNUAL
N PERCEN'
50
2% | 100 | #### 14341500 SOUTH FORK LITTLE BUTTE CREEK NEAR LAKECREEK. OR LOCATION.--Lat 42°24'30", long 122°36'00", in SEt sec.29, T.36 S., R.2 E., Jackson County, Hydrologic Unit 17100307, on left bank 0.5 mi upstream from intake of Rogue River Valley Canal, 1.4 mi southeast of Lakecreek, and at mile 18.1. DRAINAGE AREA .-- 138 mi2. PERIOD OF RECORD. -- April 1921 to September 1932. GAGE.--Water-stage recorder. Altitude of gage is 1,725 ft, by barometer. Supplementary nonrecording gage at site 25 ft upstream used Jan. 12 to Sept. 6, 1965. Apr. 15 to June 17, 1921, nonrecording gage, and June 18, 1921, to Sept. 6, 1965, water-stage recorder at site 75 ft upstream at datum 4.97 ft higher. REMARKS.--No regulation. Diversions for irrigation above station; also, in December 1958 Dead Indian collection canal began diverting above station from Code Creek and Dead Indian Creek and in December 1959 South Fork Little Butte collection canal began diverting above station from South Fork Little Butte Creek, Daley Creek, and Beaver Dam Creek. These are transbasin diversions to Howard Prairie Reservoir in Klamath River basin, but eventually this water is diverted back to Rogue River basin for irrigation of lands in the Ashland-Madford area and power development enroute. AVERAGE DISCHARGE.--61 years (water years 1922-82), 104 ft3/s, 75,350 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 7,660 ft 3 /s Dec. 2, 1962, gage height, 8.35 ft, site and datum then in use; minimum, 2.0 ft 3 /s Aug. 10, 1931. # STATISTICAL SUMMARIES (BEFORE THE CONSTRUCTION OF THE TWO COLLECTION CANALS) MONTHLY AND ANNUAL MEAN DISCHARGES 1922-57 MAGNITUDE AND PROBABILITY OF ANNUAL LOW FLOW BASED ON PERIOD OF RECORD 1923-57 | | MINIMUM | MANIMIN | MEAN | STAN-
DARD
DEVIA- | COEFFI-
CIENT OF | PERCENT
OF | PERIOD
(CON-
SECU- | | ARGE, IN O
INTERVAL,
EXCEEDANCI | IN YEARS | , AND AN | INUAL NO | N- | |-----------|------------------|------------------|---------------|-------------------------|---------------------|------------------|--------------------------|------------------|---------------------------------------|-----------|------------|----------|-----------| | монтн | MINIMUM
(CFS) | MAXIMUM
(CFS) | MEAN
(CFS) | TION
(CFS) | VARI-
ATION | ANNUAL
RUNOFF | TIVE
DAYS) | 2
50 % | 5
20 % | 10
10% | 20
5% - | 50
2% | 100
1% | | OCTOBER | 14 | 85 |
25 | 15 | •59 | 1.9 | 1 | 13 | 9.0 | 6.9 | 5.4 | 4.0 | | | NOVEMBER | 14 | 177 | 54 | 41 | .77 | 4.1 | 3 | 14 | 9.5 | 7.3 | 5.7 | 4.1 | | | DECEMBER | 19 | 405 | 117 | 111 | .95 | 9.0 | 7 | 15 | 10.0 | 7.7 | 5.9 | 4.3 | | | JANUARY | 19 | 380 | 127 | 99 | •78 | 9.8 | 14 | 15 | 11 | 8.3 | 6.5 | 4.8 | | | FEBRUARY | 27 | 345 | 157 | 95 | .61 | 12.1 | 30 | 16 | 11 | 8.8 | 6.9 | 5.1 | | | MARCH | 51 | 479 | 180 | 99 | .55 | 13.9 | 60 | 17 | 12 | 9.5 | 7.6 | 5.7 | | | APRIL | 47 | 509 | 256 | 110 | .43 | 19.7 | 90 | 18 | 13 | 11 | 8.7 | 6.8 | | | MAY | 18 | 434 | 228 | 132 | . 58 | 17.6 | 120 | 19 | 14 | 12 | 9.8 | 7.8 | | | JUNE | 9.7 | 292 | 95 | 67 | .71 | 7.3 | 183 | 27 | 18 | 15 | 12 | 10 | | | JULY | 4.8 | 50 | 26 | 11 | .42 | 2.0 | | | | | | | | | AUGUST | 4.7 | 28 | 17 | 5.5 | .33 | 1.3 | | | | | | | | | SEPTEMBER | 8.5 | 26 | 17 | 4.4 | • 25 | 1.3 | | | | | | | | | ANNUAL | 21 | 181 | 108 | 44 | .41 | 100 | | | | | | | | ## MAGNITUDE AND PROBABILITY OF INSTANTANEOUS PEAK FLOW BASED ON PERIOD OF RECORD 1922-82 MAGNITUDE AND PROBABILITY OF ANNUAL HIGH FLOW BASED ON PERIOD OF RECORD 1922-57 | | | | | RECURREN
ROBABILIT | | | PERIOD
(CON- | | INTERV | AL, IN Y | EARS, AN | TED RECUID ANNUAL | | |---------------------|--------------|----------------------|-----------|-----------------------|------------------|-------------------|------------------------|----------|------------------|-----------|----------|-------------------|-----------| | 1.25
80 % | 2
50%
 | 5
20 %
 | 10
10% | 25
4% | 50
2 % | 100
1 % | SECU-
TIVE
DAYS) | 2
50% | 5
20 % | 10
10% | 25
4% | 50
2 % | 100
1% | | 545 | 1120 | 2250 | 3200 | 4610 | 5820 | 7140 | | | | | | | ***** | | | | | | | | | 1 | 760 | 1310 | 1690 | 2170 | 2520 | | | VE I GHTED | SKEW = | .073 | | | | | 3 | 615 | 995 | 1230 | 1500 | 1670 | | | | | | | | | | 7 | 497 | 747 | 878 | 1010 | 1080 | | | | | | | | | | 15 | 416 | 581 | 651 | 711 | 739 | | | | | | | | | | 30 | 351 | 477 | 527 | 566 | 583 | | | | | | | | | | 60 | 292 | 403 | 448 | 484 | 500 | | | | | | | | | | 90 | 255 | 347 | 384 | 413 | 426 | | DURATION TABLE OF DAILY MEAN FLOW FOR PERIOD OF RECORD 1922-57 | | | | DISCHA | RGE, IN | CFS, | WHICH WAS | EQUALED | OR EXCEE | DED FOR | INDICATED | PERCENT | OF TIME | | | | |----|----|-----|--------|---------|------|-----------|---------|-------------|---------|-----------|---------|---------|-----|-----|-----| | | 5% | 10% | 15% | 20% | 25% | 30% | 40% | 50 % | 60% | 70% | 75% | 80% | 85% | 90% | 95% | | 38 | 35 | 294 | 231 | 186 | 152 | 120 | 74 | 44 | 30 | 23 | 21 | 19 | 18 | 16 | 13 | # 14341500 SOUTH FORK LITTLE BUTTE CREEK NEAR LAKECREEK, OR--Continued # STATISTICAL SUMMARIES (AFTER THE COMPLETION OF THE TWO COLLECTION CANALS) MONTHLY AND ANNUAL MEAN DISCHARGES 1961-82 MAGNITUDE AND PROBABILITY OF ANNUAL LOW FLOW BASED ON PERIOD OF RECORD 1962-82 | | MINIMUM | MAXIMUM | MEAN | STAN-
DARD
DEVIA-
TION
| COEFFI-
CIENT OF
VARI- | PERCENT
OF
ANNUAL | PERIOD
(CON-
SECU- | | INTERVAL, | , IN YEA | R INDICAT
RS, AND A
BILITY, I | NNUAL NO | ON- | |------------------------------------|--|-------------------------|---|---------------------------------|---------------------------------------|-------------------------|--|--|---|--|--|--|---------------------------| | МОМТН | (CFS) | (CFS) | (CFS) | (CFS) | ATION | RUNOFF | TIVE
DAYS) | 2
50% | 5
20 % | 10
10% | 20
5% | 50
2% | 100
1% | | OCTOBER | 12 | 110 | 21 | 20 | .96 | 1.8 | 1 | 11 | 8.5 | 7.5 | 6.8 | | | | NOVEMBER | 16 | 140 | 50 | 38 | .75 | 4.2 | 3 | 11 | 8.8 | 7.8 | 7.1 | | | | DECEMBER | 16 | 818 | 148 | 174 | 1.18 | 12.6 | 7 | 11 | 9.2 | 8.3 | 7.6 | | | | JANUARY | 17 | 446 | 160 | 124 | .78 | 13.6 | 14 | 12 | 10 | 9.4 | 8.8 | | | | FEBRUARY | 16 | 302 | 129 | 73 | .57 | 10.9 | 30 | 14 | 12 | 11 | 10 | | | | MARCH | 29 | 556 | 165 | 111 | .67 | 14.0 | 60 | 15 | 13 | 12 | 11 | | | | APRIL | 48 | 451 | 202 | 104 | .51 | 17.1 | 90 | 17 | 14 | 12 | 12 | | | | MAY | 32 | 511 | 172 | 118 | .69 | 14.6 | 120 | 18 | 15 | 13 | 12 | | | | JUNE | 16 | 183 | 66 | 42 | .64 | 5.6 | 183 | 26 | 20 | 18 | 17 | | | | JULY | 10 | 45 | 27 | 9.0 | .34 | 2.3 | | | | | | | | | AUGUST | 10 | 35 | 20 | 6.7 | .33 | 1.7 | | | | | | | | | SEPTEMBER | | 35 | 19 | 5.9 | .31 | 1.6 | | | | | | | | | ANNUAL | 29 | 187 | 98 | 46 | •47 | 100 | | | | | | | | | DI SCHARGE | BASE
, IN CFS, | PROBABILI
D ON PERIO | OD OF RE | CORD | INTERVAL | , IN | | BASE | D ON PERI | OD OF RE | PECORD 19 | 61-82
ED RECUR | | | OISCHARGE
YEARS, | BASE
, IN CFS,
AND ANNUA | FOR INDIC | OD OF RE | CORD
CURRENCE | INTERVAL | , IN
NT | PERIOD
(CON- | BASE
DISCH | D ON PERI
ARGE, IN
INTERVA | CFS, FOR | CORD 19 | 61-82
ED RECUR
ANNUAL | RENCE | | DI SCHARGE | BASE
, IN CFS, | D ON PERIO | OD OF RE | CORD | INTERVAL | , IN | PERIOD | BASE
DISCH | D ON PERI
ARGE, IN
INTERVA | CFS, FOR | R INDICATI | 61-82
ED RECUR
ANNUAL | RRENCE | | DISCHARGE
YEARS, | BASE
, IN CFS,
AND ANNUA | FOR INDIC
L EXCEEDAL | OD OF RECATED RENCE PROB | CURRENCE ABILITY, | INTERVAL
IN PERCEI | , IN
NT | PERIOD
(CON-
SECU-
TIVE
DAYS) | DISCH | D ON PERI
ARGE, IN
INTERVA
EXCEEDANC
5
20% | CFS, FOR
L, IN YE
E PROBAL
10
10% | CORD 190
R INDICATI
FARS, AND
BILITY, II
25
4% | 61-82 ED RECUF ANNUAL N PERCEN | RRENCE
IT | | DISCHARGE
YEARS,
1.25
80% | BASE , IN CFS, AND ANNUA 2 50% | FOR INDIC
L EXCEEDAL | OD OF RECATED RENCE PROB | CURRENCE ABILITY, | INTERVAL
IN PERCEI | , IN
NT | PERIOD
(CON-
SECU-
TIVE
DAYS) | DISCH. | ARGE, IN INTERVA EXCEEDANC 5 20% | CFS, FORL, IN YELE PROBAL | CORD 196 R INDICATI EARS, AND BILITY, II 25 4% | 61-82 ED RECUF ANNUAL N PERCEN 50 2% | RRENCE
IT | | DISCHARGE
YEARS,
1.25
80% | BASE
, IN CFS,
AND ANNUA | FOR INDIC
L EXCEEDAL | OD OF RECATED RENCE PROB | CURRENCE ABILITY, | INTERVAL
IN PERCEI | , IN
NT | PERIOD
(CON-
SECU-
TIVE
DAYS) | DISCH. 2 50% 751 571 | ARGE, IN
INTERVA
EXCEEDANC
5
20% | CFS, FORL, IN YELL PROBABLE 10 10% | R INDICATI
FARS, AND
BILITY, II
25
4% | 61-82 ED RECUF ANNUAL N PERCEN 50 2% | IT
100
1% | | DISCHARGE
YEARS,
1.25
80% | BASE , IN CFS, AND ANNUA 2 50% | FOR INDIC
L EXCEEDAL | OD OF RECATED RENCE PROB | CURRENCE ABILITY, | INTERVAL
IN PERCEI | , IN
NT | PERIOD
(CON-
SECU-
TIVE
DAYS) | DISCH. 2 50% 751 571 435 | D ON PERI
ARGE, IN
INTERVA
EXCEEDANC
5
20% | CFS, FOF
LL, IN YE
EE PROBAE
10
10%
2480
1830
1210 | R INDICATI
FARS, AND
BILITY, II
25
4%
3990
2950
1860 | 61-82 ED RECUF ANNUAL N PERCEN 50 2% | RRENCE
IT
100
1% | | DISCHARGE
YEARS,
1.25
80% | BASE , IN CFS, AND ANNUA 2 50% | FOR INDIC
L EXCEEDAL | OD OF RECATED RENCE PROB | CURRENCE ABILITY, | INTERVAL
IN PERCEI | , IN
NT | PERIOD (CON-
SECU-
TIVE DAYS) | DISCH. 2 50\$ 751 571 435 348 | D ON PERI
ARGE, IN
INTERVA
EXCEEDANC
5
20%
1620
1200
832
587 | CFS, FOR
LL, IN YE
E PROBAB
10
10%
2480
1830
1210
780 | R INDICATI
FARS, AND
BILITY, II
25
4\$
3990
2950
1860
1070 | ED RECUF
ANNUAL
N PERCEN
50
2% | 100
1% | | DISCHARGE
YEARS,
1.25
80% | BASE , IN CFS, AND ANNUA 2 50% | FOR INDIC
L EXCEEDAL | OD OF RECATED RENCE PROB | CURRENCE ABILITY, | INTERVAL
IN PERCEI | , IN
NT | PERIOD (CON-
SECU-
TIVE DAYS) | DISCH. 2 50% 751 571 435 | D ON PERI
ARGE, IN
INTERVA
EXCEEDANC
5
20% | CFS, FOF
LL, IN YEE PROBAB
10
10%
2480
1830
1210
780
573 | R INDICATI
FARS, AND
BILITY, II
25
4%
3990
2950
1860 | ED RECUF
ANNUAL
N PERCEN
50
2% | 100
1% | | DISCHARGE
YEARS,
1.25
80% | BASE , IN CFS, AND ANNUA 2 50% | FOR INDIC
L EXCEEDAL | OD OF RECATED RENCE PROB | CURRENCE ABILITY, | INTERVAL
IN PERCEI | , IN
NT | PERIOD (CON-
SECU-
TIVE DAYS) | DISCH. 2 50\$ 751 571 435 348 | D ON PERI
ARGE, IN
INTERVA
EXCEEDANC
5
20%
1620
1200
832
587 | CFS, FOR
LL, IN YE
E PROBAB
10
10%
2480
1830
1210
780 | R INDICATI
FARS, AND
BILITY, II
25
4\$
3990
2950
1860
1070 | 61-82 ED RECUF ANNUAL N PERCEN 50 2% | 100
1% | | 1.25
80% | BASE , IN CFS, AND ANNUA 2 50% | FOR INDIC
L EXCEEDAL | OD OF RECATED RENCE PROB | CURRENCE ABILITY, | INTERVAL
IN PERCEI | , IN
NT | PERIOD (CON-
SECU-
TIVE DAYS) | DISCH. 2 50% 751 571 435 348 282 | ARGE, IN INTERVA EXCEEDANC 5 20% 1620 1200 832 587 452 | CFS, FOF
LL, IN YEE PROBAB
10
10%
2480
1830
1210
780
573 | R INDICATI
FARS, AND
BILLITY, II
25
4%
3990
2950
1860
1070
734 | 61-82 ED RECUF ANNUAL N PERCEN 50 2% | 100
1% | | DISCHARGE
YEARS,
1.25
80% | BASE , IN CFS, AND ANNUA 2 50% | FOR INDIG | DOD OF RECOME OF REPORT OF RECOME PROBLEM OF RECOME | CORD CURRENCE ABILITY, 25 4% | INTERVAL
IN PERCEI | IN NT 1000 1% | PERIOD
(CON-
SECU-
TIVE
DAYS)
1
3
7
15
30
60
90 | DISCH. 2 50% 751 435 348 282 227 196 OF RECOL | ARGE, IN INTERVA EXCEEDANC 5 20% 1620 1200 832 587 452 359 307 RD 1961-8 | CFS, FORL, IN YEE PROBABLE 10 10% 2480 1210 780 573 452 383 | R INDICATI
FARS, AND
BILITY, II
25
4%
3990
2950
1860
1070
734
573
480 | ED RECUFANNUAL N PERCEN | 100
13 | | 1.25
80%
WEIGHTE | BASE , IN CFS, AND ANNUA 2 50% D SKEW = | FOR INDIG | DOD OF RECOME OF REPORT OF RECOME PROBLEM OF RECOME | CORD CURRENCE ABILITY, 25 4% | INTERVAL
IN PERCEI | IN NT 1000 1% | PERIOD
(CON-
SECU-
TIVE
DAYS)
 | DISCH. 2 50% 751 435 348 282 227 196 OF RECOL | ARGE, IN INTERVA EXCEEDANC 5 20% 1620 1200 832 587 452 359 307 RD 1961-8 | CFS, FORL, IN YEE PROBABLE 10 10% 2480 1210 780 573 452 383 | R INDICATI
FARS, AND
BILITY, II
25
4%
3990
2950
1860
1070
734
573
480 | ED RECUFANNUAL N PERCEN | 100
1% | | DISCHARGE
YEARS,
1.25
80% | BASE , IN CFS, AND ANNUA 2 50% | FOR INDIG | DOD OF RECOME OF REPORT OF RECOME PROBLEM OF RECOME | CORD CURRENCE ABILITY, 25 4% | INTERVAL
IN PERCEI
50
2%
 | IN NT 1000 1% | PERIOD (CON- SECU- TIVE DAYS) 1 3 7 7 15 30 60 90 FOR PERIOD | DISCH. 2 50% 751 435 348 282 227 196 OF RECOL | ARGE, IN INTERVA EXCEEDANC 5 20% 1620 1200 832 587 452 359 307 RD 1961-8 | CFS, FORL, IN YEE PROBABLE 10 10% 2480 1210 780 573 452 383 | R INDICATI
FARS, AND
BILITY, II
25
4%
3990
2950
1860
1070
734
573
480 | ED RECUFANNUAL N PERCEN | 100
1% | # 14342500 NORTH FORK LITTLE BUTTE CREEK AT FISH LAKE, NEAR LAKECREEK, OR LOCATION.--Lat 42°22'35", long 122°21'20", in SELSWL sec.4, T.37 S., R.4 E., Jackson County, Hydrologic Unit 17100307, on right bank 0.5 mi downstream from Fish Lake dam, 14 mi east of Lakecreek, and at mile 15.2. DRAINAGE AREA .-- 20.8 m12. 10% 88 108 15% 73 61 50 41 31 25 20 16 14 PERIOD OF RECORD.--October 1914 to July 1915, June 1916 to September 1982. Monthly discharge only November 1916 to May 1917, published in WSP 1318. GAGE.--Water-stage recorder and concrete control. Datum of gage is 4,571.4! ft National Geodetic Vertical Datum of 1929. Oct. 1, 1914, to July 31, 1915, nonrecording gage at site 0.5 mi upstream at different datum. June 1, 1916, to July 9, 1918, nonrecording gage and July 10, 1918, to Oct. 28, 1932, water-stage recorder at site 0.25 mi upstream at different datums. REMARKS.--Since 1915, Fish Lake has stored water for irrigation by Medford Irrigation District. Cascade Canal diverts from Fourmile Lake in Klamath River basin and discharges into lava bed 1.0 mi above Fish Lake; diversion began August 1923. No diversion from creek above station. AVERAGE DISCHARGE. -- 66 years (water years 1917-82), 35.6 ft³/s, 25,790 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, about 940 ft³/s June 5, 1917, computed from rate of change in contents of reservoir after break in dam occurred; no flow at times. #### STATISTICAL
SUMMARIES MONTHLY AND ANNUAL MEAN DISCHARGES 1918-82 MAGNITUDE AND PROBABILITY OF ANNUAL LOW FLOW BASED ON PERIOD OF RECORD 1919-82 80% 13 85% 10 90% 6.5 2.9 | | 14141111111111 | Mayikhin | MEAN | STAN-
DARD
DEVIA- | COEFFI-
CIENT OF
VARI- | PERCENT
OF
ANNUAL | PERIOD
(CON-
SECU- | | NTERVAL, | CFS, FOR
IN YEAR
E PROBAB | S, AND A | NNUAL NO | N- | |---------------------------------------|--|--|----------------------------------|--|---|-------------------------|---|--|---|--|---|---|---| | MONTH | MINIMUM
(CFS) | MAXIMUM
(CFS) | (CFS) | TION
(CFS) | ATION | RUNOFF | TIVE
DAYS) | 2
50% | 5
20% | 10
10% | 20
5% | 50
2% | 100
1% | | OCTOBER | •2 | 50 | 14 | 11 | .84 | 3.2 | 1 | | | | | | | | NOVEMBER | 0.0 | 46 | 14 | 11 | .81 | 3.2 | 3 | | | | | | | | DECEMBER | 1.6 | 42 | 16 | 10 | .63 | 3.7 | 7 | | | | | | | | ANUARY | 1.3 | 67 | 18 | 11 | •60 | 4.3 | 14 | 3.7 | .8 | .3 | .2 | .1 | 0 | | FEBRUARY | 4.3 | 67 | 19 | 11 | .57 | 4.4 | 30 | 4.7 | 1.1 | .4 | .2 | -1 | 0 | | MARCH | 5.1 | 100 | 20 | 13 | •65 | 4.7 | 60 | 7.2 | 2.3 | 1.1 | •6 | .2 | | | \PRIL | 4.2 | 80 | 24 | 12 | • 49 | 5.7 | 90 | 9.3 | 4.3 | 2.7 | 1.8 | 1.1 | | | MAY | 16 | 78 | 38 | 15 | .41 | 8.8 | 120 | 11 | 6.0 | 4.2 | 3.0 | 2.1 | 1. | | JUNE | 17 | 118 | 55 | 24 | .43 | 13.0 | 183 | 15 | 8.9 | 6.8 | 5.4 | 4.1 | 3. | | IULY | 22 | 145 | 86 | 28 | .33 | 20.2 | | | | | | | | | AUGUST
SEPTEMBER | 14
6.2 | 129
76 | 80
42 | 26
16 | .33
.38 | 18.8
10.0 | | SHORT-DUF
ZERO EV E N | | TA UNCER | TAIN DUE | TO EXCE | SSIVE | | LI TEMBER | 0.2 | 70 | 42 | 10 | • 50 | 10.0 | | 20100 0761 | 1,5, | 66

PROBABILI
D ON PERIO | | | OUS PEAK | 100

FLOW |
MA | GNITUDE / | | BILITY O | | |
OW | | MAGNI | TUDE AND
BASE | PROBABILI
D ON PERIO | TY OF INDOOR RE | ISTANTANE
CORD 191 | OUS PEAK | FLOW
, IN | PERIOD | BASEC

DISCHA | O DN PERI | OD OF RE | INDICATE | 18-82

ED RECURI
ANNUAL |
RENCE | | MAGNI | TUDE AND
BASE
, IN CFS,
AND ANNUA | PROBABILI
D ON PERIO
FOR INDIO
L EXCEEDAN | TY OF INDO OF RECATED RENCE PROE | STANTANE
CORD 191
CURRENCE
DABILITY, | OUS PEAK
8-82
INTERVAL
IN PERCEI | FLOW

, IN
NT | PERIOD
(CON-
SECU- | BASEC
DISCHA | RGE, IN
INTERVA | OD OF REC | CORD 19 INDICATE ARS, AND ILITY, II | 18-82
ED RECURI
ANNUAL
N PERCEN | RENCE | | MAGNI | TUDE AND
BASE
, IN CFS,
AND ANNUA | PROBABILI
D ON PERIO
FOR INDIO
L EXCEEDA | TY OF INDO OF RE | ISTANTANE
CORD 191
CURRENCE | OUS PEAK
8-82
INTERVAL
IN PERCEI | FLOW
,
, IN | PERIOD
(CON- | BASEC

DISCHA | O DN PERI | OD OF RE | INDICATE | 18-82

ED RECURI
ANNUAL |
RENCE | | MAGNI | TUDE AND
BASE
, IN CFS,
AND ANNUA | PROBABILI
D ON PERIO
FOR INDIO
L EXCEEDAN | TY OF INDO OF RECATED RENCE PROE | STANTANE
CORD 191
CURRENCE
DABILITY, | OUS PEAK
8-82
INTERVAL
IN PERCEI | FLOW

, IN
NT | PERIOD
(CON-
SECU-
TIVE
DAYS) | DISCHA E 2 50% | ARGE, IN
INTERVA
EXCEEDANC
5
20% | OD OF REC | INDICATE ARS, AND ILITY, II 25 4% | ED RECURI
ANNUAL
N PERCEN
50
2% | 100
1% | | MAGNI DI SCHARGE, YEARS, A 1.25 80% | TUDE AND BASE , IN CFS, AND ANNUA 2 50% | PROBABILITO ON PERIOD P | TY OF INDO OF
RE | STANTANE
CORD 191
CCURRENCE
SABILITY,
25
4% | OUS PEAK
8-82
INTERVAL
IN PERCEI | , IN
NT | PERIOD (CON- SECU- TIVE DAYS) | DISCHA E 2 50% | RGE, IN
INTERVA
XXCEEDANC
5
20% | OD OF RECEPTION | INDICATE ARS, AND ILITY, II 25 4% | ED RECURI
ANNUAL
N PERCEN
50
2% | 100
1% | | MAGNI DI SCHARGE, YEARS, A 1.25 80% | TUDE AND
BASE
, IN CFS,
AND ANNUA
2
50% | PROBABILITO ON PERIOD P | TY OF INDO OF RE | STANTANE
CORD 191
CCURRENCE
SABILITY,
25
4% | OUS PEAK
8-82
INTERVAL
IN PERCEI | , IN
NT | PERIOD
(CON-
SECU-
TIVE
DAYS) | DISCHA 2 50% 117 115 | ARGE, IN INTERVALXCEEDANC | OD OF RECEIVED | INDICATE ARS, AND ILITY, II 25 4% 155 152 | ED RECURI
ANNUAL
N PERCENT
50
2% | 100
1% | | MAGNI DISCHARGE, YEARS, A | TUDE AND BASE , IN CFS, AND ANNUA 2 50% | PROBABILITO ON PERIOD P | TY OF INDO OF RE | STANTANE
CORD 191
CCURRENCE
SABILITY,
25
4% | OUS PEAK
8-82
INTERVAL
IN PERCEI | , IN
NT | PERIOD (CON-
SECU-
TIVE DAYS) | DISCHA 2 50% 117 115 113 | INTERVALUE OF THE PROPERTY | OD OF REC | INDICATE ARS, AND ILITY, II 25 4% 155 152 147 | 18-82 ED RECURI ANNUAL N PERCEN 50 2% 160 156 151 | 100
1%
165
159
153 | | MAGNI DI SCHARGE, YEARS, A 1.25 80% | TUDE AND BASE , IN CFS, AND ANNUA 2 50% | PROBABILITO ON PERIOD P | TY OF INDO OF RE | STANTANE
CORD 191
CCURRENCE
SABILITY,
25
4% | OUS PEAK
8-82
INTERVAL
IN PERCEI | , IN
NT | PERIOD
(CON-
SECU-
TIVE
DAYS) | DISCHA 2 50% 117 115 113 109 | DN PERI | OD OF RE' CFS, FOR L, IN YE E PROBAB 10 10% 147 144 141 138 | INDICATE ARS, AND ILITY, II 25 4% 155 152 147 145 | 18-82 ED RECURI ANNUAL N PERCEN 50 2% 160 156 151 149 | 100
1%
165
159
153 | | MAGNITOLISCHARGE, YEARS, A | TUDE AND BASE , IN CFS, AND ANNUA 2 50% | PROBABILITO ON PERIOD P | TY OF INDO OF RE | STANTANE
CORD 191
CCURRENCE
SABILITY,
25
4% | OUS PEAK
8-82
INTERVAL
IN PERCEI | , IN
NT | PERIOD
(CON-
SECU-
TIVE
DAYS)
 | DISCH# 2 50% 117 115 113 109 102 | DN PERI | OD OF RE-
CFS, FOR
L, IN YE.
E PROBAB
10
10%
147
144
141
138
133 | INDICATI
ARS, AND
ILITY, II
25
4%
155
152
147
145 | 18-82 ED RECURI ANNUAL N PERCEN 50 2% 160 156 151 149 145 | 100
1%
165
159
153
151
148 | | MAGNI DI SCHARGE, YEARS, A 1.25 80% | TUDE AND BASE , IN CFS, AND ANNUA 2 50% | PROBABILITO ON PERIOD P | TY OF INDO OF RE | STANTANE
CORD 191
CCURRENCE
SABILITY,
25
4% | OUS PEAK
8-82
INTERVAL
IN PERCEI | , IN
NT | PERIOD
(CON-
SECU-
TIVE
DAYS)
 | DISCHA E 2 50% 117 115 113 109 102 90 | DN PERI | OD OF RE | 195
155
155
147
147
147
141
128 | 18-82 ED RECURI ANNUAL N PERCEN' 50 2% 160 156 151 149 145 133 | 100
1%
165
159
153
151
148
137 | | DISCHARGE,
YEARS, A
1.25
80% | TUDE AND BASE , IN CFS, AND ANNUA 2 50% | PROBABILITO ON PERIOD P | TY OF INDO OF RE | STANTANE
CORD 191
CCURRENCE
SABILITY,
25
4% | OUS PEAK
8-82
INTERVAL
IN PERCEI | , IN
NT | PERIOD
(CON-
SECU-
TIVE
DAYS)
 | DISCH# 2 50% 117 115 113 109 102 | DN PERI | OD OF RE-
CFS, FOR
L, IN YE.
E PROBAB
10
10%
147
144
141
138
133 | INDICATI
ARS, AND
ILITY, II
25
4%
155
152
147
145 | 18-82 ED RECURI ANNUAL N PERCEN 50 2% 160 156 151 149 145 | 100
1%
165
159
153
151
148 | # 14343000 NORTH FORK LITTLE BUTTE CREEK NEAR LAKECREEK, OR LOCATION.--Lat 42°24'10", long 122°32'10", in NW\ sec.36, T.36 S., R.2 E., Jackson County, Hydrologic Unit 17100307, on right bank 1.2 mi upstream from Wasson Canyon, 4.9 mi east of Lakecreek, and at mile 4.8. DRAINAGE AREA .-- 43.8 mi2. PERIOD OF RECORD.--September 1911 to March 1913, July to September 1917, May 1922 to December 1964, September 1965 to September 1982. Monthly discharge only for some periods, published in WSP 1318. Published as "above Medford intake, near Lakecreek" 1922-28, 1931-40. Records for April to September 1916, May 1917 to September 1919, April to September 1921, and October 1923 to September 1924 at site 3 mi upstream not equivalent owing to diversion and difference in drainage areas. GAGE.--Water-stage recorder. Concrete control since Oct. 9, 1968. Altitude of gage is 2,160 ft, from topographic map. Sept. 10, 1911, to Mar. 31, 1913, and July 1 to Sept. 30, 1917, nonrecording gage at site 1,000 ft dowstream at different datums. May 26, 1922, to Dec. 31, 1964, water-stage recorder at site 1,000 ft downstream at datum 2,125.01 ft National Geodetic Vertical Datum of 1929. REMARKS.--Flow partly regulated since 1915 by Fish Lake. Diversions for irrigation above station; some water diverted into Fish Lake from Fourmile Lake, in Klamath River basin, since 1923. AVERAGE DISCHARGE.--60 years (water years 1912, 1923-64, 1966-82), 71.1 ft³/s, 51,510 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 1,750 ft³/s Dec. 22, 1964, gage height, 6.06 ft, present site and datum; minimum, 11 ft³/s Oct. 29 to Nov. 8, 1931. #### STATISTICAL SUMMARIES MONTHLY AND ANNUAL MEAN DISCHARGES 1912-82 MAGNITUDE AND PROBABILITY OF ANNUAL LOW FLOW BASED ON PERIOD OF RECORD 1913-82 | | MINIMUM | MAXIMUM | MEAN | STAN-
DARD
DEVIA-
TION | COEFFI-
CIENT OF
VARI- | PERCENT
OF
ANNUAL | PERIOD
(CON-
SECU- | | INTERVAL | CFS, FOF
, IN YEAR
CE PROBAE | RS, AND A | NNUAL N | ON- | |-----------|---------|---------|-------|---------------------------------|------------------------------|-------------------------|--------------------------|----------|----------|------------------------------------|-----------|----------|-----------| | MONTH | (CFS) | (CFS) | (CFS) | (CFS) | ATION | RUNOFF | TIVE
DAYS) | 2
50% | 5
20% | 10
10% | 20
5% | 50
2% | 100
1% | | OCTOBER | 14 | 79 | 36 | 15 | .42 | 4.2 | 1 | 26 | 19 | 16 | 13 | 11 | 10 | | NOVEMBER | 16 | 81 | 41 | 14 | .35 | 4.8 | 3 | 26 | 19 | 16 | 13 | 11 | 10 | | DECEMBER | 19 | 122 | 55 | 23 | .41 | 6.4 | 7 | 27 | 19 | 16 | 13 | 11 | 10 | | JANUARY | 25 | 145 | 59 | 22 | .38 | 6.9 | 14 | 27 | 19 | 16 | 14 | 12 | 11 | | FEBRUARY | 28 | 126 | 64 | 22 | .34 | 7.4 | 30 | 29 | 21 | 17 | 15 | 13 | 12 | | MARCH | 30 | 253 | 71 | 31 | .43 | 8.3 | 60 | 33 | 24 | 21 | 18 | 16 | 14 | | APRIL | 33 | 144 | 74 | 22 | .29 | 8.7 | 90 | 38 | 28 | 24 | 21 | 18 | 16 | | MAY | 43 | 140 | 82 | 23 | .28 | 9.6 | 120 | 42 | 32 | 27 | 24 | 21 | 19 | | JUNE | 44 | 149 | 89 | 24 | .27 | 10.4 | 183 | 49 | 38 | 33 | 29 | 25 | 23 | | JULY | 49 | 164 | 113 | 27 | .24 | 13.2 | | | | | | | | | AUGUST | 32 | 155 | 106 | 27 | .25 | 12.4 | | | | | | | | | SEPTEMBER | 22 | 119 | 67 | 19 | . 28 | 7.8 | | | | | | | | | ANNUAL | 34 | 118 | 72 | 16 | •22 | 100 | | | | | | | | MAGNITUDE AND PROBABILITY OF INSTANTANEOUS PEAK FLOW BASED ON PERIOD OF RECORD 1912-82 MAGNITUDE AND PROBABILITY OF ANNUAL HIGH FLOW BASED ON PERIOD OF RECORD 1912-82 | DISCHARGE,
YEARS, A | | | | | | | PERIOD
(CON- | | ARGE, IN
INTERV
EXCEEDANG | AL, ÎN Y | EARS, AND | ANNUAL | | |------------------------|--------------|----------|-----------|----------|----------|-----------|------------------------|----------|---------------------------------|-----------|-----------|------------------|-----------| | 1.25
80% | 2
50%
 | 5
20% | 10
10% | 25
4% | 50
2% | 100
1% | SECU-
TIVE
DAYS) | 2
50% | 5
20 % | 10
10% | 25
4% | 50
2 % | 100
1% | | 153 | 238 | 408 | 565 | 825 | 1070 | 1380 | | | | | | _ | | | | | | | | | | 1 | 162 | 238 | 308 | 427 | 542 | 684 | | WE I GHTED | SKEW = | .701 | | | | | 3 | 149 | 205 | 256 | 338 | 414 | 505 | | | | | | | | | 7 | 140 | 180 | 211 | 257 | 295 | 338 | | | | | | | | | 15 | 136 | 166 | 186 | 211 | 229 | 247 | | | | | | | | | 30 | 131 | 156 | 171 | 187 | 198 | 207 | | | | | | | | | 60 | 119 | 141 | 152 | 165 | 173 | 181 | | | | | | | | | 90 | 108 | 128 | 139 | 151 | 159 | 166 | DURATION TABLE OF DAILY MEAN FLOW FOR PERIOD OF RECORD 1912-82 | | | DISC | HARGE, I | N CFS, W | HICH WAS | EQUALED | OR EXCE | EDED FOR | INDICATE | D PERCEI | NT OF TI | ME | | | |-----|-----|------|----------|----------|----------|---------|---------|----------|----------|----------|----------|-----|-----|-----| | 5% | 10% | 15% | 20% | 25% | 30% | 40% | 50% | 60% | 70% | 75% | 80% | 85% | 90% | 95% | | 143 | 123 | 111 | 101 | 93 | 86 | 75 | 65 | 57 | 49 | 45 | 41 | 37 | 32 | 25 | #### 14350000 EMIGRANT CREEK NEAR ASHLAND, OR LOCATION.--Lat 43°09'50", long 122°36'15", in SEtNEt sec.20, T.39 S., R.2 E., Jackson County, Hydrologic Unit 17100309, on left bank 0.1 mi downstream from Emigrant Dam, 6 mi southeast of Ashland, and at mile 29.2. DRAINAGE AREA. -- 64.3 ml2. PERIOD OF RECORD. -- January to June 1920, October to July 1922, February 1923 to May 1924 (incomplete), October 1924 to November 1925, February to August 1926, October 1926 to September 1928, April 1929 to September 1930, April 1931 to October 1932 (incomplete), April 1933 to September 1935, April 1936 to September 1939 (incomplete), April 1940 to September 1947, January 1948 to October 1952 (incomplete), December 1952 to September 1982. Monthly discharge only for some periods, published in WSP 1318. GAGE.--Water-stage recorder and artificial control. Datum of gage is 2,042.80 ft National Geodetic Vertical Datum of 1929 (Bureau of Reclamation bench mark). Prior to Oct. 1, 1926, water-stage recorder or nonrecording gage at several nearby sites at various datums. Oct. 1, 1926, to Feb. 24, 1959, water-stage recorder near present site at datum 10.93 ft higher. Feb. 25, 1959, to May 7, 1961, water-stage recorder at site 1.0 mi downstream at different datum. REMARKS.--Flow regulated since 1924 by Emigrant Lake. Several diversions above station for irrigation, the principal diversion
canals are Ashland lateral and East lateral. From June 1923 to August 1960, water diverted by Keene Creek Canal from Klamath River basin into Emigrant Creek above station. Beginning May 1960, water from Klamath River basin diverted to Emigrant Creek above station via Green Springs powerplant diversion. AVERAGE DISCHARGE.--42 years (water years 1925, 1927-30, 1934-35, 1941-47, 1954-82), 31.8 ft^3/s , 23,040 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 5,260 ft³/s Feb. 20, 1927, by computation of peak flow over dam; no flow at times. ## STATISTICAL SUMMARIES (BEFORE THE CONSTRUCTION OF GREEN SPRINGS DIVERSION) | | MINIMUM | MAXIMUM | MEAN | STAN-
DARD
DEVIA-
TION | COEFFI-
CIENT OF
VARI- | PERCENT
OF
ANNUAL | PERIOD
(CON-
SECU- | 1 | NTERVAL, | CFS, FOR
IN YEARS
E PROBAB | , AND AN | INUAL NO | N- | |-----------|---------|---------|-------|---------------------------------|------------------------------|-------------------------|--------------------------|------------------|------------------|----------------------------------|------------------|------------------|-----------| | MONTH | (CFS) | (CFS) | (CFS) | (CFS) | ATION | RUNOFF | TIVE
DAYS) | 2
50 % | 5
20 % | 10
10% | 20
5 % | 50
2 % | 100
1% | | OCTOBER | 0.0 | 9.6 | 2.2 | 3.2 | 1.45 | •6 | 1 | | | | | | | | NOVEMBER | 0.0 | 47 | 4.0 | 13 | 3.16 | 1.1 | 3 | | | | | | | | DECEMBER | - 1 | 158 | 29 | 49 | 1.69 | 8.2 | 7 | | | | | | | | JANUARY | .1 | 230 | 58 | 67 | 1.16 | 16.1 | 14 | | | | | | | | FEBRUARY | . 1 | 243 | 82 | 78 | .95 | 22.7 | 30 | | | | | | | | MARCH | .1 | 167 | 49 | 45 | .91 | 13.8 | 60 | .2 | .1 | - 1 | 0.0 | 0.0 | | | APRIL | .2 | 163 | 52 | 43 | .82 | 14.5 | 90 | •5 | •2 | .2 | .1 | .1 | | | MAY | .5 | 91 | 19 | 21 | 1.10 | 5.2 | 120 | 1.5 | •6 | .4 | .2 | .1 | | | JUNE | .7 | 33 | 12 | 8.6 | .74 | 3.2 | 183 | 5.1 | 1.4 | .6 | .3 | . 1 | | | JULY | 12 | 43 | 27 | 7.5 | .27 | 7.6 | | | | | | | | | AUGUST | 4.3 | 33 | 20 | 6.9 | .34 | 5.6 | NOTE: S | SHORT-DUR | ATION DA | TA UNCERT | AIN DUE | TO EXCES | SSIVE | | SEPTEMBER | 0.0 | 14 | 4.9 | 3.4 | .70 | 1.4 | Z | ZERO EVEN | TS. | | | | | | ANNUAL | 6.1 | 46 | 27 | 15 | .55 | 100 | | | | | | | | | MAGNITUDE | AND PROBABILITY | OF | INSTANTANEOUS PEAK FLOW | |-----------|-----------------|----|-------------------------| | | BASED ON PERIOD | 0F | RECORD 1925-82 | MONTHLY AND ANNUAL MEAN DISCHARGES 1925-60 MAGNITUDE AND PROBABILITY OF ANNUAL HIGH FLOW BASED ON PERIOD OF RECORD 1925-60 MAGNITUDE AND PROBABILITY OF ANNUAL LOW FLOW BASED ON PERIOD OF RECORD 1942-60 | DISCHARGE,
YEARS, A | | | DICATED R | | | | PERIOD
(CON- | | INTERV | AL, İN Y | EARS, AN | TED RECU
D ANNUAL
IN PERCEI | | |------------------------|----------|------------------|-------------------|----------------------|------------------|-----------|-------------------------------|---|---|--|---|---|-----------| | 1.25
8 0% | 2
50% | 5
20 % | 10
10 % | 25
4 %
 | 50
2 % | 100
1% | SECU-
TIVE
DAYS) | 2
50 % | 5
20 % | 10
10% | 25
4 % | 50
2 % | 100
1% | | WEIGHTED | SKEW = | | | | | | 1
3
7
15
30
60 | 295
261
209
147
106
84
68 | 704
582
438
290
204
150
120 | 1020
814
598
390
278
196
156 | 1430
1100
792
513
378
255
199 | 1720
1290
925
599
454
297
230 | | DURATION TABLE OF DAILY MEAN FLOW FOR PERIOD OF RECORD 1925-60 | | | DISC | HARGE, | IN CFS, | WHICH WAS | EQUALED | OR EXCEE | DED FOR | INDICATED | PERCENT | OF TIM | E
 | | | |-----|-----|------|--------|---------|-----------|---------|----------|---------|-----------|---------|--------|-------|-----|-----| | 5% | 10% | 15% | 20% | 25% | 30% | 40% | 50% | 60% | 70% | 75% | 80% | 85% | 90% | 95% | | 114 | 70 | 48 | 38 | 31 | 25 | 14 | 4.7 | 1.3 | .5 | .3 | .2 | .2 | . 1 | .1 | # 14350000 EMIGRANT CREEK NEAR ASHLAND, OR--Continued # STATISTICAL SUMMARIES (AFTER THE COMPLETION OF GREEN SPRINGS DIVERSION) MONTHLY AND ANNUAL MEAN DISCHARGES 1962-82 MAGNITUDE AND PROBABILITY OF ANNUAL LOW FLOW BASED ON PERIOD OF RECORD 1963-82 | | MINIMUM | MAXIMUM | MEAN | STAN-
DARD
DEVIA-
TION | COEFFI-
CIENT OF
VARI- | PERCENT
OF
ANNUAL | PERIOD
(CON-
SECU- | 1 | NTERVAL, | IN YEAR | INDICAT
S, AND AI
ILITY, II | NNUAL NO | N- | |--------------------------------------|---|--|---|---|---|-------------------------|---|--|---|--|---|--|--| | ONTH | (CFS) | (CFS) | (CFS) | (CFS) | ATION | RUNOFF | TIVE
DAYS) | 2
50% | 5
20% | 10
10% | 20
5% | 50
2% | 100
1% | | CTOBER | 0.0 | 46 | 3.9 | 10 | 2.63 | .8 | 1 | | | | | | | | OVEMBER | 0.0 | 70 | 7.2 | 19 | 2.61 | 1.5 | 3 | | | | | | | | ECEMBER | 0.0 | 262 | 49 | 79 | 1.59 | 10.6 | 7 | | | | | | | | ANUARY | 0.0 | 288 | 65 | 87 | 1.34 | 13.9 | 14 | | | | | | | | EBRUARY | 0.0 | 98 | 26 | 34 | 1.32 | 5.5 | 30 | | | | | | | | ARCH | 0.0 | 158 | 36 | 49 | 1.36 | 7.7 | 60 | | | |
| | | | PRIL | .3 | 201 | 80 | 63 | .80 | 17.2 | 90 | | | | | | | | ΙΑΥ | .4 | 139 | 45 | 42 | .94 | 9.6 | 120 | | | | | | | | UNE | 2.7 | 61 | 26 | 13 | .49 | 5.6 | 183 | 7.9 | 1.0 | .3 | . 1 | | | | ULY | 31 | 84 | 51 | 14 | . 28 | 10.9 | | | | | | | | | UGUST | 23 | 72 | 51 | 12 | . 24 | 11.8 | NOTE: L | OW-FLOW | DATA UNC | ERTAIN D | UE TO EXC | CESSIVE | ZER0 | | EPTEMBER | .1 | 47 | 25 | 11 | .44 | 5.4 | E | VENTS. | | | | | | | NNUAL | 11 | 83 | 39 | 23 | .60 | 100 | | | | | | | | | SCHARGE | BASE
, IN CFS, | D ON PERIO | OD OF REC | CORD | OUS PEAK I |
, IN | | BASED | ON PERI | OD OF REC | F ANNUAL CORD 196 INDICATE ARS. AND | 62-82

ED RECUR | | | SCHARGE | BASE
, IN CFS, | D ON PERIO | OD OF REC | CORD | INTERVAL
IN PERCEI |
, IN | PERIOD
(CON-
SECU- | BASED
DISCHA | ON PERI | OD OF REC | CORD 196 | 52-82

ED RECUR
ANNUAL |
RENCE | | I SCHARGE
YEARS, | BASE
, IN CFS,
AND ANNUA | FOR INDIC | OD OF REC | CORD
CURRENCE
ABILITY, | INTERVAL
IN PERCEI | , IN
NT | PERIOD
(CON- | BASED
DISCHA | ON PERI | OD OF REC | CORD 196 INDICATE | 52-82

ED RECUR
ANNUAL | RENCE | | ISCHARGE
YEARS, | BASE
, IN CFS,
AND ANNUA | FOR INDIC
L EXCEEDAL | OD OF REC | CORD
CURRENCE
ABILITY, | INTERVAL
IN PERCEI | , IN
NT | PERIOD
(CON-
SECU-
TIVE | BASED
DISCHA | ON PERI | OD OF REC | INDICATE ARS, AND ILITY, IT | 62-82 ED RECUR ANNUAL N PERCEN | RENCE | | ISCHARGE
YEARS, | BASE
, IN CFS,
AND ANNUA | FOR INDIC
L EXCEEDAL | OD OF REC | CORD
CURRENCE
ABILITY, | INTERVAL
IN PERCEI | , IN
NT | PERIOD
(CON-
SECU-
TIVE | BASED
DISCHA | ON PERI
RGE, IN
INTERVA
XCEEDANC | OD OF REC | INDICATE ARS, AND ILITY, IT | 62-82 ED RECUR ANNUAL N PERCEN |
RENCE | | ISCHARGE
YEARS,
1.25
80% | BASE
, IN CFS,
AND ANNUA | FOR INDIC
L EXCEEDAL | OD OF REC | CORD
CURRENCE
ABILITY, | INTERVAL
IN PERCEI | , IN
NT | PERIOD
(CON-
SECU-
TIVE
DAYS) | DISCHA E 2 50% | ON PERI | OD OF REC | INDICATE ARS, AND ILITY, II | 52-82 ED RECUR ANNUAL N PERCEN 50 2% | T 100 | | ISCHARGE
YEARS,
1.25
80% | BASE , IN CFS, AND ANNUA 2 50% | FOR INDIC
L EXCEEDAL | OD OF REC | CORD
CURRENCE
ABILITY, | INTERVAL
IN PERCEI | , IN
NT | PERIOD
(CON-
SECU-
TIVE
DAYS) | DISCHA E 2 50% | ON PERI RGE, IN INTERVA XCEEDANC 5 20% | CFS, FOR
L, IN YEE
E PROBAB | INDICATE ARS, AND ILITY, IT | 52-82 ED RECUR ANNUAL N PERCEN 50 2% | T 100 | | ISCHARGE
YEARS,
1.25
80% | BASE , IN CFS, AND ANNUA 2 50% | FOR INDIC
L EXCEEDAL | OD OF REC | CORD
CURRENCE
ABILITY, | INTERVAL
IN PERCEI | , IN
NT | PERIOD
(CON-
SECU-
TIVE
DAYS) | DISCHA E 2 50% 247 233 | ON PERI RGE, IN INTERVA XCEEDANC 5 20% 492 472 | OD OF REC
CFS, FOR
L, IN YEL
E PROBAB
10
10% | INDICATE ARS, AND ILITY, II | ED RECUR
ANNUAL
N PERCEN
50
2% | T 100 | | ISCHARGE
YEARS,
1.25
80% | BASE , IN CFS, AND ANNUA 2 50% | FOR INDIC
L EXCEEDAL | OD OF REC | CORD
CURRENCE
ABILITY, | INTERVAL
IN PERCEI | , IN
NT | PERIOD
(CON-
SECU-
TIVE
DAYS) | DISCHA E 2 50% 247 233 211 | ON PERI RGE, IN INTERVA XCEEDANC 5 20% 492 472 426 | OD OF REC
CFS, FOR
L, IN YEL
E PROBAB
10
10% | INDICATE ARS, AND ILITY, IN 25 4 \$ 973 959 887 | 52-82 ED RECUR ANNUAL N PERCEN 50 2% | T 100 | | ISCHARGE
YEARS,
1.25
80% | BASE , IN CFS, AND ANNUA 2 50% | FOR INDIC
L EXCEEDAL | OD OF REC | CORD
CURRENCE
ABILITY, | INTERVAL
IN PERCEI | , IN
NT | PERIOD
(CON-
SECU-
TIVE
DAYS) | DISCHA E 2 50% 247 233 211 161 | ON PERI RGE, IN INTERVA XCEEDANC 5 20% 492 472 472 426 320 | OD OF REG | INDICATE ARS, AND ILITY, II 25 45 973 959 887 702 | 52-82 ED RECUR ANNUAL N PERCEN 50 2% | T 100 | | I SCHARGE
YEARS, 1
1.25
80% | BASE , IN CFS, AND ANNUA 2 50% | FOR INDIC
L EXCEEDAL | OD OF REC | CORD
CURRENCE
ABILITY, | INTERVAL
IN PERCEI | , IN
NT | PERIOD (CON-
SECU-
TIVE DAYS) | DISCHA E 2 50% 247 233 211 161 116 | ON PERI RGE, IN INTERVA XCEEDANC 5 20% 492 472 426 320 208 | OD OF REC
CFS, FOR
L, IN YEL
E PROBAB
10
10%
690
670
609
465
287 | INDICATE ARS, AND ILITY, !! 25 4 973 959 887 702 407 | 52-82 ED RECUR ANNUAL N PERCEN 50 2% | T 10 | | ISCHARGE
YEARS, 1
1.25
80% | BASE , IN CFS, AND ANNUA 2 50% | FOR INDIG | CATED RECORDED OF | CORD CURRENCE ABILITY, 25 4% | INTERVAL
IN PERCEI
50
2% | , IN NT 100 . 1% | PERIOD
(CON-
SECU-
TIVE
DAYS)
 | DISCHA E 2 50% 247 233 211 161 116 89 72 OF RECOR | RGE, IN INTERVA XCEEDANC 5 20% | OD OF REI | ORD 196 INDICATE ARS, AND ILITY, !! 25 45 973 959 887 702 407 274 207 | 52-82 ED RECUR ANNUAL N PERCEN 50 2% | T 100 | | ISCHARGE
YEARS,
1.25
80% | BASE , IN CFS, AND ANNUA 2 50% O SKEW = | FOR INDICATE TO THE PROPERTY OF O | DD OF RECONCE PROBA | CORD CURRENCE ABILITY, 25 4% I TABLE FFS, WHI | INTERVAL
IN PERCEI
50
2%

OF DAILY M | JALED OR E | PERIOD (CON- SECU- TIVE DAYS) 1 3 7 15 30 60 90 FOR PERIOD XCEEDED FOF | DISCHA E 2 50% 247 233 211 161 116 89 72 OF RECOR | ON PERI RGE, IN INTERVA XCEEDANC 5 20% 492 472 426 320 208 149 117 D 1962-8 | OD OF REI | 973 959 887 702 407 274 207 | ED RECUR
ANNUAL
N PERCEN
50
2% | T 1000 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | ISCHARGE
YEARS,
1.25
80% | BASE , IN CFS, AND ANNUA 2 50% | FOR INDIG | CATED RECORDED OF | CORD CURRENCE ABILITY, 25 4% | INTERVAL
IN PERCEI
50
2%

OF DAILY M | , IN NT 100 . 1% | PERIOD (CON- SECU- TIVE DAYS) 1 3 7 15 30 60 90 FOR PERIOD XCEEDED FOF | DISCHA E 2 50% 247 233 211 161 116 89 72 OF RECOR | RGE, IN INTERVA XCEEDANC 5 20% | OD OF REI | ORD 196 INDICATE ARS, AND ILITY, !! 25 45 973 959 887 702 407 274 207 | 52-82 ED RECUR ANNUAL N PERCEN 50 2% | T 100 | LOCATION.--Lat 42°08'55", long 122°42'55", near line between NWL and SWL sec.28, T.39 S., R.1 E., Jackson County, Hydrologic Unit 17100308, in Rogue River National Forest, on left bank 0.3 mi above city diversion, 2.5 mi south of Ashland, and at mile 0.4. 14353000 WEST FORK ASHLAND CREEK NEAR ASHLAND, OR DRAINAGE AREA. -- 10.5 mi², at diversion dam 0.3 mi downstream. PERIOD OF RECORD.--September 1924 to January 1933, water years 1954-60, 1963, annual maximum; December 1974 to September 1982. Monthly discharge only for some periods published in WSP 1318. GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 2,962.75 ft National Geodetic Vertical Datum of 1929. Sept. 10, 1924, to Jan. 31, 1933, water-stage recorder at site about 0.2 mi upstream at different datum. Oct. 14, 1953, to Sept. 30, 1963, crest-stage gage at diversion dam 0.3 mi downstream at different datum. REMARKS. -- No regulation or diversion above station. AVERAGE DISCHARGE.--15 years (water years 1925-32, 1976-82), 8.92 ft³/s, 11.54 in/yr, 6,460 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 330 ft³/s Dec. 2, 1962, gage height, 15.51 ft, site and datum then in use, from rating curve defined by computation of peak flow over dam; minimum, 1.3 ft³/s Aug. 29, 1931, Sept. 8, 9, 1977. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of Jan. 15, 1974, is the highest since at least 1900. Discharge, 4,780 ft3/s by slope-area measurement of peak flow, gage height, 9.5 ft, from floodmarks. Peak believed to be affected by release from debris dams breaking ## STATISTICAL SUMMARIES MONTHLY AND ANNUAL MEAN DISCHARGES 1925-82 MAGNITUDE AND PROBABILITY OF ANNUAL LOW FLOW BASED ON PERIOD OF RECORD 1926-82 | | MINIMUM | MAXIMUM | MEAN | STAN-
DARD
DEVIA-
TION | COEFFI-
CIENT OF
VARI- | PERCENT
OF
ANNUAL | PERIOD
(CON-
SECU- | 11 | NTERVAL, | CFS, FOR
IN YEARS
E PROBABI | , AND AN | INUAL NO | DN- | |-----------|---------|------------|-------|---------------------------------|------------------------------|-------------------------|--------------------------|----------|------------------|-----------------------------------|----------|------------------|-----------| | MONTH | (CFS) | (CFS) | (CFS) | (CFS) | ATION | RUNOFF | TIVE
DAYS) | 2
50% | 5
2 0% | 10
10% | 20
5% | 50
2 % | 100
1% | | OCTOBER | 2.4 | 8.4 | 3.6 | 1.6 | .43 | 3.3 | 1 | 2.1 | 1.7 | 1.5 | 1.4 | | | | NOVEMBER | 2.4 | 15 | 6.1 | 3.5 | •57 | 5.6 | 3 | 2.1 | 1.7 | 1.5 | 1.4 | | | | DECEMBER | 2.9 | 39 | 8.8 | 8.6 | .98 | 8.0 | 7 | 2.2 | 1.7 | 1.5 | 1.4 | | | | JANUARY | 2.8 | 21 | 8.5 | 5.8 | .68 | 7.8 | 14 | 2.3 | 1.8 | 1.6 | 1.5 | | | | FEBRUARY | 2.5 | 2 6 | 11 | 7.7 | .69 | 10.2 | 30 | 2.4 | 1.9 | 1.6 | 1.5 | | | | MARCH | 2.8 | 24 | 12 | 5.6 | .49 | 10.5 | 60 | 2.7 | 2.1 | 1.8 | 1.6 | | | | APRIL | 4.5 | 24 | 13 | 6.1 | .47 | 11.8 | 90 | 2.9 | 2.2 | 2.0 | 1.8 | | | | YAN | 4.5 | 32 | 18 | 9.5 | .52 | 16.7 | 120 | 3.1 | 2.4 | 2.1 | 1.9 | | | | JUNE | 3.2 | 35 | 15 | 9.8 | •65 | 13.8 | 183 | 3.9 | 3.0 | 2.6 | 2.4 | | | | JULY | 2.1 | 13 | 6.5 | 3.5 | .54 | 5.9 | | | | | | | | | AUGUST | 1.6 | 6.4 | 3.7 | 1.6 | .42 | 3.4 | | | | | | | | | SEPTEMBER | 1.8 | 7.5 | 3.4 | 1.4 | -41 | 3.1 | | | | | | | | | ANNUAL | 3.3 | 18 | 8.9 | 4.4 | . 49 | 100 | | | | | | | | MAGNITUDE AND PROBABILITY OF INSTANTANEOUS PEAK FLDW BASED ON PERIOD OF RECORD 1925-82 MAGNITUDE AND PROBABILITY OF ANNUAL HIGH FLOW BASED ON PERIOD OF RECORD 1925-82 | SCHARGE,
YEARS, A | | | | RECURRENC
OBABILITY | | | PERIOD
(CON- | | INTERV | AL, ÍN Y | R INDICAT
EARS, AND
BILITY, I | ANNUAL | | |----------------------|----------|--------------|-----------|------------------------|------------------|-----------|------------------------|----------|------------------|-----------|-------------------------------------|------------------|-----| | 1.25
80% | 2
50% | 5
20%
 | 10
10% | 25
4% | 50
2 % | 100
1% | SECU-
TIVE
DAYS) | 2
50% | 5
20 % | 10
10% | 25
4% |
50
2 % | 100 | | 30 | 72 | 205 | 378 | 768 | | | | | | | | | | | WEIGHTED | CKEM - |
E07 | | | | | 1 | 40 | 74 | 99 | 132 | | | | WEIGHIED | SKEW = | •587 | | | | | 7 | 33
27 | 58
43 | 76
54 | 100
66 | | | | | | | | | | | 15 | 22 | 34 | 42 | 51 | | | | | | | | | | | 30 | 18 | 29 | 36 | 44 | | | | | | | | | | | 60 | 16 | 2 6 | 32 | 40 | | | | | | | | | | | 90 | 15 | 23 | 28 | 35 | | | DURATION TABLE OF DAILY MEAN FLOW FOR PERIOD OF RECORD 1925-82 |
 | | DISCHAF | RGE, IN | CFS, | WHICH WAS | EQUALED | OR EXCEE | DED FOR | INDICATED | PERCENT | OF TIM | E | | | |--------|-----|---------|---------|------|-----------|---------|----------|---------|-----------|---------|--------|-------------|-----|-----| |
5% | 10% | 15% | 20% | 25% | 30% | 40% | 50% | 60% | 70% | 75% | 80% | 85 % | 90% | 95% | | 27 | 21 | 17 | 15 | 12 | 9.8 | 7.3 | 5.6 | 4.5 | 3.7 | 3.4 | 3.1 | 2.7 | 2.5 | 2.1 | # 14353500 EAST FORK ASHLAND CREEK NEAR ASHLAND. OR LOCATION.--Lat 42°09'10", long 122°42'30", near line between NEt and NWt sec.28, T.39 S., R.1 E., Jackson County, Hydrologic Unit 17100308, Rogue River National Forest, on left bank 0.1 mi above city diversion dam, 2.5 mi south of Ashland, and at mile 0.2. DRAINAGE AREA. -- 8.14 mi², at diversion dam 0.1 mi downstream. PERIOD OF RECORD.--September 1924 to January 1933, water years 1954-60, 1963, annual maximum, December 1974 to September 1982. GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 2,903.70 ft National Geodetic Vertical Datum of 1929. Sept. 10, 1924, to Jan. 31, 1933, water-stage recorder at site about 200 ft downstream at different datum. Oct. 19, 1953, to Sept. 30, 1963, crest-stage gage at diversion dam 0.1 mi downstream at different datum. REMARKS. -- No regulation or diversion. AVERAGE DISCHARGE.--15 years (water years 1925-32, 1976-82), 9.37 ft3/s, 15.63 in/yr, 6,790 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 335 ft³/s Dec. 2, 1962, gage height, 5.42 ft, site and datum then in use, from rating curve defined by computations of peak flow over dam; minimum, 0.47 ft³/s Mar. 14, 1977, result of freezeup. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of Jan. 15, 1974, is the highest since at least 1925. Discharge, 5,630 ft³/s by slope-area measurement of peak flow, gage height, 10.2 ft from floodmarks. Peak believed to be affected by release from debris dams breaking unstream. #### STATISTICAL SUMMARIES MONTHLY AND ANNUAL MEAN DISCHARGES 1925-82 MAGNITUDE AND PROBABILITY OF ANNUAL LOW FLOW BASED ON PERIOD OF RECORD 1926-82 | | MINIMUM | MAXIMUM | MEAN | STAN-
DARD
DEVIA-
TION | COEFFI-
CIENT OF
VARI- | PERCENT
OF
ANNUAL | PERIOD
(CON-
SECU- | 11 | NTERVAL, | CFS, FOR
IN YEARS
PROBABI | , AND AN | INUAL N | ON- | |-----------|---------|---------|-------|---------------------------------|------------------------------|-------------------------|--------------------------|----------|----------|---------------------------------|------------------|----------|-----------| | MONTH | (CFS) | (CFS) | (CFS) | (CFS) | ATION | RUNOFF | TIVE
DAYS) | 2
50% | 5
20% | 10
10% | 20
5 % | 50
2% | 100
1% | | OCTOBER | 2.1 | 6.8 | 3.4 | 1.2 | .35 | 2.9 | 1 | 2.1 | 1.6 | 1.3 | 1.1 | | | | NOVEMBER | 2.7 | 16 | 6.2 | 4.3 | .70 | 5.4 | 3 | 2.2 | 1.6 | 1.3 | 1.1 | | | | DECEMBER | 2.7 | 43 | 9.5 | 9.9 | 1.04 | 8.3 | 7 | 2.2 | 1.6 | 1.4 | 1.2 | | | | JANUARY | 2.7 | 20 | 8.2 | 5.8 | .71 | 7.1 | 14 | 2.3 | 1.8 | 1.6 | 1.4 | | | | FEBRUARY | 2.5 | 31 | 11 | 8.4 | .75 | 9.9 | 30 | 2.5 | 1.9 | 1.7 | 1.5 | | | | MARCH | 2.8 | 25 | 11 | 5.9 | .52 | 9.8 | 60 | 2.7 | 2.1 | 1.8 | 1.6 | | | | APRIL | 3.7 | 23 | 12 | 5.8 | .48 | 10.4 | 90 | 2.9 | 2.2 | 1.9 | 1.6 | | | | MAY | 5.4 | 34 | 19 | 9.8 | .51 | 16.7 | 120 | 3.1 | 2.4 | 2.0 | 1.8 | | | | JUNE | 4.0 | 51 | 18 | 13 | .73 | 16.0 | 183 | 3.9 | 3.0 | 2.5 | 2.2 | | | | JULY | 2.1 | 18 | 8.3 | 5.0 | .60 | 7.2 | | | | | | | | | AUGUST | 1.5 | 6.7 | 3.9 | 1.8 | .45 | 3.4 | | | | | | | | | SEPTEMBER | 1.7 | 6.6 | 3.2 | 1.3 | . 39 | 2.8 | | | | | | | | | ANNUAL | 3.2 | 19 | 9.4 | 5.0 | .53 | 100 | | | | | | | | MAGNITUDE AND PROBABILITY OF INSTANTANEOUS PEAK FLOW BASED ON PERIOD OF RECORD 1925-82 MAGNITUDE AND PROBABILITY OF ANNUAL HIGH FLOW BASED ON PERIOD OF RECORD 1925-82 | DISCHARGE,
YEARS, A | | | | RECURRENC
OBABILITY | | | PERIOD
(CON- | | INTERV | AL, ÍN YI | R INDICAT
EARS, AND
BILITY, I | ANNUAL | | |------------------------|----------------------|----------|-----------|------------------------|----------|-----------|------------------------|----------|----------|-----------|-------------------------------------|----------|-----| | 1.25
80% | 2
50 %
 | 5
20% | 10
10% | 25
4% | 50
2% | 100
1% | SECU-
TIVE
DAYS) | 2
50% | 5
20% | 10
10% | 25
4% | 50
2% | 100 | | 30 | 74 | 219 | 414 | 862 | | | | | | | | | | | | | | | | | | 1 | 43 | 79 | 105 | 139 | | | | WEIGHTED | SKEW = | •587 | | | | | 3 | 34 | 62 | 83 | 112 | | | | | | | | | | | 7 | 28 | 46 | 59 | 74 | | | | | | | | | | | 15 | 23 | 38 | 48 | 60 | | | | | | | | | | | 30 | 19 | 31 | 40 | 50 | | | | | | | | | | | 60 | 16 | 27 | 34 | 43 | | | | | | | | | | | 90 | 15 | 24 | 30 | 38 | | | DURATION TABLE OF DAILY MEAN FLOW FOR PERIOD OF RECORD 1925-82 |
 | | DISCHAF | RGE, IN | CFS, | WHICH WAS | EQUALED | OR EXCEE | DED FOR | INDICATED | PERCENT | OF TIME | | | | |--------|-----|---------|---------|------|-----------|---------|----------|---------|-----------|---------|---------|-------------|-----|-----| |
5% | 10% | 15% | 20% | 25% | 30% | 40% | 50% | 60% | 70% | 75% | 80% | 85 % | 90% | 95% | |
27 | 21 | 18 | 15 | 13 | 11 | 7.6 | 5.9 | 4.6 | 3.6 | 3.2 | 3.0 | 2.7 | 2.5 | 2.0 | ## 14357500 BEAR CREEK AT MEDFORD, OR LOCATION.--Lat 42°19'40", long 122°52'10", in NW± sec.30, T.37 S., R.1 W., Jackson County, Hydrologic Unit 17100308, on left bank 40 ft upstream from Main Street Bridge in Medford and at mile 9.91. DRAINAGE AREA.--289 mi2. 417 270 205 162 131 106 73 52 38 27 22 18 14 10 5.8 PERIOD OF RECORD.--March 1915 to June 1920 (no low-flow records), October 1920 to September 1981. Monthly discharge only for some periods, published in WSP 1318. GAGE.--Water-stage recorder and concrete control. Datum of gage is 1,343.98 ft National Geodetic Vertical Datum of 1929. See WSP 1738 for history of changes prior to Dec. 31, 1947. REMARKS.---Flow partly regulated since 1924 by Emigrant Lake. Numerous diversions for irrigation above station. AVERAGE DISCHARGE.--61 years (water years 1921-81), 114 ft3/s, 82,590 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 14,500 ft³/s Dec. 2, 1962, gage height, 8.04 ft; maximum gage height, about 11.0 ft Feb. 20, 1927, from floodmarks, present datum, site then in use; no flow at times. STATISTICAL SUMMARIES | | La i ki i Millia | MAXIMUM | MEAN | STAN-
DARD
DEVIA-
TION | COEFFI-
CIENT OF
VARI- | PERCENT
OF
ANNUAL | PERIOD
(CON-
SECU- | ļ | ARGE, IN
INTERVAL,
EXCEEDANC | IN YEAR | RS, AND | ANNUAL N | ON- | |--------------------------------|--------------------------------|--|----------------------------|--|--|--------------------------------|--|---|--|--|---|--
--------------------------------------| | MONTH | (CFS) | (CFS) | (CFS) | (CFS) | ATION | RUNOFF | TIVE
DAYS) | 2
50% | 5
20% | 10
10% | 20
5% | 50
2% | 100
1% | | OCTOBER | 4.7 | 216 | 33 | 32 | .98 | 2.4 | 1 | 9.4 | 3.2 | 1.5 | | | | | NOVEMBER | 8.2 | 246 | 59 | 50 | .85 | 4.3 | 3 | 10 | 3.4 | 1.7 | .8 | | | | DECEMBER | 17 | 1137 | 147 | 195 | 1.33 | 10.7 | 7 | 11 | 3.9 | 1.9 | .9 | | | | JANUARY | 13 | 1080 | 221 | 238 | 1.08 | 16.0 | 14 | 13 | 4.3 | 2.1 | 1.1 | | | | FEBRUARY | 12 | 873 | 223 | 194 | .87 | 16.2 | 30 | 15 | 5.2 | 2.6 | 1.3 | | •3 | | MARCH | 14 | 787 | 202 | 163 | .81 | 14.7 | 60 | 17 | 6.4 | 3.3 | | | | | APRIL | 4.9 | 686 | 197 | 133 | .68 | 14.3 | 90 | 19 | 7.5 | 4.1 | 2.4 | | | | MAY | 1.5 | 391 | 134 | 99 | .74 | 9.7 | 120 | 22 | 9.3 | 5.5 | | | | | JUNE | 2.1 | 232 | 73 | 5 5 | .75 | 5.3 | 183 | 32 | 15 | 8.7 | 5.4 | 3.0 | 1.9 | | JULY | .5 | 95 | 29 | 23 | .78 | 2.1 | | | | | | | | | AUGUST
SEPTEMBER | •4 | 115 | 29 | 27
27 | .93 | 2.1
2.3 | | | | | | | | | SEPTEMBER | .7 | 92 | 31 | 21 | .85 | 2.3 | | | | | | | | | ANNUAL | 8.4 | 304 | 114 | 75 | .66 | 100 | | | | | | | | | | | | | | OUS PEAK F
6-81 | FLOW | MAG | | ND PROBA | | | | LOW | | YEARS, A | BASE
IN CFS, | FOR INDI | OD OF RE | CORD 191 | 6-81
INTERVAL,
IN PERCEN | , IN
NT | PERIOD
(CON- | BASED

DISCHA | ON PERI | OD OF RECEIVED | ECORD 19 R INDICATEARS, AND | 921-81
TED RECUID ANNUAL | RRENCE | | YEARS, A | BASE
, IN CFS,
AND ANNUA | FOR INDI-
L EXCEEDA | OD OF RE CATED RE NCE PROB | CORD 191 CURRENCE ABILITY, | 6-81
INTERVAL,
IN PERCEI | , IN
NT | PERIOD
(CON-
SECU- | BASEC
DISCHA | O ON PERI | OD OF RE
CFS, FOR
L, IN YE
E PROBAE | ECORD 19 R INDICA EARS, AND BILITY, | 921-81
TED RECUI
D ANNUAL
IN PERCEI | RRENCE | | YEARS, A | BASE
IN CFS, | FOR INDI | OD OF RE | CORD 191 | 6-81
INTERVAL,
IN PERCEN | , IN
NT | PERIOD
(CON- | BASED

DISCHA | ON PERI | OD OF RECEIVED | ECORD 19 R INDICATEARS, AND | 921-81
TED RECUID ANNUAL | RRENCE | | YEARS, A | BASE
, IN CFS,
AND ANNUA | FOR INDI-
L EXCEEDA
5
20% | OD OF RE | CORD 191 CURRENCE ABILITY, 25 4% | INTERVAL
IN PERCEN | , IN
NT | PERIOD
(CON-
SECU-
TIVE | BASEC
DISCHA
E | O ON PERI
RGE, IN
INTERVA
XCEEDANC | OD OF RE
CFS, FOF
L, IN YE
E PROBAE | ECORD 19 R INDICATE ARS, AND BILITY, | 921-81
TED RECUI
D ANNUAL
IN PERCEI | RRENCE
NT | | YEARS, A
1.25
80% | BASE IN CFS, AND ANNUA 2 50% | FOR INDI-
L EXCEEDA
5
20% | OD OF RE | CORD 191 CURRENCE ABILITY, 25 4% | INTERVAL,
IN PERCEN | , IN
NT
100 | PERIOD
(CON-
SECU-
TIVE | BASEC
DISCHA
E | O ON PERI
RGE, IN
INTERVA
XCEEDANC | OD OF RE
CFS, FOF
L, IN YE
E PROBAE | ECORD 19 R INDICATE ARS, AND BILITY, | 921-81
TED RECUI
D ANNUAL
IN PERCEI | RRENCE
NT | | YEARS, A | BASE IN CFS, AND ANNUA 2 50% | FOR INDI-
L EXCEEDA
5
20% | OD OF RE | CORD 191 CURRENCE ABILITY, 25 4% | INTERVAL,
IN PERCEN | , IN
NT
100 | PERIOD
(CON-
SECU-
TIVE
DAYS) | DISCHA E 2 50% | O ON PERI | OD OF RECOMMENDED | ECORD 19 R INDICA EARS, AND BILITY, 25 4% | 921-81
TED RECUI
O ANNUAL
IN PERCEI | 100
1% | | YEARS, A | BASE IN CFS, AND ANNUA 2 50% | FOR INDI-
L EXCEEDA
5
20% | OD OF RE | CORD 191 CURRENCE ABILITY, 25 4% | INTERVAL,
IN PERCEN | , IN
NT
100 | PERIOD
(CON-
SECU-
TIVE
DAYS) | BASEC
DISCHA
E
2
50% | O ON PERI | OD OF RECEIVED | R INDICA
EARS, ANI
BILITY,
25
4% | 921-81
TED RECUID ANNUAL
IN PERCE
50
2% | 100
1%
9270 | | YEARS, A | BASE IN CFS, AND ANNUA 2 50% | FOR INDI-
L EXCEEDA
5
20% | OD OF RE | CORD 191 CURRENCE ABILITY, 25 4% | INTERVAL,
IN PERCEN | , IN
NT
100 | PERIOD (CON- SECU- TIVE DAYS) | BASEC
DISCHA
E
 | O ON PERI
RGE, IN
INTERVA
XXCEEDANC
5
20% | OD OF RECEIVED TO THE PROBAGE 10% 3600 2450 | 25
4%
5590
3620 | 7330
4590 | 100
1%
9270
5630 | | YEARS, A | BASE IN CFS, AND ANNUA 2 50% | FOR INDI-
L EXCEEDA
5
20% | OD OF RE | CORD 191 CURRENCE ABILITY, 25 4% | INTERVAL,
IN PERCEN | , IN
NT
100 | PERIOD (CON- SECU- TIVE DAYS) 1 3 7 | DISCHA E 2 50% 957 718 532 | O ON PERI
RGE, IN
INTERVA
XCEEDANC
5
20%
2330
1650
1150 | OD OF RECEIVED | R INDICA
EARS, ANI
BILITY,
25
4%
5590
3620
2330 | 921-81
TED RECUID ANNUAL
IN PERCEI
50
2\$
7330
4590
2880 | 100
1%
9270
5630
3440 | | YEARS, A | BASE IN CFS, AND ANNUA 2 50% | FOR INDI-
L EXCEEDA
5
20% | OD OF RE | CORD 191 CURRENCE ABILITY, 25 4% | INTERVAL,
IN PERCEN | , IN
NT
100 | PERIOD (CON- SECU- TIVE DAYS) 1 3 7 | BASED
DISCHA
E
2
50%
 | O ON PERI
 | OD OF RECOME A STATE OF THE PROBABLE PR | ECORD 19 R INDICA EARS, ANI BILITY, 25 4 5590 3620 2330 1560 | 7330
4590
2880
1880 | 9270
5630
3440
2200 | | YEARS, A | BASE IN CFS, AND ANNUA 2 50% | FOR INDI-
L EXCEEDA
5
20% | OD OF RE | CORD 191 CURRENCE ABILITY, 25 4% | INTERVAL,
IN PERCEN | , IN
NT
100 | PERIOD (CON-
SECU-
TIVE DAYS) 1 3 7 7 15 30 | DISCHA E 2 50% 957 718 532 402 305 | O ON PERI
INTERVA
XCEEDANC
5
20%
2330
1650
1150
820
616 | OD OF RECOME A STATE OF THE PROBABLE PR | ECORD 19 R INDICA' EARS, ANI BILITY, 25 4 5590 3620 2330 1560 1170 | 7330
7380
7480
7480
7480
7480
7490
7490
7490
7490
7490
7490 | 9270
5630
3440
2200
1660 | | YEARS, A | BASE IN CFS, AND ANNUA 2 50% | FOR INDI-
L EXCEEDA
5
20% | OD OF RE | CURRENCE ABILITY, 25 4% 9830 1 | 6-81
INTERVAL,
IN PERCEI
50
2%
3500 178 | , IN
NT
1000
1% | PERIOD (CON-
SECU-
TIVE DAYS) | DISCHA E 2 50% 957 718 532 402 305 240 209 | ARGE, IN INTERVA (XCEEDANC) 5 20% 2330 1650 1150 820 616 465 401 | OD OF RECEIVED | FINDICA: R INDICA: EARS, ANI BILITY, 25 4\$ 5590 3620 2330 1560 1170 852 | 7330
4590
2880
1800
1800
1800
1810
1920 | 9270
5630
3440
2200
1180 | | YEARS, 7
1.25
80%
589 | BASE IN CFS, AND ANNUA 2 50% | FOR INDI-
L EXCEEDA
5
20%
3760 | OD OF RECOME | CORD 191 CURRENCE ABILITY, 25 4% 9830 1 | INTERVAL, IN PERCEN 50 2% 3500 178 | , IN
NT
100
1%
300 | PERIOD (CON-
SECU-
TIVE DAYS) 1 3 7 7 15 30 60 90 | 957
718
532
402
305
240
209 | ON PERIOR OF THE PRINCIPLE T | OD OF RECEIVED | R INDICA: R INDICA: RARS, ANI BILITY, 25 4\$ 5590 3620 2330 1560 1170 852 726 | 7330
4590
2880
1800
1800
1800
1810
1920 | 9270
5630
3440
2200
1180 | ## 14359000 ROGUE RIVER AT RAYGOLD, NEAR CENTRAL POINT, OR LOCATION.--Lat 42°26'15", long 122°59'10", in SW\ sec.18, T.36 S., R.2 W., Jackson County, Hydrologic Unit 17100308, on right bank at Raygold, 0.1 mi downstream from Gold Ray Dam, 1.0 mi downstream from Bear Creek, 5.6 mi northwest of Central Point, and at mile DRAINAGE AREA. -- 2.053 mi2. PERIOD OF RECORD.--August 1905 to September 1982. Prior to October 1921, published as "near Tolo." GAGE.--Water-stage recorder. Datum of gage Is 1,121.78 ft National Geodetic Vertical Datum of 1929. Prior to Sept. 19, 1914, nonrecording gage and Sept. 19, 1914, to Sept. 30, 1956, water-stage recorder, at site 300 ft upstream at same datum. REMARKS.--Flow regulated since February 1977 by Lost Creek Lake. Slight regulation by Fish Lake and Emigrant Lake. Many diversions for irrigation above station. AVERAGE DISCHARGE.--77 years (water years 1906-82), 2.963 ft³/s, 2.147.000 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 131,000 ft³/s Dec. 23, 1964, gage height, 23.43 ft, from rating curve extended above 63,000 ft³/s on basis of slope-area measurement of 113,000 ft³/s; minimum not determined; minimum daily, 616 ft³/s Sept. 6, 1931. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood in December 1861 reached a stage of about 32 ft, discharge not determined, and flood in February 1890 reached a stage of about 27.5 ft, discharge not determined, from information by Corps of Engineers. # STATISTICAL SUMMARIES MONTHLY AND ANNUAL MEAN DISCHARGES 1906-76 MAGNITUDE AND PROBABILITY OF ANNUAL LOW FLOW BASED ON PERIOD OF RECORD 1907-76 | | MINIMUM | MAXIMUM | MEAN | STAN-
DARD
DEVIA-
TION | COEFFI-
CIENT OF
VARI- | PERCENT
OF
ANNUAL | PERIOD
(CON-
SECU- | DISCH | INTERVAL | , IN YEA | R INDICA
RS, AND
BILITY, | ANNUAL N | ON- | |-----------|---------|---------|-------|---------------------------------|------------------------------|-------------------------|--------------------------|------------------|----------|-----------|--------------------------------|------------|-----------| | MONTH | (CFS) | (CFS) | (CFS) | (CFS) | ATION | RUNOFF | TIVE
DAYS) | 2
50 % | 5
20% | 10
10% | 20
5% | . 50
2% | 100
1% | | OCTOBER | 846 | 3799 | 1403 | 437 | .31 | 3.9 | 1 | 1100 | 926 | 841 | 774 | 702 | 656 | | NOVEMBER | 924 | 8409 | 2341 | 1349 | .58 | 6.5 | 3 | 1120 | 946 | 861 | 793 | 720 | 673 | | DECEMBER | 1073 | 18830 | 3675 | 2790 | .76 | 10.2 | 7 | 1130 | 957 | 870 | 801 | 726 | 677 | | JANUARY | 1112 | 11960 | 4605 | 2740 | .60 | 12.8 | 14 | 1150 | 969 | 879 | 807 | 730 | 680 | | FEBRUARY | 1208 | 12540 | 4713 | 2211 | .47 | 13.1 | 30 | 1170 | 985 | 892 | 817 | 738 | 686 | | MARCH | 1974 | 12520 | 4286 | 1895 | .44 | 11.9 | 60 | 1210 | 1010 | 918 | 841 | 758 | 704 | | APRIL | 1649 | 7805 | 4207 | 1280 | .30 | 11.7 | 90 | 1240 | 1040 | 944 | 864 | 777 | 721 | | MAY | 1279 | 6702 | 3908 | 1297 | .33 | 10.8 | 120 | 1290 | 1080 | 974 | 890 | 800 | 742 | | JUNE | 920 | 5749 | 2839 | 1119 | • 39 | 7.9 | 183 | 1550 | 1250 | 1110 | 1000 | 894 | 826 | | JULY | 747 | 2701 | 1607 | 453 | .28 | 4.5 | | | | | | | | | AUGUST | 642 | 2042 | 1266 | 277 | .22 | 3.5 | |
 | | | | | | SEPTEMBER | 679 | 1763 | 1233 | 227 | .18 | 3.4 | | | | | | | | | ANNUAL | 1159 | 5132 | 2998 | 892 | .30 | 100 | | | | | | | | MAGNITUDE AND PROBABILITY OF INSTANTANEOUS PEAK FLOW BASED ON PERIOD OF RECORD 1906-76 MAGNITUDE AND PROBABILITY OF ANNUAL HIGH FLOW BASED ON PERIOD OF RECORD 1906-76 | | • | FOR IN | | | | RVAL, IN
ERCENT | PERIOD
(CON- | DISC | INTER | N CFS, FO
VAL, IN N
NCE PROB | YEARS, A | ND ANNUA | _ | |-------------|------------------|------------------|-----------|----------|------------------|--------------------|------------------------|----------------------|-------------------------|------------------------------------|------------------------|----------------------------------|-------------------------| | 1.25
80% | 2
50 % | 5
20 % | 10
10% | 25
4% | 50
2 % | 100
1% | SECU-
TIVE
DAYS) | 2
50 % | 5
20 % | 10
10% | 25
4% | 50
2 % | 100 | | 15200 | 26100 | 46400 | 63500 | 89600 | 112000 | 139000 | | 10400 | 74100 | 46100 | 64000 | 70400 | 06600 | | WEIGHTE | D SKEW = | -201 | | | | | 3 | 19400
14500 | 34100
24900 | 46100
33600 | 64000
46700 | 79400
58300 | 96600
71500 | | | | | | | | | 7
15 | 10800
8180 | 17500
12 4 00 | 22900
15600 | 30900
20100 | 37800
23700 | 45400
27700 | | | | | | | | | 30
60
90 | 6500
5480
5040 | 9360
7610
6860 | 11500
9090
8050 | 14400
11000
9540 | 16800
125 0 0
10600 | 19300
14000
11700 | DURATION TABLE OF DAILY MEAN FLOW FOR PERIOD OF RECORD 1906-76 | | | DISC | CHARGE, | IN CFS, | WHICH WAS | EQUALED | OR EXC | EDED FOR | INDICATE | D PERCEN | T OF TIM | IE | | | |------|------|--------------|---------|---------|-----------|---------|--------|----------|----------|----------|----------|------|------|-----| | 5% | 10% | 15% | 20% | 25% | 30% | 40% | 50% | 60% | 70% | 75% | 80% | 85% | 90% | 95% | | 7020 | 5560 | 4 790 | 4200 | 3750 | 3380 | 2720 | 2120 | 1720 | 1470 | 1370 | 1280 | 1200 | 1120 | 993 | 225 ## 14361500 ROGUE RIVER AT GRANTS PASS, OR LOCATION.--Lat 42°25'50", long 123°19'00", in NW½ sec.20, T.36 S., R.5 W., Josephine County, Hydrologic Unit 17100308, on right bank at city of Grants Pass filter plant, 0.6 mi upstream from bridge on State Highway 99 at Grants Pass, and at mile 101.8. DRAINAGE AREA .-- 2.459 mi2. 9390 6710 5580 4910 4380 3910 3090 2400 1850 1540 1430 1310 1200 1080 961 PERIOD OF RECORD.--October 1938 to September 1982. Prior to January 1939 monthly discharge only, published in WSP 1318. GAGE.,-Water-stage recorder. Datum of gage is 885.28 ft National Geodetic Vertical Datum of 1929. Prior to Aug. 8, 1957, at datum 3.00 ft higher. REMARKS.--Flow regulated since February 1977 by Lost Creek Lake, slight regulation by Fish Lake and Emigrant Lake. Large fluctuations at times caused by Savage Rapids Dam 5.5 mi above station. Many diversions from Rogue River and tributaries above station, the largest of which is at Savage Rapids Dam of Grants Pass Irrigation District. AVERAGE DISCHARGE.--44 years, 3,475 ft³/s, 2,518,000 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 152,000 ft 3 /s Dec. 23, 1964, gage height, 34.15 ft, from rating curve extended above 93,000 ft 3 /s; minimum, 195 ft 3 /s Jan. 30, 1961; minimum daily, 606 ft 3 /s Sept. 10, 1968. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood in December 1861 reached a stage of about 42 ft, present datum (information furnished by Corps of Engineers). Flood in February 1890 reached a stage of about 35 ft, present datum, and that of Feb. 21, 1927, about 31 ft, present datum, according to local resident. | | MINIMUM | MAX I MUM | MEAN | STAN-
DARD
DEVIA-
TION | COEFFI-
CIENT OF
VARI- | PERCENT
OF
ANNUAL | PERIOD
(CON-
SECU- | DISC | INTERVA | L, IN YE | ARS, AND | ATED RECU
ANNUAL N
IN PERCE | ON- | |----------------------------------|--|--|--|---|---|-------------------------------|--|--|--|--|---|---|--------------| | MONTH | (CFS) | (CFS) | (CFS) | (CFS) | ATION | RUNOFF | TIVE
Days) | 2
50% | 5
20% | 10
10% | 20
5% | 50
2% | 100
1% | | OCTOBER | 987 | 4934 | 1627 | 686 | .42 | 3.8 | 1 | 990 | 823 | 744 | 684 | 621 | | | NOVEMBER | 1132 | 9086 | 2841 | 1605 | .56 | 6.6 | 3 | 1000 | 847 | 775 | 721 | 664 | | | DECEMBER | 1450 | 23380 | 5403 | 4352 | .81 | 12.5 | 7 | 1020 | 863 | 794 | 742 | 687 | | | JANUARY | 1797 | 15170 | 6741 | 4178 | .62 | 15.5 | 14 | 1030 | 881 | 813 | 762 | 709 | | | FEBRUARY | 2469 | 14600 | 6087 | 2467 | -41 | 14.0 | 30 | 1060 | 905 | 836 | 786 | 734 | | | MARCH | 2118 | 15320 | 5423 | 2746 | .51 | 12.5 | 60 | 1110 | 949 | 881 | 831 | 779 | | | APRIL | 1874 | 8395 | 4546 | 1357 | .30 | 10.5 | 90 | 1170 | 998 | 923 | 866 | 807 | | | MAY | 1714 | 6368 | 4056 | 1262 | .31 | 9.4 | 120 | 1260 | 1080 | 993 | 927 | 857 | | | JUNE | 1131 | 5647 | 2829 | 1076 | .38 | 6.5 | 183 | 1610 | 1360 | 1250 | 1170 | 1090 | | | JULY | 817 | 2335 | 1473 | 408 | .28 | 3.4 | | | | | | | | | AUGUST | 805 | 1919 | 1168 | 263 | .23 | 2.7 | | | | | | | | | SEPTEMBER | 791 | 1594 | 1177 | 211 | .18 | 2.7 | 6269

PROBABILI
D ON PERI | | | .32

OUS PEAK 1
0-76 | 100

FLOW |
MA | | AND PROE | | |
AL HIGH F
1940-76 |
LOW | | MAGNII
DISCHARGE,
YEARS, A | TUDE AND
BASE
IN CFS, | PROBABILI
D ON PERI
FOR INDI-
L EXCEEDA | TY OF IN
OD OF RE
CATED RE
NCE PROB | STANTANE
CORD 194
CURRENCE
ABILITY, | OUS PEAK I
0-76
INTERVAL
IN PERCEI | FLOW
, IN
NT | PERIOD
(CON- | BAS | ED ON PER
HARGE, IN | RIOD OF

N CFS, F
/AL, IN | RECORD

OR INDIC
YEARS, A | | RRENCE | | DISCHARGE, | TUDE AND
BASE | PROBABILI
D ON PERI | TY OF IN
OD OF RE
CATED RE | STANTANE
CORD 194
CURRENCE | OUS PEAK I
0-76
INTERVAL
IN PERCEI | FLOW | PERIOD
(CON-
SECU-
TIVE | DISCI | ED ON PER
HARGE, IN
INTERN
EXCEEDAN | RIOD OF
N CFS, F
/AL, IN
NCE PROB | RECORD OR INDIC YEARS, A ABILITY, | 1940-76 ATED RECUIND ANNUAL IN PERCE | RRENCE
NT | | MAGNII | TUDE AND
BASE
IN CFS,
IND ANNUA | PROBABILI
D ON PERI
FOR INDI
L EXCEEDA
5
20% | TY OF IN
OD OF RE
CATED RE
NCE PROB | STANTANE
CORD 194
 | OUS PEAK I
0-76
INTERVAL
IN PERCEI | FLOW
, IN
NT | PERIOD
(CON-
SECU- | BASI
DISCI | ED ON PER
HARGE, IN
INTERN
EXCEEDAN | RIOD OF
N CFS, F
/AL, IN
NCE PROB | RECORD OR INDIC YEARS, A ABILITY, | 1940-76
ATED RECU
ND ANNUAL
IN PERCE | RRENCE | | MAGNIT | TUDE AND BASE IN CFS, ND ANNUA 2 50% | PROBABILI
D ON PERI
FOR INDI
L EXCEEDA
5
20% | TY OF IN
OD OF RE
CATED RE
NCE PROB | STANTANE
CORD 194
CURRENCE
ABILITY, | OUS PEAK I
0-76
INTERVAL
IN PERCEI | FLOW
, IN
NT | PERIOD
(CON-
SECU-
TIVE
DAYS) | DISCI 2 50% | ED ON PER
HARGE, IN
INTERN
EXCEEDAN
5
20% | RIOD OF N CFS, F VAL, IN NCE PROB 10 10% | RECORD OR INDIC YEARS, A ABILITY, 25 4% | 1940-76 ATED RECUIND ANNUAL IN PERCE 50 2% | 100
1% | | MAGNIT | FUDE AND
BASE
IN CFS,
IND ANNUA
2
50% |
PROBABILI
D ON PERI
FOR INDI
L EXCEEDA
5
20% | TY OF IN
OD OF RE
CATED RE
NCE PROB | STANTANE
CORD 194
CURRENCE
ABILITY, | OUS PEAK I
0-76
INTERVAL
IN PERCEI | FLOW
, IN
NT | PERIOD
(CON-
SECU-
TIVE
DAYS) | DISCI | HARGE, IN INTER EXCEEDAN 5 20% | RIOD OF
N CFS, F
VAL, IN
NCE PROB
10
10% | RECORD OR INDIC YEARS, A ABILITY, 25 4% 102000 74000 | 1940-76 ATED RECUIND ANNUAL IN PERCE 50 2% 123000 90400 | 100
1% | | MAGNIT | TUDE AND BASE IN CFS, ND ANNUA 2 50% | PROBABILI
D ON PERI
FOR INDI
L EXCEEDA
5
20% | TY OF IN
OD OF RE
CATED RE
NCE PROB | STANTANE
CORD 194
CURRENCE
ABILITY, | OUS PEAK I
0-76
INTERVAL
IN PERCEI | FLOW
, IN
NT | PERIOD
(CON-
SECU-
TIVE
DAYS) | DISCI
2
50%
31400
23000
16000 | HARGE, IN INTERV EXCEEDAN 5 20% 56200 40400 27000 | N CFS, F
/AL, IN
NCE PROB
10
10%
75200
54100
35700 | RECORD OR INDIC YEARS, A ABILITY, 25 4% 102000 74000 48500 | 1940-76 ATED RECUIND ANNUAL IN PERCEI 50 2% 123000 90400 59200 | 100
1% | | MAGNIT | TUDE AND BASE IN CFS, ND ANNUA 2 50% | PROBABILI
D ON PERI
FOR INDI
L EXCEEDA
5
20% | TY OF IN
OD OF RE
CATED RE
NCE PROB | STANTANE
CORD 194
CURRENCE
ABILITY, | OUS PEAK I
0-76
INTERVAL
IN PERCEI | FLOW
, IN
NT | PERIOD
(CON-
SECU-
TIVE
DAYS)

1
3
7 | DISCI
2
50%
31400
23000
16000
11600 | ED ON PER
HARGE, IN
INTER\
EXCEEDAN
5
20%
56200
40400
27000
18300 | 75200
54100
35700
23400 | RECORD OR INDIC YEARS, A ABILITY, 25 4% 102000 74000 48500 30500 | 1940-76 ATED RECUIND ANNUAL IN PERCEI 50 2% 123000 90400 59200 36200 | 100
1% | | MAGNIT | TUDE AND BASE IN CFS, ND ANNUA 2 50% | PROBABILI
D ON PERI
FOR INDI
L EXCEEDA
5
20% | TY OF IN
OD OF RE
CATED RE
NCE PROB | STANTANE
CORD 194
CURRENCE
ABILITY, | OUS PEAK I
0-76
INTERVAL
IN PERCEI | FLOW
, IN
NT | PERIOD
(CON-
SECU-
TIVE
DAYS)
 | DISCI 250% 31400 23000 11600 8770 | HARGE, IN INTERNEXCEEDAN 56200 40400 27000 18300 13300 | 75200
54100
75200
54100
35700
23400
16800 | RECORD OR INDIC YEARS, A ABILITY, 25 4% 102000 74000 48500 30500 21700 | 1940-76 ATED RECUIND ANNUAL IN PERCEI 50 2\$ 123000 90400 59200 36200 25800 | 100
1% | | MAGNIT | TUDE AND BASE IN CFS, ND ANNUA 2 50% | PROBABILI
D ON PERI
FOR INDI
L EXCEEDA
5
20% | TY OF IN
OD OF RE
CATED RE
NCE PROB | STANTANE
CORD 194
CURRENCE
ABILITY, | OUS PEAK I
0-76
INTERVAL
IN PERCEI | FLOW
, IN
NT | PERIOD
(CON-
SECU-
TIVE
DAYS)
 | DISCI
2
50%
31400
23000
116000
8770
7080 | HARGE, IN INTERVENCE EXCEEDAN 5 20% | 75200
54100
35700
23400
16800
12700 | RECORD OR INDIC YEARS, A ABILITY, 25 4% 102000 74000 48500 30500 21700 16200 | 1940-76 ATED RECUIND ANNUAL IN PERCEI 50 2% 123000 90400 59200 36200 25800 19000 | 100
1% | | MAGNIT | TUDE AND BASE IN CFS, ND ANNUA 2 50% | PROBABILI
D ON PERI
FOR INDI
L EXCEEDA
5
20% | TY OF IN
OD OF RE
CATED RE
NCE PROB | STANTANE
CORD 194
CURRENCE
ABILITY, | OUS PEAK I
0-76
INTERVAL
IN PERCEI | FLOW
, IN
NT | PERIOD
(CON-
SECU-
TIVE
DAYS)
 | DISCI 250% 31400 23000 11600 8770 | HARGE, IN INTERNEXCEEDAN 56200 40400 27000 18300 13300 | 75200
54100
75200
54100
35700
23400
16800 | RECORD OR INDIC YEARS, A ABILITY, 25 4% 102000 74000 48500 30500 21700 | 1940-76 ATED RECUIND ANNUAL IN PERCEI 50 2\$ 123000 90400 59200 36200 25800 | 100
1% | | MAGNIT | TUDE AND BASE IN CFS, ND ANNUA 2 50% | PROBABILI
D ON PERI
FOR INDI
L EXCEEDA
5
20% | TY OF IN OD OF RE | STANTANE CORD 194 CURRENCE ABILITY, 25 4% | OUS PEAK I
0-76
INTERVAL
IN PERCEI
50
2% | FLOW , IN 1100 118 | PERIOD
(CON-
SECU-
TIVE
DAYS)
 | DISCI 2 50% 31400 23000 16000 11600 8770 7080 6410 | HARGE, IN INTEREXCEEDAN 5020\$ 56200 40400 27000 13300 13300 9070 | 75200
54100
75200
54100
35700
16800
12700
11000 | RECORD OR INDIC YEARS, A ABILITY, 25 4% 102000 74000 48500 30500 21700 16200 | 1940-76 ATED RECUIND ANNUAL IN PERCEI 50 2% 123000 90400 59200 36200 25800 19000 | 100
1% | | MAGNIT | TUDE AND BASE IN CFS, ND ANNUA 2 50% | PROBABILI
D ON PERI
FOR INDI
L EXCEEDA
5
20%
73500 9 | TY OF IN OD OF RE | STANTANE CORD 194 CURRENCE ABILITY, 25 4% 2000 15 | OUS PEAK I
0-76
INTERVAL
IN PERCEI
50
2%
8000 | FLOW IN IOO I% MEAN FLOW | PERIOD (CON-
SECU-
TIVE DAYS) | DISCI
2
50%
31400
23000
116000
8770
7080
6410
OF RECC | ### FEED ON PEED PE | 75200
54100
75200
54100
35700
23400
16800
12700
111000 | RECORD OR INDIC YEARS, A ABILITY, 25 4% 102000 74000 48500 21700 16200 13600 | 1940-76 ATED RECUIND ANNUAL IN PERCEI 50 2% 123000 90400 59200 36200 25800 19000 | 100
1% | # 14362000 APPLEGATE RIVER NEAR COPPER. OR LOCATION.--Lat 42°03'50", long 123°06'37", in SW&NW& sec.30, T.40 S., R.3 W., Jackson County, Hydrologic Unit 17100309, U.S. Corps of Engineers land, on left bank 0.1 mi downstream from Brushy Gulch, 0.6 mi downstream from Applegate Dam, 3.1 mi northeast of former town of Copper, and at mile 45.7. DRAINAGE AREA. -- 225 mi2. PERIOD OF RECORD.--October 1938 to September 1982. Prior to January 1939 monthly discharge only, published in WSP 1318. GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 1,747.51 ft National Geodetic Vertical Datum of 1929. Prior to Oct. 1, 1977, at site 0.6 mi upstream at datum 12.15 ft higher. REMARKS.--Flow regulated since December 1980 by Applegate Lake. Some storage during winter in Squaw Lakes Reservoir, capacity, 1,100 acre-ft on Squaw Creek above station. Diversions above station from Carberry Creek for irrigation in Thompson Creek basin. AVERAGE DISCHARGE. -- 44 years, 447 ft³/s, 323,900 acre-ft/yr, adjusted for storage. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 29,800 ft³/s Jan. 15, 1974, gage height, 25.38 ft, site and datum then in use, from high-water mark in well, from rating curve extended above 12,000 ft³/s on basis of four slope-area measurements of peak flows made in 1950, 1955, 1964, and 1974; minimum, 1.5 ft³/s Dec. 20, 1980, result of regulation at Applegate dam, 0.6 mi upstream. ## STATISTICAL SUMMARIES MONTHLY AND ANNUAL MEAN DISCHARGES 1939-80 MAGNITUDE AND PROBABILITY OF ANNUAL LOW FLOW BASED ON PERIOD OF RECORD 1940-80 | | MINIMUM | MAXIMUM | MEAN | STAN-
DARD
DEVIA-
TION | COEFFI-
CIENT OF
VARI- | PERCENT
OF
ANNUAL | PERIOD
(CON-
SECU- | | INTERVAL | CFS, FOF
, IN YEAR
CE PROBAE | RS, AND A | NNUAL N | ON- | |-----------|---------|---------|-------------|---------------------------------|------------------------------|-------------------------|--------------------------|----------|----------|------------------------------------|-----------|----------|-----------| | MONTH | (CFS) | (CFS) | (CFS) | (CFS) | ATION | RUNOFF | TIVE
DAYS) | 2
50% | 5
20% | 10
10% | 20
5% | 50
2% | 100
1% | | OCTOBER | 29 | 803 | 99 | 129 | 1.30 | 1.9 | 1 | 35 | 28 | 24 | 21 | 18 | 17 | | NOVEMBER | 29 | 1549 | 286 | 288 | 1.01 | 5.3 | 3 | 36 | 28 | 25 | 22 - | 19 | 17 | | DECEMBER | 45 | 2617 | 598 | 585 | .98 | 11.2 | 7 | 37 | 29 | 26 | 23 | 20 | 18 | | JANUARY | 50 | 3761 | 846 | 772 | •91 | 15.8 | 14 | 39 | 30 | 27 | 24 | 21 | 19 | | FEBRUARY | 53 | 2942 | 77 3 | 509 | .66 | 14.5 | 30 | 41 | 33 | 29 | 26 | 23 | 22 | | MARCH | 93 | 1966 | 672 | 365 | .54 | 12.6 | 60 | 46 | 37 | 33 | 29 | 26 | 24 | | APRIL | 179 | 1347 | 727 | 287 | .39 | 13.6 | 90 | 52 | 42 | 37 | 34 | 30 | 27 | | MAY | 189 | 1418 | 749 | 325 | .43 | 14.0 | 120 | 62 | 48 | 43 | 38 | 34 | 32 | | JUNE | 112 | 898 | 371 | 217 | .58 | 6.9 | 183 | 114 | 79 | 65 | 55 | 46 | 40 | | JULY | 45 | 342 | 117 | 59 | .50 | 2.2 | | | | | | | | | AUGUST | 27 | 118 | 59 | 19 | •31 | 1.1 | | | | | | | | | SEPTEMBER | 24 | 91 | 49 | 13 | .26 | .9 | | | | | | | | | ANNUAL | 80 | 1077 | 444 | 195 | .44 | 100 | | | | | | | | MAGNITUDE AND PROBABILITY OF INSTANTANEOUS PEAK FLOW BASED ON PERIOD OF RECORD 1939-80 MAGNITUDE AND PROBABILITY OF ANNUAL HIGH FLOW BASED ON PERIOD OF RECORD 1939-80 | CHARGE, IN CFS, FOR INDICATED RECURRENCE INTERVAL, IN EARS, AND ANNUAL EXCEEDANCE PROBABILITY, IN PERCENT | | | | | | | PERIOD
(CON- | | INTER | N CFS, FO
VAL, IN Y
NCE PROB | YEARS, A | ND ANNUA | L | |---|--------------|----------|-----------|----------|----------|-----------|------------------------|----------|----------|------------------------------------|----------|----------|-----------| | 1.25
80% | 2
50%
 | 5
20% | 10
10% | 25
4% | 50
2% | 100
1% | SECU-
TIVE
DAYS) | 2
50% | 5
20% | 10
10% | 25
4% | 50
2% | 100
1% | | 3090 | 6560 | 12900 | 17700 | 24300 | 29500 | 34800 | | | | | | | | | | | | | | | | 1 | 4540 | 9100 | 12800 | 18100 | 22400 | 26900 | | E I GHTE |) SKEW = | 411 | | | | | 3 | 3290 | 6560 | 9280 | 13300 | 16600 | 20300 | | | | | | | | | 7 | 2350 | 4390 | 5930 | 8030 | 9680 | 11400 | | | | | | | | | 15 | 1700 | 2900 | 3740 | 4830 | 5650 | 6450 | | | | | | | | | 30 | 1310 | 2060 | 2550 | 3130 | 3540 | 3920 | | | | | | | | | 60 | 1060 | 1580 | 1900 | 2260 | 2490 | 2710 | | | | | | | | | 90 | 937 | 1350 | 1580 | 1820 | 1970 | 2090 | DURATION TABLE OF DAILY MEAN FLOW FOR PERIOD OF RECORD 1939-80 | | | DISC | HARGE, | IN CFS, | WHICH WAS | EQUALED | OR EXCE | EDED FOR | INDICATE | PERCEN | IT OF TI | ME | | | |------|------|------|--------|---------|-----------|---------|---------|----------|----------|--------|----------|-----|-----|-----| | 5% | 10% | 15% | 20% | 25% | 30%
 40% | 50% | 60% | 70% | 75% | 80% | 85% | 90% | 95% | | 1390 | 1020 | 829 | 694 | 592 | 506 | 364 | 229 | 136 | 84 | 70 | 60 | 52 | 45 | 38 | #### 14363000 APPLEGATE RIVER NEAR RUCH, OR LOCATION.--Lat 42°10'40", long 123°02'40", in E-1/2 sec.15, T.39-\$., R.3 W., Jackson County, Hydrologic Unit 17100309, on downstream side of left pier of Cameron Bridge, 1.6 mi upstream from Little Applegate River and 4.2 mi south of Ruch. DRAINAGE AREA .-- 302 mi2. PERIOD OF RECORD.--June 1911 to September 1914, September 1925 to September 1953. Published as "near Buncom" 1911-14. Monthly discharge only February to September 1927, published in WSP 1318. GAGE.--Water-stage recorder. Datum of gage is 1,475.64 ft National Geodetic Vertical Datum of 1929 (levels by Corps of Engineers). June 18, 1911, to Sept. 30, 1914, staff gage at datum 0.88 ft lower. REMARKS.--Diversions for irrigation of about 700 ecres above station. Cameron (Comstock) ditch diverts as much as 14 ft³/s around station on left bank. An average of about 8 ft³/s is diverted above station for irrigation in Thompson Creek basin. Several hundred acre-feet stored in Squaw Lake (capacity, 1,100 acre-ft) each spring for irrigation the following summer. AVERAGE DISCHARGE.--31 years (water years 1912-14, 1926-53), 389 ft³/s, 281,600 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 20,000 ft³/s Feb. 20, 1927, gage height, 16.0 ft, from rating curve extended above 8,000 ft³/s; minimum, 7 ft³/s Sept. 2, 1929. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of Dec. 21, 1955, reached a stage of 16.7 ft, from floodmarks. ## STATISTICAL SUMMARIES | A-1.4 | | |--|--| | | | | | | | | | | | | | | | | | BASED ON PERIOD OF RECORD 1927-53 | | | DACED AN AEDIAD OF DECORD 4007 67 | | PIONTILE AND ANNUAL PICAN DISCHARGES 1920 33 | THOUSE AND I NODADIETT OF AMOUNT COM TECH | | MONTHLY AND ANNUAL MEAN DISCHARGES 1926-53 | MAGNITUDE AND PROBABILITY OF ANNUAL LOW FLOW | | | | | | MINIMUM | MAX IMUM | MEAN | STAN-
DARD
DEVIA-
TION | COEFFI-
CIENT OF
VARI- | PERCENT
OF
ANNUAL | PERIOD
(CON-
SECU- | | INTERVAL | , IN YEAR | R INDICATE
RS, AND AN
BILITY, IN | INUAL NO | N- | |-----------|---------|----------|-------|---------------------------------|------------------------------|-------------------------|--------------------------|----------|------------------|-----------|--|-----------------|-----------| | MONTH | (CFS) | (CFS) | (CFS) | (CFS) | ATION | RUNOFF | TIVE
DAYS) | 2
50% | 5
20 % | 10
10% | 20
5% | 50
2% | 100
1% | | OCTOBER | 20 | 849 | 86 | 153 | 1.77 | 1.9 | 1 | 23 | 14 | 11 | 8.3 | 6.1 | | | NOVEMBER | 29 | 979 | 253 | 278 | 1.10 | 5.5 | 3 | 23 | 14 | 11 | 8.6 | 6.4 | | | DECEMBER | 44 | 1592 | 468 | 444 | •95 | 10.1 | 7 | 24 | 15 | 12 | 9.1 | 6.9 | | | JANUARY | 37 | 2287 | 599 | 531 | .89 | 12.9 | 14 | 26 | 16 | 13 | 10 | 7.8 | | | FEBRUARY | 93 | 2270 | 702 | 542 | .77 | 15.2 | 30 | 28 | 18 | 14 | 11 | 8.9 | | | MARCH | 301 | 1548 | 607 | 315 | .52 | 13.1 | 60 | 32 | 21 | 16 | 13 | 10 | | | APRIL | 232 | 1539 | 706 | 307 | .43 | 15.3 | 90 | 37 | 25 | 19 | 16 | 12 | | | MAY | 118 | 1873 | 669 | 394 | •59 | 14.5 | 120 | 45 | 30 | 24 | 20 | 15 | | | JUNE | 35 | 1189 | 354 | 295 | .83 | 7.7 | 183 | 85 | 53 | 42 | 34 | 27 | | | JULY | 18 | 324 | 103 | 73 | -71 | 2.2 | | | | | | | | | AUGUST | 12 | 119 | 45 | 24 | .54 | 1.0 | | | | | | | | | SEPTEMBER | 11 | 77 | 34 | 16 | . 47 | •7 | | | | | | | | | ANNUAL | 143 | 892 | 384 | 183 | .48 | 100 | | | | | | | | | MAGNITUDE AND PROBABILITY OF INSTANTANEOUS PEAK FLOW | MAGNITUDE AND PROBABILITY OF ANNUAL HIGH FLOW | |--|---| | BASED ON PERIOD OF RECORD 1926-53 | BASED ON PERIOD OF RECORD 1926-53 | | | | | | | TY, IN PE | | PERIOD
(CON- | | INTERV | AL, IN Y | EARS, AN | TED RECUR
D ANNUAL
IN PERCEN | | |---------------|----------|----------|---------------|----------|------------------|---------------|------------------------|------------------|------------------|-----------|----------|------------------------------------|-----| | 1 • 25
80% | 2
50% | 5
20% | 10
10%
 | 25
4% | 50
2 % | 100
1%
 | SECU-
TIVE
DAYS) | 2
50 % | 5
20 % | 10
10% | 25
4% | 50
2 % | 100 | | 2440 | 5140 | 10200 | 14400 | 20300 | 25100 | | | | | | | | | | | | | | | | | 1 | 3380 | 6520 | 9170 | 13200 | 16600 | | | WEIGHTED | SKEW = | 279 | | | | | 3 | 2570 | 4690 | 6450 | 9080 | 11300 | | | | | | | | | | 7 | 1920 | 3170 | 4090 | 5350 | 6360 | | | | | | | | | | 15 | 1410 | 2170 | 2720 | 3450 | 4020 | | | | | | | | | | 30 | 1120 | 1650 | 2010 | 2480 | 2840 | | | | | | | | | | 60 | 909 | 1310 | 1570 | 1890 | 2130 | | | | | | | | | | 90 | 791 | 1130 | 1360 | 1640 | 1850 | | DURATION TABLE OF DAILY MEAN FLOW FOR PERIOD OF RECORD 1926-53 | | | DISC | HARGE, | IN CFS, | WHICH WAS | EQUALED | OR EXC | EDED FOR | INDICATED | PERCENT | OF TIME | | | | |------|-----|------|--------|---------|-----------|---------|--------|----------|-----------|---------|---------|-----|-----|-----| | 5% | 10% | 15% | 20% | 25% | 30% | 40% | 50% | 60% | 70% | 75% | 80% | 85% | 90% | 95% | | 1270 | 939 | 758 | 617 | 525 | 444 | 296 | 181 | 112 | 69 | 56 | 46 | 38 | 31 | 23 | ## 14366000 APPLEGATE RIVER NEAR APPLEGATE, OR LOCATION.--Lat 42°14'30", long 123°08'20", in NEt sec.26, T.38 S., R.4 W., Jackson County, Hydrologic Unit 17100309, on left bank 0.9 mi downstream from Keeler Creek, 1.8 mi southeast of Applegate, and at mile 26.7. DRAINAGE AREA .-- 483 mi2. PERIOD OF RECORD. -- October 1938 to September 1982. GAGE.--Water-stage recorder. Datum of gage is 1,285.33 ft National Geodetic Vertical Datum of 1929. Prior to Dec. 23, 1938, nonrecording gage at same site and datum. REMARKS.--Flow regulated since December 1980 by Applegate Lake. Many diversions for irrigation above station. McDonald Creek Canal diverts from McDonald Creek above station for irrigation in Bear Creek basin. Thompson Creek Irrigation Association ditch diverts above station for irrigation in Thompson Creek basin. Fowler-Keeler and Berryman ditches divert above station for irrigation below. AVERAGE DISCHARGE.--44 years, 551 ft³/s, 399,200 acre-ft/yr, unadjusted. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 37,200 ft³/s Jan. 15, 1974, gage height, 20.41 ft, from rating curve extended above 18,000 ft³/s on basis of slope-area measurements of flow at gage heights 18.00 ft and 19.57 ft; minimum, 4.6 ft³/s Sept. 22-25. 1979. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of Feb. 20, 1927, reached a stage of 18.7 ft, from floodmarks. #### STATISTICAL SUMMARIES MONTHLY AND ANNUAL MEAN DISCHARGES 1939-80 MAGNITUDE AND PROBABILITY OF ANNUAL LOW FLOW BASED ON PERIOD OF RECORD 1940-80 | | MINIMUM | MAY I MILM | MEAN | STAN-
DARD
DEVIA-
TION | COEFFI-
CIENT OF
VARI- | PERCENT
OF
ANNUAL | PERIOD
(CON-
SECU- | | INTERVAL | CFS, FOR
, IN YEARS
CE PROBAB | S, AND AN | INUAL NO | N- | |-----------|---------|------------------|---------------|---------------------------------|------------------------------|-------------------------|--------------------------|----------|----------|-------------------------------------|-----------|----------|-----------| | MONTH | (CFS) | MAXIMUM
(CFS) | MEAN
(CFS) | (CFS) | ATION | RUNOFF | TIVE
DAYS) | 2
50% | 5
20% | 10
10% | 20
5% | 50
2% | 100
1% | | OCTOBER | 23 | 1118 | 118 | 179 | 1.52 | 1.8 | 1 | 17 | 10 | 8.0 | 6.4 | 5.0 | 4.2 | | NOVEMBER | 38 | 1853 | 333 | 336 | 1.01 | 5.0 | 3 | 18 | 11 | 8.8 | 7.1 | 5.7 | 4.8 | | DECEMBER | 59 | 3570 | 755 | 783 | 1.04 | 11.4 | 7 | 19 | 12 | 9.8 | 8.2 | 6.6 | 5.8 | | JANUARY | 66 | 4601 | 1124 | 1010 | .90 | 17.0 | 14 | 21 | 14 | 11 | 9.4 | 7.8 | 6.8 | | FEBRUARY | 68 | 3915 | 1020 | 687 | .67 | 15.4 | 30 | 24 | 16 | 13 | 11 | 9.0 | 7.9 | | MARCH | 106 | 2590 | 873 | 517 | .59 | 13.2 | 60 | 30 | 19 | 15 | 13 | 10 | 8.6 | | APRIL | 164 | 1791 | 876 | 360 | .41 | 13.3 | 90 | 38 | 25 | 20 | 17 | 14 | 12 | | MAY | 218 | 1745 | 881 | 407 | .46 | 13.3 | 120 | 52 | 36 | 30 | 26 | 21 | 19 | | JUNE | 96 | 1156 | 443 | 282 | .64 | 6.7 | 183 | 122 | 80 | 63 | 52 | 41 | 35 | | JULY | 16 | 348 | 104 | 74 | .71 | 1.6 | | | | | | | | | AUGUST | 11 | 96 | 39 | 22 | .56 | .6 | | | | | | | | | SEPTEMBER | 12 | 116 | 36 | 20 | .54 | .5 | | | | | | | | | ANNUAL | 84 | 1391 | 548 | 264 | .48 | 100 | | | | | | | | MAGNITUDE AND PROBABILITY OF INSTANTANEOUS PEAK FLOW BASED ON PERIOD OF RECORD 1939-80 MAGNITUDE AND PROBABILITY OF ANNUAL HIGH FLOW BASED ON PERIOD OF RECORD 1939-80 | DISCHARGE,
YEARS, A | | S, FOR IN
JAL EXCEE | | | | | PERIOD
(CON- | DISC | | VAL, IN | OR INDICA
YEARS, AI
ABILITY, | ND ANNUA | L | |---|----------|------------------------|-------------------|----------|------------------|-----------|------------------------|--------------|---------------|----------------|------------------------------------|----------------|----------------| | 1.25
80% | 2
50% | 5
20 % | 10
10 % | 25
4% | 50
2 % | 100
1% | SECU-
TIVE
DAYS) | 2
50% | 5
20% | 10
10% | 25
4% | 50
2% | 100
1% | | 3980 | 8830 | 17900 | 25000 | 34800 | 42500 | 50400 | | | | | | | 74000 | | WEIGHTED | SKEW = | - 435 | | | | | 1 | 6030
4310 | 12600
8880 | 17900
12700 | 25500
18100 | 31600
22700 | 38000
27500 | | *************************************** | JKLW - | • 400 | | | | | 7 | 3070 | 5850 | 7940 | 10700 | 12900 | 15100 | | | | | | | | | 15 | 2160 | 3830 | 5020 | 6550 | 7690 | 8810 | | | | | | | | | 30 | 1640 | 2710 | 3430 | 4310 | 4940 | 5540 | | | | | | | | | 60 | 1310 | 2050 | 2510 | 3030 | 3380 | 3710 | | | | | | | | | 90 | 1160 |
1750 | 2090 | 2460 | 2700 | 2900 | DURATION TABLE OF DAILY MEAN FLOW FOR PERIOD OF RECORD 1939-80 | _ | | | DISCH | ARGE, IN | CFS, V | WHICH WAS | EQUALED | OR EXCEE | ED FOR | INDICATED | PERCENT | OF TIME | | | | |---|------|------|-------|----------|--------|-----------|---------|----------|--------|-----------|---------|---------|-----|-----|-----| | _ | 5% | 10% | 15% | 20% | 25% | 30% | 40% | 50% | 60% | 70% | 75% | 80% | 85% | 90% | 95% | | | 1780 | 1290 | 1040 | 862 | 720 | 620 | 435 | 269 | 155 | 86 | 65 | 53 | 41 | 31 | 20 | # 14368500 POWELL CREEK NEAR WILLIAMS, OR LOCATION.--Lat 42°16'00", long 123°17'40", near center of sec.16, T.38 S., R.5 W., Josephine County, Hydrologic Unit 17100309, on left bank 0.1 mi upstream from Blodgett ditch intake and 2 mi northwest of Williams. DRAINAGE AREA. -- 8.17 mi2. PERIOD OF RECORD. -- September 1946 to September 1958. GAGE.--Water-stage recorder. Altitude of gage is 1,680 ft, by barometer. REMARKS.--No regulation or diversion above station. AVERAGE DISCHARGE.--12 years (water years 1947-58), 16.2 ft³/s, 11,730 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 1,110 ft³/s Jan. 18, 1953, gage height, 5.36 ft, from rating curve^extended above 550 ft³/s on basis of slope-area measurement at gage height 4.92 ft; minimum, 0.8 ft³/s Sept. 25, 1955. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of Dec. 28, 1945, reached a stage of about 7.0 ft, from floodmarks. ## STATISTICAL SUMMARIES MONTHLY AND ANNUAL MEAN DISCHARGES 1947-58 MAGNITUDE AND PROBABILITY OF ANNUAL LOW FLOW BASED ON PERIOD OF RECORD 1948-58 | | MANAGEMEN | MANAMON | MEAN | STAN-
DARD
DEVIA- | COEFFI-
CIENT OF | | PERIOD
(CON- | 11 | NTERVAL, | CFS, FOR
IN YEARS
E PROBABI | , AND AN | INUAL N | ON- | |---|--|---|--|----------------------------|---|---------------------------|---|--|--|---|---------------------------------|----------------------------------|--------| | MONTH | MINIMUM
(CFS) | (CFS) | MEAN
(CFS) | TION
(CFS) | VARI-
ATION | ANNUAL
RUNOFF | SECU-
TIVE
DAYS) | 2
50% | 5
20% | 10
10% | 20
5% | 50
2% | 100 | | OCTOBER | 1.3 | 39 | 6.0 | 11 | 1.79 | 3.1 | 1 | 1.3 | 1.0 | .9 | .8 | | | | NOVEMBER | 1.7 | 37 | 10 | 11 | 1.07 | 5.2 | 3 | 1.3 | 1.0 | .9 | .8 | | | | DECEMBER | 2.7 | 83 | 25 | 25 | 1.00 | 12.9 | 7 | 1.4 | 1.1 | 1.0 | •9 | | | | JANUARY | 6.0 | 90 | 48 | 33 | •69 | 24.5 | 14 | 1.4 | 1.1 | 1.0 | .9 | | | | FEBRUARY | 9.5 | 76 | 39 | 19 | .50 | 19.7 | 30 | 1.5 | 1.2 | 1.1 | 1.0 | | | | MARCH | 12 | 57 | 28 | 15 | •53 | 14.4 | 60 | 1.6 | 1.3 | 1.2 | 1.1 | | | | APRIL | 8.1 | 38 | 19 | 9.2 | .48 | 9.9 | 90 | 1.8 | 1.5 | 1.4 | 1.3 | | | | MAY | 3.7 | 19 | 9.1 | 5.1 | •57 | 4.6 | 120 | 2.0 | 1.6 | 1.5 | 1.4 | | | | JUNE | 2.3 | 14 | 5.0 | 3.2 | •65 | 2.5 | 183 | 2.8 | 2.1 | 1.8 | 1.6 | | | | JULY | 1.9 | 4.9 | 2.7 | 1.0 | .35 | 1.4 | | | | | | | | | AUGUST
SEPTEMBER | 1.4
1.2 | 3.1
2.6 | 2.0
1.7 | .6
.4 | .28
.25 | 1.0
.9 | ANNUAL | 6.1 | 28 | 16 | 6.7 | .41 | 100 | | | | | | | | | MAGNIT | FUDE AND
BASE | PROBABILI
D ON PERI | TY OF INS | STANTANEC
CORD 1947 | DUS PEAK 17-58 | 100

FLOW
 | PERIOD (CON- | DISCHAF | ON PERIORS
RGE, IN O | BILITY OF
DD OF REC
CFS, FOR
, IN YEA | INDICATE | 7-58
D RECUF
ANNUAL | RENCE | | MAGNIT | FUDE AND
BASE | PROBABILI
D ON PERIO | TY OF INS | STANTANEC
CORD 1947 | DUS PEAK
7-58
INTERVAL
IN PERCEI | 100

FLOW
 | PERIOD
(CON-
SECU-
TIVE | BASED
DISCHAF | ON PERIOR PER | OD OF REC
CFS, FOR
, IN YEA
E PROBABI | INDICATE RS, AND LITY, IN | 7-58 D RECUPANNUAL PERCEN | RRENCE | | MAGNIT
DISCHARGE,
YEARS, A | FUDE AND
BASE
, IN CFS,
AND ANNUA | PROBABILI
D ON PERIO
FOR INDIO
L EXCEEDAI | TY OF INS
OD OF REC
CATED REC
NCE PROBA | STANTANEC
CORD 1947
 | DUS PEAK 17-58 INTERVAL IN PERCEI | 100
FLOW
, IN
NT | PERIOD
(CON-
SECU- | BASED DISCHAR | ON PERIO | OD OF REC
CFS, FOR
, IN YEA
E PROBABI | INDICATE RS, AND | 7-58 D RECUF ANNUAL PERCEN | RRENCE | | MAGNIT
DISCHARGE,
YEARS, A | FUDE AND
BASE
, IN CFS,
AND ANNUA | PROBABILI
D ON PERIO
FOR INDIO
L EXCEEDAI | TY OF INS
OD OF REC
CATED REC
NCE PROBA | STANTANEC
CORD 1947
 | DUS PEAK 17-58 INTERVAL IN PERCEI | 100
FLOW
, IN
NT | PERIOD
(CON-
SECU-
TIVE
DAYS) | DISCHAP E) 2 50% | ON PERIO | DD OF REC
CFS, FOR
, IN YEA
E PROBABI
10
10% | INDICATE RS, AND LITY, IN | 7-58 D RECUF ANNUAL PERCEN 50 2% | RRENCE | | MAGNIT
DISCHARGE,
YEARS, A
1.25
80% | FUDE AND BASE , IN CFS, AND ANNUA 2 50% | PROBABILII
D ON PERIO
FOR INDIO
L EXCEEDAI | TY OF INS
DD OF REC
CATED REC
NCE PROBA | STANTANEC
CORD 1947
 | DUS PEAK 17-58 INTERVAL IN PERCEI | 100
FLOW
, IN
NT | PERIOD
(CON-
SECU-
TIVE
DAYS) | DISCHAFE) 2 50% | ON PERIOR PER | OD OF REC
CFS, FOR
, IN YEA
E PROBABI
10
10% | INDICATE RS, AND LITY, IN | 7-58 D RECUFANNUAL PERCEN 50 2% | RRENCE | | MAGNIT
DISCHARGE,
YEARS, A
1.25
80% | FUDE AND
BASE
, IN CFS,
AND ANNUA
2
50% | PROBABILII
D ON PERIO
FOR INDIO
L EXCEEDAI | TY OF INS
DD OF REC
CATED REC
NCE PROBA | STANTANEC
CORD 1947
 | DUS PEAK 17-58 INTERVAL IN PERCEI | 100
FLOW
, IN
NT | PERIOD
(CON-
SECU-
TIVE
DAYS) | DISCHAP 2 50% 322 239 | RGE, IN CONTROL OF THE PROPERTY PROPERT | DD OF REC
CFS, FOR
, IN
YEA
PROBABI
10
10% | INDICATE RS, AND LITY, IN 25 4% | 7-58 D RECUF | RRENCE | | MAGNIT
DISCHARGE,
YEARS, A
1.25
80% | FUDE AND BASE , IN CFS, AND ANNUA 2 50% | PROBABILII
D ON PERIO
FOR INDIO
L EXCEEDAI | TY OF INS
DD OF REC
CATED REC
NCE PROBA | STANTANEC
CORD 1947
 | DUS PEAK 17-58 INTERVAL IN PERCEI | 100
FLOW
, IN
NT | PERIOD
(CON-
SECU-
TIVE
DAYS) | DISCHAR E) 2 50% 322 239 153 | RGE, IN COUNTRY OF THE PROPERTY PROPERT | DD OF RECORD | INDICATE RS, AND LITY, IN 25 4% | 7-58 D RECUF | RRENCE | | MAGNIT
DISCHARGE,
YEARS, A
1.25
80% | FUDE AND BASE , IN CFS, AND ANNUA 2 50% | PROBABILII
D ON PERIO
FOR INDIO
L EXCEEDAI | TY OF INS
DD OF REC
CATED REC
NCE PROBA | STANTANEC
CORD 1947
 | DUS PEAK 17-58 INTERVAL IN PERCEI | 100
FLOW
, IN
NT | PERIOD (CON-
SECU-
TIVE DAYS) | BASED DISCHAF E> 2 50% 322 239 153 98 | ON PERIO
RGE, IN (
INTERVAL
(CEEDANCE
5
20%
523
364
225
145 | OD OF REC
CFS, FOR
, IN YEA
PROBABI
10
10%
611
414
254
166 | INDICATE RS, AND LITY, IN 25 4% | 7-58 D RECUF | RRENCE | | MAGNIT
DISCHARGE,
YEARS, A
1.25
80% | FUDE AND BASE , IN CFS, AND ANNUA 2 50% | PROBABILII
D ON PERIO
FOR INDIO
L EXCEEDAI | TY OF INS
DD OF REC
CATED REC
NCE PROBA | STANTANEC
CORD 1947
 | DUS PEAK 17-58 INTERVAL IN PERCEI | 100
FLOW
, IN
NT | PERIOD
(CON-
SECU-
TIVE
DAYS) | DISCHAR E) 2 50% 322 239 153 | RGE, IN COUNTRY OF THE PROPERTY PROPERT | DD OF RECORD | INDICATE RS, AND LITY, IN 25 4% | 7-58 D RECUFANNUAL PERCEN 50 2% | RRENCE | DURATION TABLE OF DAILY MEAN FLOW FOR PERIOD OF RECORD 1947-58 | | | DISC | HARGE, | IN CFS, | WHICH WAS | EQUALED | OR EXCEE | DED FOR | INDICATE | D PERCEN | NT OF TIM | IE | | | |----|-----|------|--------|---------|-----------|---------|----------|---------|----------|----------|-----------|-----|-----|-----| | 5% | 10% | 15% | 20% | 25% | 30% | 40% | 50% | 60% | 70% | 75% | 80% | 85% | 90% | 95% | | 63 | 38 | 28 | 21 | 16 | 13 | 8.2 | 5.2 | 3.6 | 2.6 | 2.2 | 2.0 | 1.8 | 1.6 | 1.4 | ## 14369500 APPLEGATE RIVER NEAR WILDERVILLE, OR LOCATION.--Lat 45°21'15", long 123°24'20", in SEtNEt sec.16, T.37 S., R.6 W., Josephine County, Hydrologic Unit 17100309, on left bank 0.5 mi downstream from Jackson Creek, 3.6 mi southeast of Wilderville, and at mile 7.6. DRAINAGE AREA .-- 698 mi2. PERIOD OF RECORD. -- October 1938 to September 1955, September 1978 to September 1982. GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 947.18 ft National Geodetic Vertical Datum of 1929 (Corps of Engineers bench mark). Prior to Sept. 1, 1978, nonrecording gage at site 1,100 ft upstream at datum 2.36 ft higher. REMARKS.--Flow regulated since December 1980 by Applegate Lake. Many diversions for irrigation above station. Wilderville ditch diverts up to 16 ft³/s 0.3 mi upstream and at the mouth of Jackson Creek. AVERAGE DISCHARGE.--21 years (water years 1939-55, 1979-82), 733 ft3/s, 531,100 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 47,500 ft³/s Jan. 18, 1953, gage height, 18.3 ft from floodmark, site and datum then in use, from rating curve extended above 12,000 ft³/s as explained below; minimum, 0.78 ft³/s Aug. 22-24, 1979. EXTREMES OUTSIDE PERIOD OF RECORD.—Flood of Dec. 22, 1955, reached a stage of 20.3 ft from floodmark, former site and datum, discharge, $66,500 \text{ ft}^3/\text{s}$, from rating curve extended above 12,000 ft $^3/\text{s}$ on basis of slope-area measurement of peak flow. Flood of February 1927 reached a stage of 22 ft at former site, from local resident. Floods of Dec. 22, 1964, and Jan. 15, 1974, are known to have exceeded the December 1955 flood. No flow was observed at present site during the late summer of 1977. #### STATISTICAL SUMMARIES MONTHLY AND ANNUAL MEAN DISCHARGES 1939-80 MAGNITUDE AND PROBABILITY OF ANNUAL LOW FLOW BASED ON PERIOD OF RECORD 1940-80 | | MINIMUM | MAXIMUM | MEAN | STAN-
DARD
DEVIA-
TION | COEFFI-
CIENT OF
VARI- | PERCENT
OF
ANNUAL | PERIOD
(CON-
SECU- | 11 | NTERVAL, | CFS, FOR
IN YEARS
E PROBABI | , AND AN | INUAL N | Ͻ Ň − | |-----------|---------|---------|-------|---------------------------------|------------------------------|-------------------------|--------------------------|----------|------------------|-----------------------------------|----------|----------|--------------| | MONTH | (CFS) | (CFS) | (CFS) | (CFS) | ATION | RUNOFF | TIVE
DAYS) | 2
50% | 5
20 % | 10
10 % | 20
5% | 50
2% | 100
1% | | OCTOBER | 34 | 1840 | 213 | 401 | 1.88 | 2.5 | 1 | 8.5 | 3.3 | 2.0 | 1.3 | | | | NOVEMBER | 55 | 1920 | 482 | 467 | •97 | 5.6 | 3 | 9.4 | 3.8 | 2.4 | 1.6 | | | | DECEMBER | 167 | 3117 | 1013 | 895 | .88 | 11.7 | 7 | 10 | 4.3 | 2.8 | 2.0 | | | | JANUARY | 297 | 4743 | 1636 | 1309 | .80 | 18.9 | 14 | 11 | 4.9 | 3.2 | 2.3 | | | | FEBRUARY | 394 | 3179 | 1527 | 920 | .60 | 17.7 | 30 | 13 | 6.1 | 4.2 | 3.1 | | | | MARCH | 415 | 2430 | 1094 | 481 | .44 | 12.7 | 60 | 21 | 11 | 7.6 | 5.7 | | | | APRIL | 448 | 2085 | 1078 | 428 | .40 | 12.5 | 90 | 30 | 17 | 13 | 10 | | | | MAY | 294 | 1893 | 953 | 414 | .43 | 11.0 | 120 | 52 | 32 | 25 | 20 | | | | JUNE | 99 | 1456 | 487 | 345 | .71 | 5.6 | 183 | 165 | 94 | 67 | 50 | | | | JULY | 22 | 399 | 98 | 94 | .95 | 1.1 | | | | | | | | | AUGUST | 5.2 | 116 | 26 | 27 | 1.05 | .3 | | | | | | | | | SEPTEMBER | 3.5 | 156 | 40 | 37 | .92 | .5 | | | | | | | | | ANNUAL | 264 | 1311 | 716 | 320 | .45 | 100 | | | | | | | | MAGNITUDE AND PROBABILITY OF INSTANTANEOUS PEAK FLOW BASED ON PERIOD OF RECORD 1939-80 MAGNITUDE AND PROBABILITY OF ANNUAL HIGH FLOW BASED ON PERIOD OF RECORD 1939-80 | | | | | RECURRENC
ROBABILITY | | | PERIOD
(CON- | DISC | INTER | VAL, IN | OR INDICAT
YEARS, AND
ABILITY, I | ANNUAL | | |-------------|----------|----------|-----------|-------------------------|------------------|-----------|------------------------|----------|----------|-----------|--|----------|-----------| | 1.25
80% | 2
50% | 5
20% | 10
10% | 25
4% | 50
2 % | 100
1% | SECU-
TIVE
DAYS) | 2
50% | 5
20% | 10
10% | 25
4% | 50
2% | 100
1% | | 4860 | 12500 | 30600 | 48000 | 76500 | | | | | | | | | | | | | | | | | | 1 | 7470 | 15500 | 22500 | 33200 | | | | VE I GHTE | D SKEW = | 182 | | | | | 3 | 5740 | 11400 | 15900 | 22400 | | | | | | | | | | | 7 | 4170 | 7490 | 9830 | 12800 | | | | | | | | | | | 15 | 2960 | 4940 | 6280 | 7940 | | | | | | | | | | | 30 | 2210 | 3580 | 4520 | 5710 | | _ | | | | | | | | | 60 | 1750 | 2710 | 3350 | 4130 | | _ | | | | | | | | | 90 | 1540 | 2310 | 2800 | 3380 | | _ | DURATION TABLE OF DAILY MEAN FLOW FOR PERIOD OF RECORD 1939-80 | | | DISC | HARGE, | IN CFS, | WHICH WAS | EQUALED | OR EXCE | EDED FOR | INDICATED | PERCENT | OF TIME | | | | |------|------|------|--------|---------|-----------|---------|-------------|----------|-----------|---------|---------|-----|-----|-----| | 5% | 10% | 15% | 20% | 25% | 30% | 40% | 50% | 60% | 70% | 75% | 80% | 85% | 90% | 95% | | 2410 | 1620 | 1330 | 1120 | 959 | 814 | 564 | 35 8 | 208 | 113 | 79 | 53 | 34 | 21 | 9.2 | ## 14370000 SLATE CREEK AT WONDER, OR LOCATION.--Lat 42°21'40", long 123°31'10", in SW‡ sec.10, T.37 S., R.7 W., Josephine County, Hydrologic Unit 17100309, on left bank 0.6 mi upstream from Elliot Creek and 0.7 mi east of Wonder. DRAINAGE AREA. -- 31.4 mi2. 5% 364 10% 212 146 109 86 68 PERIOD OF RECORD.--July to November 1913, October 1943 to September 1957, water years 1958-60 (annual maximum). October 1943 to September 1945 monthly discharge only, published in WSP 1318. GAGE.--Crest-stage gage. Datum of gage is 1,034.85 ft National Geodetic Vertical Datum of 1929. Prior to Nov. 21, 1946, staff gage at several sites within 0.5 mi of described site at various datums. Nov. 21, 1946, to Sept. 30, 1957, water-stage recorder at present site and datum. REMARKS.--No regulation. Several small diversions above station for irrigation. AVERAGE DISCHARGE.--14 years (water years 1944-57), 80.9 ft3/s, 58,570 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 4,020 ft³/s Oct. 29, 1950, gage height, 9.72 ft, from rating curve extended above 2,100 ft³/s on basis of slope-area measurements at gage heights 8.29 and 9.72 ft; minimum discharge, 0.2 ft³/s Aug. 25, 1957. # STATISTICAL SUMMARIES | | MINIMUM | MAXIMUM | MEAN | STAN-
DARD
DEVIA-
TION | COEFFI-
CIENT OF
VARI- | PERCENT
OF
ANNUAL | PERIOD
(CON-
SECU- | 1 | NTERVAL, | CFS, FOR
IN YEARS
E PROBAB | S, AND A | NNUAL NO |)N- | |--|--|---|---|---|---|---|---|--|--|--|--|-----------------------------|-----------| | MONTH | (CFS) | (CFS) | (CFS) | (CFS) | ATION | RUNOFF | TIVE
DAYS) | 2
50% | 5
20% | 10
10% | 20
5% | 50
2% | 100
1% | | OCTOBER NOVEMBER DECEMBER JANUARY FEBRUARY MARCH APRIL MAY JUNE JULY AUGUST SEPTEMBER ANNUAL | 2.2
6.5
28
30
67
81
27
12
5.9
2.1
1.0
1.1 |
213
195
581
546
316
247
202
91
39
10
4.7
3.9 | 30
78
181
266
199
143
76
35
13
4.9
2.3
2.2 | 61
68
165
179
75
56
48
24
8.9
2.5
1.1
.9 | 2.02
.87
.91
.67
.38
.39
.63
.68
.67
.51
.49
.43 | 2.9
7.6
17.6
25.8
19.3
13.9
7.4
3.4
1.3
.5
.2
.2 | 1
3
7
14
30
60
90
120
183 | .9
1.0
1.2
1.3
1.5
1.8
2.3
3.2
7.0 | .7
.8
.9
1.0
1.1
1.4
1.7
2.3
4.7 | .6
.7
.8
.8
.9
1.2
1.4
2.0
3.9 | .6
.6
.7
.7
.8
1.0
1.3
1.7
3.4 | | | | MACALLE | TIDE AND | DDODADILL | TV 0E 1110 | TANTANE | NIC DEAK | EL OW | 140.0 | CALLTURE A | ND DDADA | DIL LTV 00 | ANIARIAA | LIICH EI | OM. | | DISCHARGE, | BASE
IN CFS, | PROBABILI
D ON PERIO
FOR INDIG
L EXCEEDA | OD OF REC | CORD 1944
CURRENCE | I-60
INTERVAL | . IN | PERIOD | DISCHA | ON PERI | OD OF REC
CFS, FOR
L, IN YEA | CORD 194
INDICATE | 16-57
ED RECUF
ANNUAL | RENCE | | DISCHARGE, | BASE
IN CFS, | D ON PERIO | OD OF REC | CORD 1944
CURRENCE | INTERVAL | . IN | | BASED
DISCHA | ON PERI | OD OF REC | CORD 194
INDICATE | 16-57
ED RECUF
ANNUAL | RENCE | 40% 40 22 60% 11 70% 5.8 75% 80% 3.2 4.3 85% 90% 95% 1.9 1.4 2.5 # 14371500 GRAVE CREEK AT PEASE BRIDGE, NEAR PLACER, OR LOCATION.--Lat 42°38'30", long 123°12'40", in SEt sec.6, T.34 S., R.4 W., Jackson County, Hydrologic Unit 17100310, on right bank 0.5 mi downstream from Pease Bridge, 0.5 mi upstream from Boulder Creek, 5.4 mi east of Placer, and at mile 27.1. DRAINAGE AREA.--22.1 mi² at measuring site 0.5 mi upstream. PERIOD OF RECORD.--October 1940 to September 1982. Prior to October 1945 monthly discharge only, published in WSP 1318. GAGE.--Water-stage recorder. Datum of gage is 2,354.2 ft National Geodetic Vertical Datum of 1929 (Bureau of Reclamation bench mark). Prior to Aug. 4, 1955, at sites 0.5 mi upstream at datum 29.9 ft higher. REMARKS.--No regulation. One small diversion above station. Prior to 1945, Columbia upper ditch diverted water about 2 mi above station, bypassing station. Records herein are for measuring site. AVERAGE DISCHARGE.--37 years, 59.1 ft³/s, 36.32 in/yr, 42,820 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 6,240 ft³/s Dec. 22, 1964, gage height, 11.20 ft, from rating curve extended above 1,200 ft³/s on basis of slope-area measurement at gage height 9.66 ft; minimum, 0.12 ft³/s July 15, 1970. # STATISTICAL SUMMARIES MONTHLY AND ANNUAL MEAN DISCHARGES 1946-82 MAGNITUDE AND PROBABILITY OF ANNUAL LOW FLOW BASED ON PERIOD OF RECORD 1947-82 | | MINIMUM | MAXIMUM | MEAN | STAN-
DARD
DEVIA-
TION | COEFFI-
CIENT OF
VARI- | PERCENT
OF
ANNUAL | PERIOD
(CON-
SECU- | 1 | NTERVAL, | CFS, FOR
IN YEARS
E PROBABI | , AND AN | NUAL NO | N- | |-----------|------------|-------------|-------|---------------------------------|------------------------------|-------------------------|--------------------------|----------|------------------|-----------------------------------|----------|-----------------|-----------| | MONTH | (CFS) | (CFS) | (CFS) | (CFS) | ATION | RUNOFF | TIVE
DAYS) | 2
50% | 5
20 % | 10
10% | 20
5% | 50
2% | 100
1% | | OCTOBER | 1.2 | 163 | 13 | 28 | 2.16 | 1.8 | 1 | .7 | •5 | .4 | .3 | .3 | | | NOVEMBER | 3.0 | 307 | 62 | 61 | 1.00 | 8.6 | 3 | .7 | .5 | .4 | .3 | .3 | | | DECEMBER | 3.2 | 415 | 120 | 105 | .88 | 16.8 | 7 | .8 | .5 | .4 | .4 | •3 | | | JANUARY | 5.6 | 427 | 144 | 104 | •72 | 20.2 | 14 | .8 | •5 | .4 | .4 | .3 | | | FEBRUARY | 8.3 | 2 93 | 129 | 66 | .51 | 18.1 | 30 | .9 | .6 | .5 | .5 | .4 | | | MARCH | 37 | 216 | 109 | 52 | .48 | 15.3 | 60 | 1.2 | .8 | .7 | .6 | .5 | | | APRIL | 2 5 | 215 | 80 | 44 | .54 | 11.3 | 90 | 1.6 | 1.1 | 1.0 | .9 | .8 | | | MAY | 8.7 | 100 | 37 | 2 2 | • 59 | 5.2 | 120 | 2.4 | 1.8 | 1.5 | 1.4 | 1.2 | | | JUNE | 4.5 | 52 | 12 | 7.9 | .68 | 1.6 | 183 | 6.3 | 4.4 | 3.7 | 3.2 | 2.7 | | | JULY | 1.1 | 9.3 | 3.7 | 1.8 | .49 | .5 | | | | | | | | | AUGUST | .5 | 5.1 | 1.7 | 1.1 | .66 | .2 | | | | | | | | | SEPTEMBER | .5 | 7.6 | 1.8 | 1.3 | .73 | •3 | | | | | | | | | ANNUAL | 11 | 122 | 59 | 23 | .38 | 100 | | | | | | | | # MAGNITUDE AND PROBABILITY OF INSTANTANEOUS PEAK FLOW BASED ON PERIOD OF RECORD 1941-82 MAGNITUDE AND PROBABILITY OF ANNUAL HIGH FLOW BASED ON PERIOD OF RECORD 1946-82 | ISCHARGE,
YEARS, AI | | | | | | | PERIOD
(CON- | | INTERV | /AL, ÎN Y | EARS, AN | TED RECUI
D ANNUAL
IN PERCEI | | |------------------------|----------|----------|-----------|----------|-----------------|-----------|------------------------|----------|------------------|-----------|-------------|------------------------------------|-----------| | 1.25
80% | 2
50% | 5
20% | 10
10% | 25
4% | 50
2% | 100
1% | SECU-
TIVE
DAYS) | 2
50% | 5
20 % | 10
10% | 25
4% | 50
2 % | 100
1% | | 949 | 1650 | 2810 | 3680 | 4890 | 5860 | | | | | | | | | | | | | | | | | 1 | 1100 | 1840 | 2260 | 2720 | 3000 | | | WE I GHTED | SKEW = | 121 | | | | | 3 | 733 | 1200 | 1480 | 1790 | 1990 | | | | | | | | | | 7 | 476 | 742 | 898 | 1070 | 1180 | | | | | | | | | | 15 | 313 | 464 | 550 | 643 | 702 | | | | | | | | | | 30 | 237 | 332 | 381 | 431 | 460 | | | | | | | | | | 60 | 181 | 253 | 289 | 32 6 | 347 | | | | | | | | | | 90 | 155 | 211 | 239 | 266 | 282 | | DURATION TABLE OF DAILY MEAN FLOW FOR PERIOD OF RECORD 1946-82 | | | DISC | HARGE, | IN CFS, | WHICH WAS | EQUALED | OR EXCE | EDED FOR | INDICATE | D PERCEN | T OF TIM | 1E | | | |-----|-----|------|--------|---------|-----------|---------|---------|----------|----------|----------|----------|-----|-----|-----| | 5% | 10% | 15% | 20% | 25% | 30% | 40% | 50% | 60% | 70% | 75% | 80% | 85% | 90% | 95% | | 231 | 150 | 111 | 86 | 67 | 54 | 34 | 18 | 9.0 | 4.4 | 3.2 | 2.3 | 1.7 | 1.3 | .9 | ## 14372300 ROGUE RIVER NEAR AGNESS, OR LOCATION.--Lat 42°34'50", long 124°03'30", in NEtNWt sec.6, T.35 S., R.11 W., Curry County, Hydrologic Unit 17100310, on left bank 0.8 mi upstream from Shasta Costa Creek, 1.5 mi north of Agness, 2.6 mi upstream from Illinois River, and at mile 29.7. DRAINAGE AREA. -- 3,939 mi2. PERIOD OF RECORD. -- October 1960 to September 1982. GAGE.--Water-stage recorder. Datum of gage is 113.81 ft National Geodetic Vertical Datum of 1929 (levels by U.S. Bureau of Public REMARKS.--Flow regulated since February 1977 by Lost Creek Lake, since December 1980 by Applegate Lake. Slight regulation by Fish Lake and Emigrant Lake. Many diversions for irrigation and mining. AVERAGE DISCHARGE.--22 years, 6,149 ft³/s, 4,455,000 acre-ft/yr. MONTHLY AND ANNUAL MEAN DISCHARGES 1961-76 EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 290,000 ft³/s Dec. 23, 1964, from slope-area measurement; maximum gage height, 68.03 ft Dec. 23, 1964, from floodmark (backwater from !!linois River); minimum discharge, 608 ft3/s July 9, 10, 1968. STATISTICAL SUMMARIES | | MINIMUM | MAXIMUM | MEAN | STAN-
DARD
DEVIA-
TION | COEFFI-
CIENT OF
VARI- | PERCENT
OF
ANNUAL | PERIOD
(CON-
SECU- | DISC | INTERVAL | ., IN YEA | OR INDICA
ARS, AND
ABILITY, | ANNUAL N | ON- | |----------|---------|---------|-------|---------------------------------|------------------------------|-------------------------|--------------------------|----------|------------------|-----------|-----------------------------------|------------------|-----------| | MONTH | (CFS) | (CFS) | (CFS) | (CFS) | ATION | RUNOFF | TIVE
DAYS) | 2
50% | 5
20 % | 10
10% | 20
5% | 50
2 % | 100
1% | | OCTOBER | 1320 | 5070 | 1909 | 894 | .47 | 2.4 | 1 | 1100 | 901 | 811 | 742 | | | | NOVEMBER | 1721 | 20240 | 5502 | 4424 | .80 | 6.9 | 3 | 1110 | 919 | 829 | 759 | | | | DECEMBER | 4186 | 43980 | 11530 | 9717 | .84 | 14.5 | 7 | 1130 | 938 | 847 | 776 | | | | JANUARY | 3286 | 32610 | 16200 | 10280 | .63 | 20.3 | 14 | 1160 | 958 | 863 | 791 | | | | FEBRUARY | 4774 | 19070 | 11240 | 4042 | .36 | 14.1 | 30 | 1190 | 982 | 886 | 812 | | | | MARCH | 5289 | 25590 | 11500 | 6472 | .56 | 14.4 | 60 | 1250 | 1050 | 956 | 884 | | | | APRIL | 3341 | 14020 | 7737 | 3164 | .41 | 9.7 | 90 | 1320 | 1110 | 1010 | 933 | | | | MAY | 2548 | 11310 | 6024 | 2324 | . 39 | 7.6 | 120 | 1440 | 1210 | 1100 | 1010 | | | | | | | | | | | | | | | | | | | 0.1110.1111 | 2200 | 22010 | 10200 | 10200 | •02 | 2017 | 1 - 7 | 1100 | ,,,, | 002 | |-------------|------|-------|-------|-------|------|------|-------|------|------|------| | FEBRUARY | 4774 | 19070 | 11240 | 4042 | •36 | 14.1 | 30 | 1190 | 982 | 886 | | MARCH | 5289 | 25590 | 11500 | 6472 | .56 | 14.4 | 60 | 1250 | 1050 | 956 | | APRIL | 3341 | 14020 | 7737 | 3164 | .41 | 9.7 | 90 | 1320 | 1110 | 1010 | | MAY | 2548 | 11310 | 6024 | 2324 | .39 | 7.6 | 120 | 1440 | 1210 | 1100 | | JUNE | 1485 | 6128 | 3543 | 1413 | .40 | 4.5 | 183 | 2020 | 1670 | 1530 | | JULY | 864 | 2738 | 1741 | 526 | .30 | 2.2 | | | | | | AUGUST | 877 | 2149 | 1347 | 346 | . 26 | 1.7 | | | | | | SEPTEMBER | 935 | 1799 | 1336 | 243 | .18 | 1.7 | | | | | | ANNUAL | 3454 | 11990 | 6623 | 2241 | .34 | 100 | | | | | | ANNUAL | 3454 | 11990 | 6623 | 2241 | .34 | 100 | | | | | MAGNITUDE AND PROBABILITY OF INSTANTANEOUS PEAK FLOW BASED ON PERIOD OF RECORD 1961-76 MAGNITUDE AND PROBABILITY OF ANNUÁL HIGH FLOW BASED ON PERIOD OF RECORD 1961-76 1420 MAGNITUDE AND PROBABILITY OF ANNUAL LOW FLOW BASED ON PERIOD OF RECORD 1962-76 | | | • | | RECURRENC
ROBABILIT | | | PERIOD
(CON- | DISC | INTER | RVAL, IN | OR INDICA
YEARS, AN | D ANNUAL | | |-------------|--------------|----------------------|-----------|------------------------|------------------|---------------|------------------------|----------|----------|----------|------------------------|----------|-----------| |
1.25
80% | 2
50%
 | 5
20 %
 | 10
10% | 25
4% | 50
2 % | 100
1%
 | SECU-
TIVE
DAYS) | 2
50% | 5
20% | 10 | 25
4% | 50
2% | 100
1% | | 59600 | 107000 | 182000 | 234000 | 301000 | | | | | | | | | | | | | | | | | | 1 | 87500 | 148000 | 191000 | 246000 | | | | WE I GHT | ED SKEW | =387 | | | | | 3 | 63600 | 112000 | 151000 | 207000 | | | | | | | | | | | 7 | 43400 | 75500 | 102000 | 140000 | | | | | | | | | | | 15 | 28800 | 46800 | 60600 | 80300 | | | | | | | | | | | 30 | 19800 | 30200 | 38200 | 49600 | | | | | | | | | | | 60 | 15900 | 23200 | 28500 | 35900 | | | | | | | | | | | 90 | 13700 | 19300 | 23300 | 28500 | | | DURATION TABLE OF DAILY MEAN FLOW FOR PERIOD OF RECORD 1961-76 | | ספוע | HARGE, | IN CFS, | WHICH WAS | EQUALED | OR EXCE | EDED FOR | INDICATE | D PERCEN | T OF TIM | ME | | | |-------------|-------|--------|---------|-----------|---------|---------|----------|----------|----------|----------|-------------|------|------| | 5% 10% | 15% | 20% | 25% | 30% | 40% | 50% | 60% | 70% | 75% | 80% | 85 % | 90% | 95% | | 20900 13700 | 10500 | 8750 | 7470 | 6440 | 5140 | 3860 | 2600 | 1860 | 1660 | 1520 | 1370 | 1210 | 1060 | # 14372500 EAST FORK ILLINOIS RIVER NEAR TAKILMA, OR LOCATION.--Lat 42°00'10", long 123°37'30", in SEtNEt sec.15, T.41 S., R.8 W., Josephine County, Hydrologic Unit 17100311, Siskiyou National Forest, on right bank 0.3 mi downstream from Dunn Creek (California-Oregon State line), 3.4 mi south of Takilma, and at mile 71.2. DRAINAGE AREA. -- 42.3 mi². PERIOD OF RECORD.--April to September 1926, April 1927 to April 1932, October 1940 to September 1982. Monthly discharge only for some periods, published in WSP 1318. Records prior to 1942 water year not equivalent owing to large diversions. GAGE.--Water-stage recorder. Altitude of gage is 1,780 ft, from topographic map. Prior to Oct. 31, 1946, nonrecording gage at sites 0.6 mi downstream at different datums. Oct. 31, 1946, to May 13, 1949, nonrecording gage and May 14, 1949, to Aug. 23, 1965, water-stage recorder at site 0.6 mi downstream at datum 1,746.6 ft National Geodetic Vertical Datum of 1929. REMARKS.--No regulation. Two small diversions for irrigation above station. AVERAGE DISCHARGE.--41 years (water years 1942-82), $178 \text{ ft}^3/\text{s}$, 57.15 in/yr, 129,000 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.—Maximum discharge, 15,700 ft³/s Dec. 22, 1964, gage height, 14.90 ft, present site and datum, from floodmark, from rating curve extended above 4,400 ft³/s on basis of slope-area measurement of peak flow; minimum, 4.6 ft³/s Nov. 3, 1960. #### STATISTICAL SUMMARIES | MONTHLY AND ANNUAL MEAN DISCHARGES | 1942-82 | MAGNITUDE AND PROBABILITY OF ANNUAL LOW FLOW
BASED ON PERIOD OF RECORD 1943-82 | |------------------------------------|---------|---| | | | | | | 44751154154 | | | STAN-
DARD
DEVIA- | COEFFI-
CIENT OF | | PERIOD
(CON- | 11 | NTERVAL, | CFS, FOR
IN YEARS
E PROBAB | S, AND AN | NNUAL NO | N- | |-----------|------------------|------------------|---------------|-------------------------|---------------------|------------------|------------------------|----------|----------|----------------------------------|-----------|----------|-----------| | MONTH | MINIMUM
(CFS) | MAXIMUM
(CFS) | MEAN
(CFS) | TION
(CFS) | VARI-
ATION | ANNUAL
RUNOFF | SECU-
TIVE
DAYS) | 2
50% | 5
20% | 10
10% | 20
5% | 50
2% | 100
1% | | OCTOBER | 8.3 | 469 | 52 | 86 | 1.67 | 2.4 | 1 | 8.1 | 6.9 | 6.4 | 6.1 | 5.8 | 5.6 | | NOVEMBER | 12 | 873 | 209 | 180 | -86 | 9.7 | 3 | 8.2 | 7.0 | 6.5 | 6.1 | 5.8 | 5.6 | | DECEMBER | 12 | 1511 | 359 | 309 | .86 | 16.7 | 7 | 8.5 | 7.3 | 6.8 | 6.4 | 6.1 | 5.9 | | JANUARY | 22 | 1036 | 388 | 248 | -64 | 18.1 | 14 | 8.8 | 7.5 | 7.0 | 6.7 | 6.3 | 6.1 | | FEBRUARY | 37 | 969 | 332 | 181 | .55 | 15.5 | 30 | 9.5 | 8.1 | 7.6 | 7.3 | 6.9 | 6.7 | | MARCH | 85 | 606 | 264 | 137 | .52 | 12.3 | 60 | 11 | 9.2 | 8.6 | 8.2 | 7.8 | 7.6 | | APRIL | 74 | 437 | 236 | 96 | .41 | 11.0 | 90 | 12 | 11 | 9.9 | 9.4 | 9.0 | 8.7 | | MAY | 44 | 382 | 185 | 88 | .48 | 8.6 | 120 | 15 | 13 | 12 | 11 | 10 | 9.6 | | JUNE | 31 | 228 | 72 | 39 | .55 | 3.4 | 183 | 38 | 26 | 22 | 18 | 15 | 13 | | JULY | 13 | 55 | 23 | 8.6 | • 37 | 1.1 | | | | | | | | | AUGUST | 7.8 | 21 | 13 | 3.0 | .23 | .6 | | | | | | | | | SEPTEMBER | 7.1 | 41 | 13 | 6.2 | • 50 | .6 | | | | | | | | | ANNUAL | 40 | 315 | 178 | 60 | .34 | 100 | | | | | | | | | MAGNITUDE | AND PRO | DBABILITY | 0F | INSTANT | ANEOUS | PEAK | FLOW | |-----------|---------|-----------|----|---------|---------|------|------| | | BASED (| ON PERIOD | 0F | RECORD | 1942-82 | 2 | | | - 1 | MAGNITUDE | AND | PROBABIL | LITY | OF A | NNUAL | HIGH | FLOW | |-----|-----------|------|----------|------|-------|-------|-------|------| | | BASI | ED O | N PERIOD | OF | RECOR | D 194 | 12-82 | | | DISCHARGE,
YEARS, A | | | | | | | PERIOD
(CON- | | INTERV | CFS, FO | EARS, AN | D ANNUAL | | |------------------------|--------------|----------|---------------|----------|----------|-----------|------------------------|--------------|--------------|--------------|--------------|--------------|--------------| | 1.25
80% | 2
50%
 | 5
20% | 10
10%
 | 25
4% | 50
2% | 100
1% | SECU-
TIVE
DAYS) | 2
50% | 5
20% | 10
10% | 25
4% | 50
2% | 100 | | 2870 | 4310 | 6380 | 7800 | 9630 | 11000 | 12400 | | 7040 | | | | | | | WEIGHTED | SKEW - | _ 110 | | | | | 1 7 | 3010
2090 | 4720
3220 | 5780
3880 | 7010
4600 | 7850
5060 | 8620
5470 | | WEIGHTED | SILLI - | 110 | | | | | 7 | 1360 | 2080 | 2490 | 2940 | 3220 | 3470 | | | | | | | | | 15 | 867 | 1310 | 1560 | 1840 | 2020 | 2180 | | | | | | | | | 30 | 609 | 892 | 1050 | 1220 | 1330 | 1430 | | | | | | | | | 60 | 482 | 690 | 806 | 928 | 1000 | 1070 | | | | | | | | | 90 | 417 | 579 | 664 | 753 | 806 | 851 | DURATION TABLE OF DAILY MEAN FLOW FOR PERIOD OF RECORD 1942-82 | | | DISC | HARGE, | IN CFS, | WHICH WAS | EQUALED | OR EXCEE | DED FOR | INDICATED | PERCENT | OF TIME | | | | |-----|-----|------|--------|---------|-----------|---------|----------|---------|-----------|---------|---------|-----|-----|-----| | 5% | 10% | 15% | 20% | 25% | 30% | 40% | 50% | 60% | 70% | 75% | 80% | 85% | 90% | 95% | | 642 | 396 | 295 | 239 | 199 | 169 | 122 | 80 | 44 | 22 | 18 | 15 | 13 | 11 | 9.2 | 80% 38 85% 34 90% 95% 27 31 #### 14375000 SUCKER CREEK NEAR HOLLAND, OR LOCATION.--Lat 42°09'00", long 123°27'50", in NEt sec.25, T.39 S., R.7 W., Josephine County, Hydrologic Unit 17100311, on right bank 1.3 mi downstream from Grayback Creek and 4 mi northeast of Holland. DRAINAGE AREA .-- 76.2 mi2. 5% 10% 488 399 20% 338 25% 290 30% 185 120 78 52 44 250 PERIOD OF RECORD.--April to August 1940, September 1941 to September 1965. Prior to October 1945 monthly discharge only, published in WSP 1318. GAGE.--Water-stage recorder. Datum of gage is 1,777.22 ft National Geodetic Vertical Datum of 1929 (Bureau of Reclamation bench mark). Prior to Sept. 16, 1947, staff gage at several sites within 0.5 mi of present site at various datums. Sept. 16, 1947, to Sept. 19, 1952, staff gage at site 280 ft upstream at datum 0.62 ft higher. REMARKS.--No regulation. Grayback Canal and 3 small diversions from Grayback and Cave Creeks divert water for domestic use and irrigation above station. Most of return flow from these diversions enters creek above station. AVERAGE DISCHARGE.--24 years (water years 1942-65), 212 ft3/s, 153,500 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 17,500 ft³/s Dec. 22, 1964, gage height, 9.28 ft, from floodmark, from estimate of peak based on slope-area survey; minimum observed, 17 ft³/s Sept. 29 to Oct. 3, 1941. | | MINIMUM | MAXIMUM | MEAN | STAN-
DARD
DEVIA-
TION | COEFFI-
CIENT OF
VARI- | PERCENT
OF
ANNUAL | PERIOD
(CON-
SECU- | DISCH | INTERVAL | , IN YEA | OR INDICAT
ARS, AND A
ABILITY, I | ANNUAL NO | -ис | |---------------------------------|--|--|---|--|---|-------------------------|----------------------------------|----------------|-----------------------------------|---------------------------------|--|--------------------------------|-----------| | нтиом | (CFS) | (CFS) | (CFS) | (CFS) | ATION | RUNOFF | TIVE
DAYS) | 2
50% | 5
20 % | 10
10% | 20
5% | 50
2% | 100
1% | | OCTOBER
NOVEMBER
DECEMBER | 26
25
30 | 312
391
1016 | 66
138
298 | 73
95
272 | 1.10
.69
.91 | 2.5
5.3
11.4 | 1
3
7 | 25
26
26 | 22
22
23 | 21
21
22 | 20
20 -
21 |
 |
 | | JANUARY
FEBRUARY
JARCH | 77
117
95 | 921
1248
610 | 365
409
311 | 275
247
120 | .75
.60
.39 | 14.0
15.7
11.9 | 14
30
60 | 27
28
31 | 24
25
27 | 22
23
25 | 21
22
24 |
 |
 | | APRIL
MAY
JUNE | 69
105
88 | 594
691
361 | 364
340
176 | 125
145
80 | .34
.43
.45 | 14.0
13.1
6.8 | 90
120
183 | 34
39
69 | 30
33
50 | 28
30
42 | 27
28
36 |
 | | | | | 136 | 66 | 24 | .36 | 2.5 | | | | | | | | | JULY
AUGUST
SEPTEMBER | 41
28
23 | 57
40 | 39
31 | 8.5
5.1 | . 22 | 1.5 | | | | | | | | | AUGUST | 28 | 57 | 39 | | . 22 | 1.5 | | | | | | | | | MAGNI DISCHARGE YEARS, | 28
23
86
TUDE AND
BASE
, IN CFS, | 57
40
339
PROBABILI'
D ON PERIO
FOR INDIO
L EXCEEDA | 39
31
216
TY OF
IN
OD OF RE
CATED RE | 5.1 70 ISTANTANE CORD 194 | .22
.16
.33
OUS PEAK F
2-65 | 1.5
1.2
100
 | PERIOD
(CON- | BASE
DISCH | D ON PER ARGE, IN INTERV | OD OF R
CFS, FO
AL, IN Y | OF ANNUAL
ECORD 19
R INDICAT
EARS, AND
BILITY, I | 246-65
ED RECUR | RENCE | | MAGN I | 28
23
86
TUDE AND
BASE | 57
40
339
PROBABILI
D ON PERIO | 39
31
216
TY OF IN
OD OF RE | 70 STANTANE CORD 194 | .22
.16
.33
OUS PEAK F
2-65 | 1.5
1.2
100
 | PERIOD | BASE
DISCH | D ON PER ARGE, IN INTERV | OD OF R
CFS, FO
AL, IN Y | ECORD 19 R INDICAT | 246-65
ED RECUR | RENCE | | MAGNI SCHARGE YEARS, 1 | 28
23
86
TUDE AND
BASE
, IN CFS,
AND ANNUA | 57
40
339
PROBABILI'
D ON PERIO
FOR INDIO
L EXCEEDAI | 39
31
216
TY OF IN
OD OF RE
CATED RE
NCE PROB | 5.1 70 ISTANTANE CORD 194 CURRENCE ABILITY, 25 | .22
.16
.33
OUS PEAK F
2-65
INTERVAL,
IN PERCEN | 1.5
1.2
100
 | PERIOD
(CON-
SECU-
TIVE | BASE
DISCH | D ON PER ARGE, IN INTERV EXCEEDAN | CFS, FO
AL, IN Y
CE PROBA | ECORD 19 R INDICAT EARS, AND BILITY, I | ED RECUF
ANNUAL
N PERCEN | RRENCE | ## 14375100 SUCKER CREEK BELOW LITTLE GRAYBACK CREEK, NEAR HOLLAND, OR LOCATION.--Lat 42°09'35", long 123°28'40", in NE‡SW¼ sec.24, T.39 S., R.7 W., Josephine County, Hydrologic Unit 17100311, on right bank 500 ft downstream from Little Grayback Creek, 2.0 mi downstream from Grayback Creek, 3.7 mi northeast of Holland, and at mile DRAINAGE AREA .-- 83.9 mi2. PERIOD OF RECORD. -- October 1965 to September 1982. GAGE.--Water-stage recorder. Datum of gage is 1,713.92 ft National Geodetic Vertical Datum of 1929 (Bureau of Reclamation bench mark). REMARKS.--Grayback Canal and 3 small diversions from Grayback and Cave Creeks divert water for domestic use and irrigation above station. Return flow from these diversions enters creek above station. AVERAGE DISCHARGE.--17 years, 240 ft³/s, 38.85 in/yr, 173,900 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.---Maximum discharge, 8,550 ft³/s Jan. 15, 1974, gage height, 8.20 ft; minimum, 12 ft³/s Oct. 20, 1974. EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1940, 10.8 ft on Dec. 22, 1964, from floodmark, discharge, 19,300 ft³/s, from estimate based on slope-area measurement of peak flow at site 0.7 mi upstream. #### STATISTICAL SUMMARIES MONTHLY AND ANNUAL MEAN DISCHARGES 1966-82 MAGNITUDE AND PROBABILITY OF ANNUAL LOW FLOW BASED ON PERIOD OF RECORD 1967-82 | | MININUM | MAXIMUM | MEAN | STAN-
DARD
DEVIA-
TION | COEFFI-
CIENT OF
VARI- | PERCENT
OF
ANNUAL | PERIOD
(CON-
SECU- | | ARGE, IN
INTERVAL
EXCEEDANG | , IN YEAR | RS, AND A | NNUAL N | ON- | |-----------|---------|---------|-------|---------------------------------|------------------------------|-------------------------|--------------------------|----------|-----------------------------------|-----------|-----------|----------|-----------| | MONTH | (CFS) | (CFS) | (CFS) | (CFS) | ATION | RUNOFF | TIVE
DAYS) | 2
50% | 5
20% | 10
10% | 20
5% | 50
2% | 100
1% | | OCTOBER | 22 | 89 | 44 | 17 | .40 | 1.5 | 1 | 23 | 18 | 16 | 14 - | | | | NOVEMBER | 31 | 911 | 195 | 221 | 1.13 | 6.8 | 3 | 24 | 18 | 16 | 14 | | | | DECEMBER | 31 | 1191 | 353 | 303 | .86 | 12.3 | 7 | 24 | 18 | 16 | 14 | | | | JANUARY | 36 | 1153 | 504 | 333 | .66 | 17.5 | 14 | 25 | 19 | 16 | 14 | | | | FEBRUARY | 43 | 918 | 388 | 207 | .53 | 13.5 | 30 | 27 | 21 | 19 | 17 | | | | MARCH | 93 | 953 | 408 | 219 | •54 | 14.2 | 60 | 30 | 25 | 22 | 20 | | | | APRIL | 101 | 700 | 349 | 177 | .51 | 12.1 | 90 | 33 | 28 | 25 | 24 | | | | MAY | 105 | 617 | 329 | 171 | .52 | 11.4 | 120 | 37 | 32 | 30 | 28 | | | | JUNE | 63 | 345 | 167 | 99 | .59 | 5.8 | 183 | 60 | 46 | 41 | 38 | | | | JULY | 29 | 128 | 67 | 28 | .42 | 2.3 | | | | | | | | | AUGUST | 18 | 58 | 40 | 11 | .28 | 1.4 | | | | | | | | | SEPTEMBER | 21 | 61 | 34 | 9.9 | .29 | 1.2 | | | | | | | | | ANNUAL | 54 | 463 | 239 | 112 | .47 | 100 | | | | | | | | MAGNITUDE AND PROBABILITY OF INSTANTANEOUS PEAK FLOW BASED ON PERIOD OF RECORD 1966-82 MAGNITUDE AND PROBABILITY OF ANNUAL HIGH FLOW BASED ON PERIOD OF RECORD 1966-82 | DISCHARGE,
YEARS, A | | | | RECURRENC
OBABILITY | | | PERIOD
(CON- | | INTERV | AL, IN Y | R INDICAT
EARS, AND | ANNUAL | | |------------------------|----------|----------|-----------|------------------------|----------|-----------|------------------------|----------------------|----------------------|----------------------|------------------------|----------|-----| | 1.25
80% | 2
50% | 5
20% | 10
10% | 25
4% | 50
2% | 100
1% | SECU-
TIVE
DAYS) | 2
50% | 5
20% | 10
10% | 25
4% | 50
2% | 100 | | 1900 | 3370 | 5610 | 7150 | 9120 | | | | | | | | | | | WEIGHTED | SKEW = | 399 | | | | | 1
3
7 | 2510
1930
1360 | 4440
3440
2340 | 5620
4320
2890 | 6930
5230
3460 | | | | | | | | | | | 15
30 | 931
677 | 1530
1050 | 1850
1250 | 2190
1450 | | | | | | | | | | | 60
90 | 556
497 | 832
739 | 977
868 | 1120
999 | | | DURATION TABLE OF DAILY MEAN FLOW FOR PERIOD OF RECORD 1966-82 |
 | | DISCH | ARGE, | IN CFS, | WHICH WAS | EQUALED | OR EXCEE | DED FOR | INDICATED | PERCENT | OF TIME | | | | |---------|-----|-------|-------|---------|-----------|---------|----------|---------|-----------|---------|---------|-----|-----|-----| |
5% | 10% | 15% | 20% | 25% | 30% | 40% | 50% | 60% | 70% | 75% | 80% | 85% | 90% | 95% | |
754 | 547 | 438 | 370 | 309 | 265 | 188 | 127 | 78 | 51 | 43 | 38 | 33 | 30 | 26 | ## 14375500 WEST FORK ILLINOIS RIVER BELOW ROCK CREEK, NEAR O'BRIEN, OR LOCATION.--Lat 42°02'20", long 123°44'50", in SW±SE± sec.34, T.40 S., R.9 W., Josephine County, Hydrologic Unit 17100311, Siskiyou National Forest, on left bank 0.2 mi downstream from Rock Creek, 3.0 mi southwest of O'Brien, and at mile 12.8. DRAINAGE AREA .-- 42.4 mi2. 976 558 379 281 218 172 102 55 30 16 12 9.2 7.4 6.0 4.8 PERIOD OF RECORD.--September 1954 to September 1982. GAGE.--Water-stage recorder. Datum of gage is 1,516.14 ft National Geodetic Vertical Datum of 1929. REMARKS.--Three small diversions from Elk Creek for irrigation above station. AVERAGE DISCHARGE.--28 years (water years 1955-82), 216 ft³/s, 69.18 in/yr, 156,500 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.—Maximum discharge, 16,100 ft³/s Dec. 22, 1964, gage height, 16.05 ft, from rating curve extended above 6,200 ft³/s, on basis of slope-area measurement at gage height 14.79 ft; minimum, 1.5 ft³/s Sept. 2-4, 1974. | | ONTHLY AN | | | | | | | | | | | | | |--|--|--|---|--|---|--|---|---|---
--|---|---|-----------| | | MINIMUM | MAX1MUM | MEAN | STAN-
DARD
DEVIA-
TION | COEFFI-
CIENT OF
VARI- | PERCENT
OF
ANNUAL | PERIOD
(CON-
SECU- | 1 | NTERVAL, | IN YEAR | RS, AND | TED RECUR
ANNUAL NO
IN PERCEN | N- | | MONTH | (CFS) | (CFS) | (CFS) | (CFS) | ATION | RUNOFF | TIVE
DAYS) | 2
50% | 5
20 % | 10
10% | 20
5% | 50
2 % | 100 | | OCTOBER NOVEMBER DECEMBER JANUARY FEBRUARY MARCH APRIL | 4.7
17
12
49
86
86
47 | 300
1315
1616
1176
1112
801
767 | 51
294
511
518
450
394
230 | 66
273
386
296
239
203 | 1.29
.93
.76
.57
.53
.52 | 2.0
11.3
19.6
19.9
17.3
15.1
8.8 | 1
3
7
14
30
60
90 | 4.1
4.3
4.5
4.7
5.1
6.1
7.3 | 3.1
3.3
3.4
3.6
4.0
4.6
5.6 | 2.6
2.7
2.9
3.1
3.5
4.0
4.9 | 2.3
2.4
2.5
2.7
3.1
3.5
4.5 | 1.9
2.1
2.3
2.7
3.0 | | | MAY
JUNE
JULY
AUGUST
SEPTEMBER | 32
15
6.6
3.3
3.0 | 302
66
18
17
64 | 99
28
12
7.0
11 | 79
9.8
3.3
2.9
12 | .80
.35
.28
.41 | 3.8
1.1
.5
.3 | 120
183 | 9.5
22 | 7.4
15
 | 6.6
12 | 6.1
10 | 5.6
8.8
 | | | | | | | | | | | | | | | | | | | 49
 | 407

PROBABILI | 216

TY OF INS | 79

STANTA NE (| .37
 | 100
 |
MAG | |
ND PROBA |
BILITY 0 | F ANNUA |
L HIGH FL |
OW | | MAGNI
DISCHARGE,
YEARS, / | TUDE AND
BASE
, IN CFS, | PROBABILI
D ON PERIO
FOR INDIO
L EXCEEDA | TY OF INS | STANTANEC
CORD 1955
CURRENCE
ABILITY, | DUS PEAK I
5-82
INTERVAL
IN PERCEI | FLOW
, IN | PERIOD
(CON- | BASED
DISCHA | ON PERI | OD OF RECEIVED | CORD 1 | 955-82

TED RECUR |
RENCI | | MAGNIT | FUDE AND
BASE | PROBABILI
D ON PERIO | TY OF INS | STANTANEC
CORD 1955 | DUS PEAK I
5-82
INTERVAL
IN PERCEI | FLOW | PERIOD | BASED
DISCHA | ON PERI | OD OF RECEIVED | CORD 1 | 955-82

TED RECUR
D ANNUAL | RENCI | | DISCHARGE,
YEARS, / | FUDE AND BASE IN CFS, AND ANNUA 2 50% | PROBABILI
D ON PERIO
FOR INDIO
L EXCEEDAI | TY OF INS
DD OF REC
CATED REC
NCE PROBA | STANTANEC
CORD 1955
CURRENCE
ABILITY,
25
4% | DUS PEAK I
5-82
INTERVAL
IN PERCEI | FLOW
, IN
NT | PERIOD
(CON-
SECU-
TIVE | BASED DISCHA E | ON PERI
RGE, IN
INTERVA
XCEEDANC | OD OF RECEIVED | INDICA
ARS, AN | 955-82 TED RECUR D ANNUAL IN PERCEN | 100
1; | | MAGNITOLISCHARGE, YEARS, / | FUDE AND BASE IN CFS, AND ANNUA 2 50% | PROBABILITO NO PERIODE FOR INDICE EXCEEDAN 5 20% | TY OF IN. CATED REC CATED REC 10 10 10 2280 11 | STANTANECORD 195: DURRENCE ABILITY, 25 4% | DUS PEAK IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII | FLOW , IN NT 100 1% | PERIOD
(CON-
SECU-
TIVE
DAYS)
 | DISCHA E 2 50% 3590 2650 1750 1160 851 680 579 | ON PERI RGE, IN 1 INTERVA XCCEDANC 5 20% 5310 3800 2510 1650 1170 942 783 | OD OF RECOME A STATE OF THE PROBABLE PR | 100 100 100 100 100 100 100 100 100 100 | 955-82 TED RECUR D ANNUAL IN PERCEN 50 2% 9260 6140 3990 2560 1730 1320 | 100
17 | | MAGNITOLISCHARGE, YEARS, / | FUDE AND BASE IN CFS, AND ANNUA 2 50% | PROBABILITO ON PERIOD ON PERIOD ON PERIOD OF P | TY OF IN: DD OF REC CATED REC NCE PROB/ 10 10% | STANTANEC CORD 1955 CURRENCE ABILITY, 25 4% 1500 13 | DUS PEAK I
5-82
INTERVAL
IN PERCEI
50
2% | FLOW , IN NT 100 1% | PERIOD (CON-
SECU-
TIVE DAYS) | DISCHA E 2 50% 3590 2650 1160 851 680 579 OF RECOR | ON PERI RGE, IN PINTERVA XCEEDANC 520% 5310 3800 2510 1650 1170 942 783 D 1955-8: | OD OF RECOME AND ADDRESS OF REAL AND ADDRESS OF REAL AND ADDRESS OF REAL ADDRE | 8060 5470 2310 1580 1230 981 | 955-82 TED RECUR D ANNUAL IN PERCEN 50 2% 9260 6140 3990 2560 1730 1320 |
RENCE | #### 14377000 ILLINOIS RIVER AT KERBY, OR LOCATION.--Lat 42°11'50", long 123°39'30", in NW¼ sec.9, T.39 S., R.8 W., Josephine County, Hydrologic Unit 17100311, on upstream side of Finch Bridge and 0.5 mi west of Kerby. DRAINAGE AREA .-- 364 mi2. ANNUAL 576 2088 PERIOD OF RECORD. -- March 1926 to September 1961. Monthly discharge only March 1926, published in WSP 1318. GAGE.--Wire-weight gage read once or twice daily. Datum of gage is 1,232.00 ft National Geodetic Vertical Datum of 1929. Prior to May 9, 1928, staff gage at site 0.5 mi upstream at different datums. May 9, 1928, to Nov. 2, 1934, staff gage at present site at different datums. Nov. 3, 1934, to Sept. 30, 1950, water-stage recorder at site 1 mi downstream at datum 16.76 ft lower. Oct. 1, 1950 to Dec. 28, 1958, staff gage at present site at datum 2.00 ft higher. REMARKS.--No regulation. Diversions for irrigation of 5,500 acres above station. Some diversions for mining during winter months. AVERAGE DISCHARGE.--35 years (water years 1927-61), 1,209 ft³/s, 875,300 acre-ft/yr. MONTHLY AND ANNUAL MEAN DISCHARGES 1927-61 EXTREMES FOR PERIOD OF RECORD.—Maximum discharge, 56,800 ft³/s Dec. 22, 1955, gage height, 16.4 ft, present datum, from floodmark, from rating curve extended above 9,600 ft³/s on basis of slope-area measurement at gage height 15.7 ft, present datum; minimum observed, 9.6 ft³/s Aug. 16, 1959. #### STATISTICAL SUMMARIES DISCHARGE, IN CFS, FOR INDICATED RECURRENCE INTERVAL, IN YEARS, AND ANNUAL NON-STAN-COEFFI-PERCENT PERIOD DARD DEVIA-CIENT OF (CON-EXCEEDANCE PROBABILITY, IN PERCENT 0F MINIMUM MAXIMUM MEAN TION VARI-ANNUAL SECU-MONTH (CFS) (CFS) (CFS) (CFS) ATION RUNOFF TIVE 100 20% 10% DAYS) 50% 54 28 1% OCTOBER 589 2.05 2.0 27 19 15 13 10 29 3363 287 NOVEMBER 40 948 .80 8.1 28 20 13 3041 1188 3 16 11 DECEMBER 183 7305 2246 1653 .74 15.4 29 20 17 14 12 JANUARY 293 7375 2778 1783 19.0 30 22 13 --.64 18 16 FEBRUARY 703 7833 2797 19.2 32 1622 .58 23 20 17 15 MARCH 711 5499 2101 1053 .50 14.4 60 36 26 22 20 17 __ APRIL 455 3753 1580 698 .44 10.8 an 42 31 26 23 21 __ MAY --199 2136 1001 521 .52 6.9 120 58 41 30 25 JUNE 98 425 272 .64 1274 2.9 183 190 111 81 61 44 .58 JULY 38 296 107 62 .7 AUGUST 23 .51 16 127 45 .3 SEPTEMBER 40 15 .38 .3 17 77 MAGNITUDE AND PROBABILITY OF INSTANTANEOUS PEAK FLOW BASED ON PERIOD OF RECORD 1927-61 1209 419 .35 100 MAGNITUDE AND PROBABILITY OF ANNUAL HIGH FLOW BASED ON PERIOD OF RECORD 1927-61 MAGNITUDE AND PROBABILITY OF ANNUAL LOW FLOW BASED ON PERIOD OF RECORD 1928-61 | | | | | | NCE INTER | | PERIOD
(CON- | DISC | INTER | VAL, ÍN ' | YEARS, A | ATED RECUI
ND ANNUAL
IN PERCEI | | |-------------|--------------|------------------|-----------|----------|------------------|-----------|------------------------|----------|----------|-----------|----------|--------------------------------------|-----------| | 1.25
80% | 2
50%
 | 5
20 % | 10
10% | 25
4% | 50
2 % | 100
1% | SECU-
TIVE
DAYS) | 2
50% | 5
20% | 10
10% | 25
4% | 50
2% | 100
1% | | 15600 | 25000 | 38100 | 46600 | 56900 | 64200 | | | | | | | | | | | | | | | | | 1 | 18000 | 27800 | 34200 | 42300 | 48100 | | | WEIGHTE | D SKEW : | 403 | | | | | 3 | 12900 | 19600 | 23700 | 28600 | 31800 | | | | | | | | | | 7 | 8860 | 13100 | 15500 | 18300 | 20100 | | | | | | | | | | 15 | 6050 | 8610 | 10100 | 11700 | 12800 | | | | | | | | | | 30 | 4230 | 6120 | 7370 | 8910 | 10000 | | | | | | | | | | 60 | 3380 | 4770 | 5620 | 6620 | 7310 | | | | | | | | | | 90 | 2910 | 4060 | 4780 | 5640 | 6240 | | DURATION TABLE OF DAILY MEAN FLOW FOR PERIOD OF RECORD 1927-61 | | | DISC | CHARGE, | IN CFS, | WHICH WAS | EQUALED | OR EXCE | EDED FOR | INDICATED | PERCEN | T OF TIME | | | | |------|------|------|---------|---------|-----------|---------|---------|----------|-----------|--------|-----------|-----|-----|-----| | 5% | 10% | 15% | 20% | 25% | 30% |
40% | 50% | 60% | 70% | 75% | 80% | 85% | 90% | 95% | | 4570 | 2870 | 2160 | 1740 | 1440 | 1220 | 845 | 540 | 261 | 101 | 72 | 56 | 44 | 37 | 29 | ## 14377100 ILLINOIS RIVER NEAR KERBY, OR LOCATION.--Lat 42°13'55", long 123°39'45", in SE‡SE‡ sec.29, T.38 S., R.8 W., Josephine County, Hydrologic Unit 17100311 , Siskiyou National Forest, on right bank 1.6 mi upstream from Josephine Creek, 2.5 mi northwest of Kerby, and at mile 50.3. DRAINAGE AREA .-- 380 mi2. 5370 3210 2310 1790 1480 1230 832 536 267 119 89 67 52 42 32 PERIOD OF RECORD. -- October 1961 to September 1982. GAGE.--Water-stage recorder. Datum of gage is 1,198.8 ft National Geodetic Vertical Datum of 1929. Prior to Jan. 28, 1965, water-stage recorder, and Jan. 28 to Sept. 30, 1965, nonrecording gage 700 ft downstream at datum 2.99 ft lower. REMARKS.--No regulation. Diversions for irrigation above station. AVERAGE DISCHARGE.--21 years, 1,312 ft³/s, 46.89 in/yr, 950,500 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 92,200 ft³/s Dec. 22, 1964, gage height, 45.28 ft, from floodmark, site and datum then in use, from rating curve extended above 30,000 ft³/s on basis of slope-area measurement of peak flow; minimum, 14 ft³/s Aug. 11, 13, 14, 1977. | 5% | 10% | 15% | 20% | 25% | 30% | 40% 50 | 60% | 70% | 75% | 80% | 85% | 90% | 95 | |-----------------------|------------------|------------------------|--------------|----------------|---------------------|---------------|-----------------|------------------|------------------|------------------------|------------------------|------------------|---------| | | | DISCHA | RGE, IN | CFS, WHI | CH WAS EQ | JALED OR E | XCEEDED FO | R INDICA | TED PERC | ENT OF I | IME | | | | | | | DURATIO | N TABLE | OF DAILY | MEAN FLOW | FOR PERIOD | OF RECO | ORD 1962- | 82 | | | | | | | | | | | | 90 | 3870
3350 | 5390
4530 | 6140
5050 | 6840
5510 | | | | | | | | | | | 30
60 | 4820 | 6740 | 7740 | 8750 | | | | | | | | | | | 15 | 6450 | 9750 | 11800 | 14200 | | | | | | | | | | | 7 | 9770 | 15200 | 18600 | 22500 | | | | WEIGHTED | SKEW = | .193 | | | | | 3 | 14500 | 22600 | 2 76 0 0 | 33600 | | - | | | | | | | | | 1 | 20500 | 31400 | 37700 | 44700 | | - | | 17900 | 26300 | 39400 4 | 9100 6 | 2500 | JUB
 | 20 <i>1</i> 6 | 10% | 4 <i>5</i>
 | | 1,6 | DAYS) | ∠
50 % | 20% | 10% | 4% | 2% | 1 | | 1 • 25
80 % | 2
50 % | 5
20 % | 10
10% | 25
4% | 50
2% | 100
1% | SECU-
TIVE | 2 |
5 | 10 | 25 | 50 | 10 | | 1 25 | |
c | | 25 | - | 100 | (CON- | | EXCEEDA | ICE PROB | BILITY, I | N PERCEN | 11 | | YEARS, A | ND ANNUA | L EXCEEDA | NCE PROB | ABILITY, | IN PERCE | NT | PERIOD | | | | EARS, AND | | | | | | | | | INTERVAL | | | DISCH | | | R INDICAT | | RENC | | MAGNIT | | PROBABILI
D ON PERI | | | OUS PEAK
2-82 | FLOW | MA | | | | OF ANNUAL
RECORD 19 | | .ow | | NNUAL | 275
 | 2372 | 1312 | 511
 | .39 | 100 | | | | | | | | | EPTEMBER | 27 | 358 | 69 | 73 | 1.07 | .4 | | | | | | | | | UGUST | 21 | 116 | 48 | 22 | .45 | .3 | | | | | | | | | ULY | 41 | 206 | 91 | 40 | .43 | •6 | | | | | | | | | UNE | 134 | 646 | 317 | 152 | . 48 | 2.0 | 183 | 181 | 135 | 119 | 108 | | - | | IAY | 321 | 2439 | 932 | 546 | . 59 | 5.9 | 120 | 67 | 53 | 48 | 45 | | _ | | PRIL | 433 | 4518 | 1649 | 1003 | .61 | 10.4 | 90 | 48 | 36 | 32 | 29 | | _ | | IARCH | 863 | 4757 | 2247 | 1158 | .52 | 14.2 | 60 | 41 | 31 | 26 | 23 | | _ | | EBRUARY | 358 | 4419 | 2402 | 1092 | .45 | 15.2 | 30 | 35 | 27 | 24 | 21 | | _ | | IANUARY | 236 | 7184 | 3154 | 1861 | .74 | 20.0 | 14 | 33 | 26 | 22 | 20 - | | _ | | IOVEMBER
DECEMBER | 128
115 | 6344
9242 | 1641
2952 | 1521
2189 | .93
.74 | 10.4
18.7 | 3
7 | 31
32 | 24
25 | 21 | 18
19 | | _ | | CT0BER | 42 | 1771 | 287 | 382 | 1.33 | 1.8 | 1 | 30 | 23 | 19
20 | 17 | | - | | | | | | | | | | | | | | | | | IONTH | (CFS) | (CFS) | (CFS) | (CFS) | ATION | RUNOFF | TIVE
DAYS) | 2
50 % | 5
20 % | 10
10% | 20
5 % | 50
2 % | 10
1 | | | MUMINIM | | MEAN | TION | VARI- | ANNUAL | SECU- | | | | | | | | | | | | DARD
DEVIA- | COEFFI-
CIENT OF | PERCENT
OF | PERIOD
(CON- | 0130 | INTERVA | L, IN YE. | ARS, AND A | NNUAL NO | ON- | | | | | | STAN- | | | | חופר | HARGE I | N CES E | OR INDICAT | ED BECH | RRFNC | | | | | | | | | | DAG | LD ON 1 L | 1100 01 | RECORD 19 | 05 02 | | | | | | | | | | | | | | | | | ## 14377500 DEER CREEK NEAR DRYDEN, OR LOCATION.--Lat 42°15'50", long 123°27'00", near center of sec.18, T.38 S., R.6 W., Josephine County, Hydrologic Unit 17100311, on left bank 500 ft downstream from confluence of North and South Forks and 5 mi east of Dryden. DRAINAGE AREA .-- 22.0 mi2. PERIOD OF RECORD.--December 1941 to September 1956. Monthly discharge only for December 1941 to September 1945, published in WSP 1318. GAGE.--Water-stage recorder. Datum of gage is 1,650.10 ft National Geodetic Vertical Detum of 1929 (levels by Bureau of Reclamation). Prior to Sept. 12, 1946, staff gage at same site at datum 1.26 ft higher. REMARKS. -- No regulation. Small diversions above station for irrigation. AVERAGE DISCHARGE.--14 years (water years 1943-56), 74.1 ft3/s, 53,650 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, about 5,000 ft³/s Jan. 18, 1953, gege height, 7.61 ft, backwater from logs; maximum gage height, 7.92 ft Oct. 29, 1950; minimum discharge, 0.9 ft³/s Sept. 20-24, 1951, Sept. 6-10, 1955. #### STATISTICAL SUMMARIES MONTHLY AND ANNUAL MEAN DISCHARGES 1946-56 MAGNITUDE AND PROBABILITY OF ANNUAL LOW FLOW BASED ON PERIOD OF RECORD 1947-56 | | MINIMUM | MAXIMUM | MEAN | STAN-
DARD
DEVIA-
TION | COEFFI-
CIENT OF
VARI- | PERCENT
OF
ANNUAL | PERIOD
(CON-
SECU- | 11 | NTERVAL, | CFS, FOR
IN YEARS
E PROBABI | , AND AN | INUAL N | 0 N- | |-----------|---------|---------|-------|---------------------------------|------------------------------|-------------------------|--------------------------|----------|----------|-----------------------------------|----------|-----------------|-------------| | MONTH | (CFS) | (CFS) | (CFS) | (CFS) | ATION | RUNOFF | TIVE
DAYS) | 2
50% | 5
20% | 10
10% | 20
5% | 50
2% | 100
1% | | OCTOBER | 1.6 | 226 | 30 | 66 | 2.25 | 3.2 | 1 | 1.4 | 1.1 | .9 | .9 | | | | NOVEMBER | 3.4 | 195 | 82 | 69 | .84 | 8.8 | 3 | 1.4 | 1.1 | .9 | .9 | | | | DECEMBER | 21 | 488 | 156 | 145 | .93 | 16.8 | 7 | 1.5 | 1.1 | 1.0 | .9 | | | | JANUARY | 29 | 510 | 212 | 153 | .72 | 22.9 | 14 | 1.6 | 1.2 | 1.1 | 1.0 | | | | FEBRUARY | 56 | 315 | 146 | 72 | .49 | 15.7 | 30 | 1.9 | 1.4 | 1.2 | 1.1 | | | | MARCH | 69 | 192 | 106 | 37 | .35 | 11.4 | 60 | 2.3 | 1.7 | 1.4 | 1.3 | | | | APRIL | 52 | 162 | 100 | 40 | .40 | 10.8 | 90 | 2.8 | 2.0 | 1.7 | 1.5 | | | | MAY | 11 | 111 | 62 | 35 | •57 | 6.7 | 120 | 3.9 | 2.7 | 2.3 | 2.0 | | | | JUNE | 7.8 | 68 | 23 | 17 | •77 | 2.4 | 183 | 9.4 | 5.9 | 4.8 | 4.1 | | | | JULY | 3.2 | 12 | 7.0 | 3.5 | • 50 | .8 | | | | | | | | | AUGUST | 1.6 | 6.1 | 3.3 | 1.6 | | . 4 | | | | | | | | | SEPTEMBER | 1.4 | 3.7 | 2.3 | .7 | .32 | .2 | | | | | | | | | ANNUAL | 38 | 128 | 77 ′ | 29 | .37 | 100 | | | | | | | | MAGNITUDE AND PROBABILITY OF INSTANTANEOUS PEAK FLOW BASED ON PERIOD OF RECORD 1946-56 MAGNITUDE AND PROBABILITY OF ANNUAL HIGH FLOW BASED ON PERIOD OF RECORD 1946-56 | DISCHARGE,
YEARS, A | | | DICATED F | | | | PERIOD
(CON- | | INTERV | CFS, FOF
AL, IN YE | ARS, AND | ANNUAL | | |------------------------|--------------|----------|-----------|----------|----------|-----------|------------------------|--------------|--------------|-----------------------|----------|----------|-----| | 1.25
80% | 2
50%
 | 5
20% | 10
10% | 25
4% | 50
2% | 100
1% | SECU-
TIVE
DAYS) | 2
50% | 5
20% | 10
10% | 25
4% | 50
2% | 100 | | 1240 | 2140 | 3610 | 4720 | | | | | | | 7.00 | | | | | WEIGHTED | SKEW = | 113 | | | | | 3 | 1480
1030 | 2460
1680 | 3120
2090 | | | | | | | | | | | | 7 | 668 | 1050 | 1270 | | | | | | | | | | | | 15
30 | 428
287 | 673
456 | 821
575 | | | | | | | | | | | | 60 | 221 | 332 | 405 | | | | | | | | | | | | 90 | 188 | 274 | 327 | | | | DURATION TABLE OF DAILY MEAN FLOW FOR PERIOD OF RECORD 1946-56 |
 | | DISCH | ARGE, | IN CFS, | WHICH WAS | EQUALED | OR EXCE | EDED FOR | INDICATED | PERCEN | T OF TIM | IE | | | |--------|-----|-------|-------|---------|-----------|---------|---------|----------|-----------|--------|----------|-----|-----|-------| |
5% | 10% | 15% | 20% | 25% | 30% | 40% | 50% | 60% | 70% | 75% | 80% | 85% | 90% | 95% | | 289 | 168 | 124 | 102 | 84 | 70 | 48 | | 14 | 6.4 | | | | 2.3 | • • • | 14378000 ILLINOIS RIVER NEAR SELMA, OR 241 LOCATION.--Lat 42°22'45", long 123°48'40", in SW± sec.6, T.37 S., R.9 W., Josephine County, Hydrologic Unit 17100311, on right bank 0.1 mi upstream from Panther Creek, 0.2 mi downstream from Briggs Creek, 12 mi northwest of Selma, and at mile 32.3. DRAINAGE AREA. -- 665 mi², includes that of Panther Creek. PERIOD OF RECORD. -- October 1956 to January 1968. 5% 9670 10% 4050 5910 20% 2430 3060 30% 2010 40% 1350 50% 903 471 209 75% 160 133 85% 112 90% 94 95% 81 GAGE.--Water-stage recorder. Datum of gage is 829.18 ft National Geodetic Vertical Datum of 1929. Prior to Nov. 13, 1967, water-stage recorder at same site and datum. REMARKS.--No regulation. Many diversions above station for irrigation, mining, and logpond operation. Records include flow of Panther Creek. AVERAGE DISCHARGE. -- 11 years, 2,335 ft³/s, 1,690,000 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 160,000 ft³/s Dec. 22, 1964, gage height, 34.0 ft, from floodmark, from rating curve extended above 33,000 ft³/s on basis of slope-area measurement at gage height 25.64 ft, and comparison of peak flows at station near Kerby and Rogue
River near Agness; minimum, 61 ft³/s Aug. 28, Sept. 2, 1959. | | UNIHLY AN | ID ANNUAL | MEAN DIS | SCHARGES | 1957-67 | | M.A | | | BABILITY
RIOD OF R | | | OW | |----------------------------------|--|--|--|----------------------------------|---|-------------------------|--|---|--|--|--|--|-----------| | | MINIMUM | MAXIMUM | MEAN | STAN-
DARD
DEVIA-
TION | COEFFI-
CIENT OF
VARI- | PERCENT
OF
ANNUAL | PERIOD
(CON-
SECU- | DISC | INTERVA | N CFS, FOI
L, IN YEAI
NCE PROBAI | RS, AND A | ANNUAL NO | DN- | | MONTH | (CFS) | (CFS) | (CFS) | (CFS) | ATION | RUNOFF | TIVE
DAYS) | 2
50% | 5
20 % | 10
10% | 20
5% | 50
2% | 100
1% | | OCTOBER | 86 | 2732 | 584 | 809 | 1.39 | 2.1 | 1 | 73 | 67 | 64 | 62 | | | | NOVEMBER | 161 | 4490 | 2171 | 1206 | •56 | 7.7 | 3 | 75 | 68 | 65 | 62 | | | | DECEMBER | 432 | 16430 | 4308 | 4404 | 1.02 | 15.3 | 7 | 76 | 68 | 65 | 62 | | | | JANUARY | 1115 | 9953 | 5264 | 3597 | .68 | 18.7 | 14 | 77 | 70 | 66 | 63 | | | | EBRUARY | 2516 | 15010 | 5704 | 3599 | .63 | 20.2 | 30 | 83 | 72 | 67 | 63 | | | | MARCH | 1340 | 7566 | 4272 | 1917 | .45 | 15.1 | 60 | 96 | 82 | 75 | 69 | | | | APRIL | 1448 | 6776 | 3145 | 1532 | .49 | 11.1 | 90 | 108 | 94 | 88 | 83 | | | | MAY | 764 | 4517 | 1820 | 1139 | .63 | 6.4 | 120 | 132 | 110 | 101 | 96 | | | | JUNE | 328 | 915 | 561 | 191 | .34 | 2.0 | 183 | 358 | 233 | 183 | 149 | | | | JULY | 120 | 267 | 188 | 47 | .25 | • 7 | | | | | | | | | AUGUST | 65 | 130 | 105 | 20 | . 19 | .4 | | | | | | | | | SEPTEMBER | 74 | 124 | 98 | 17 | . 17 | .3 | | | | | | | | | | | | | | 07 | | | | | | | | | | ANNUAL | 1709 | 3735
 | 2335
 | 637 | •27
 | 100 | | | | | | | | | MAGNIT | TUDE AND
BASE | PROBABILI
D ON PERIO | TY OF IN
OD OF RE | STANTANE
CORD 195 | OUS PEAK F | FLOW | PERIOD | BAS | HARGE, II | BABILITY (RIOD OF RE | ECORD 19R INDICATEARS, AND | 957-67
ED RECUR | RENCE | | MAGNITO | TUDE AND
BASE
, IN CFS, | PROBABILI
D ON PERIO
FOR INDIO
L EXCEEDAI | TY OF IN
OD OF RE
CATED RE | STANTANE
CORD 195
CURRENCE | OUS PEAK F
7-67
INTERVAL
IN PERCEI | FLOW
, IN | PERIOD
(CON- | BAS | HARGE, II | RIOD OF RE | ECORD 19R INDICATEARS, AND | 957-67
ED RECUR | RENCE | | MAGNI | TUDE AND
BASE
, IN CFS,
AND ANNUA | PROBABILI
D ON PERIO
FOR INDIO
L EXCEEDAI | TY OF IN
OD OF RE
CATED RE
NCE PROB | ISTANTANE
CORD 195
 | OUS PEAK F
7-67
INTERVAL
IN PERCEI | FLOW
, IN
NT | PERIOD
(CON-
SECU- | DISC | HARGE, II | RIOD OF RE
N CFS, FOR
VAL, IN YE
NCE PROBAE | R INDICATEARS, AND | 57-67
ED RECUR
ANNUAL
N PERCEN | RENCE | | MAGNIT
DISCHARGE,
YEARS, A | TUDE AND
BASE
, IN CFS, | PROBABILI
D ON PERIO
FOR INDIO
L EXCEEDAI | TY OF IN
OD OF RE
CATED RE | ISTANTANE
CORD 195
 | OUS PEAK F
7-67
INTERVAL
IN PERCEI | FLOW
, IN | PERIOD
(CON- | BAS | HARGE, II | RIOD OF RE | ECORD 19R INDICATEARS, AND | 957-67
ED RECUR | RENCE | | MAGNITON | FUDE AND
BASE
IN CFS,
AND ANNUA
2
50% | PROBABILII
D ON PERIO
FOR INDIO
L EXCEEDAI | TY OF IN
OD OF RE
CATED RE
NCE PROB | ISTANTANE
CORD 195
 | OUS PEAK F
7-67
INTERVAL
IN PERCEI | , IN
NT | PERIOD
(CON-
SECU-
TIVE | DISCI | HARGE, II INTER EXCEEDAI | RIOD OF RE
N CFS, FOF
VAL, IN YE
NCE PROBAE | R INDICATEARS, AND | ED RECUR
ANNUAL
N PERCEN | RENCE | | MAGNITOLISCHARGE, YEARS, A | TUDE AND BASE IN CFS, AND ANNUA 2 50% | PROBABILITO ON PERIOD FOR INDICATE PROBABILITO POR INDICATE PROBABILITO POR INDICATE PROBABILITO PERIOD POR INDICATE PROBABILITO POR INDICATE PROBABILITO PROBABILITATI PRO | TY OF IN
OD OF RE
CATED RE
NCE PROB | ISTANTANE
CORD 195
 | OUS PEAK F
7-67
INTERVAL
IN PERCEI | , IN
NT | PERIOD (CON- SECU- TIVE DAYS) | DISCI 2 50% 36600 | HARGE, II
INTER
EXCEEDAL
5
20% | N CFS, FOF
VAL, IN YE
NCE PROBAE
10
10% | R INDICATEARS, AND | ED RECUR
ANNUAL
N PERCEN | RENCE | | MAGNI | TUDE AND BASE IN CFS, AND ANNUA 2 50% | PROBABILII
D ON PERIO
FOR INDIO
L EXCEEDAI | TY OF IN
OD OF RE
CATED RE
NCE PROB | ISTANTANE
CORD 195
 | OUS PEAK F
7-67
INTERVAL
IN PERCEI | , IN
NT | PERIOD (CON- SECU- TIVE DAYS) | DISCI
2
50%
36600
26600 | HARGE, II
INTER'
EXCEEDAI
5
20% | N CFS, FOF
VAL, IN YE
NCE PROBAE | ECORD 19 R INDICAT EARS, AND BILITY, 1 25 4% | ED RECUR
ANNUAL
N PERCEN
50
2% | RENCE | | MAGNITISCHARGE, YEARS, / | TUDE AND BASE IN CFS, AND ANNUA 2 50% | PROBABILITO ON PERIOD FOR INDICATE PROBABILITO POR INDICATE PROBABILITO POR INDICATE PROBABILITO PERIOD POR INDICATE PROBABILITO POR INDICATE PROBABILITO PROBABILITATI PRO | TY OF IN
OD OF RE
CATED RE
NCE PROB | ISTANTANE
CORD 195
 | OUS PEAK F
7-67
INTERVAL
IN PERCEI | , IN
NT | PERIOD (CON-SECU-TIVE DAYS) | DISCI
2
50%
36600
26600
18800 | HARGE, II
INTER
EXCEEDAL
5
20% | N CFS, FOF
VAL, IN YE
NCE PROBAE
10
10% | ECORD 19 R INDICAT EARS, AND BILITY, 1 25 4% | ED RECUR
ANNUAL
N PERCEN
50
2% | 100
13 | | MAGNITOLISCHARGE, YEARS, A | TUDE AND BASE IN CFS, AND ANNUA 2 50% | PROBABILITO ON PERIOD FOR INDICATE PROBABILITO POR INDICATE PROBABILITO POR INDICATE PROBABILITO PERIOD POR INDICATE PROBABILITO POR INDICATE PROBABILITO PROBABILITATI PRO | TY OF IN
OD OF RE
CATED RE
NCE PROB | ISTANTANE
CORD 195
 | OUS PEAK F
7-67
INTERVAL
IN PERCEI | , IN
NT | PERIOD (CON-
SECU-
TIVE DAYS) 1 3 7 | DISCI
2
50%
36600
26600
18800
12500 | HARGE, II
INTER'
EXCEEDAI
5
20% | N CFS, FOF
VAL, IN YE
NCE PROBAE | R INDICAT
EARS, AND
BILITY, I | ED RECUR
ANNUAL
N PERCEN
50
2% | 100
1% | | MAGNITOLISCHARGE, YEARS, A | TUDE AND BASE IN CFS, AND ANNUA 2 50% | PROBABILITO ON PERIOD FOR INDICATE PROBABILITO POR INDICATE PROBABILITO POR INDICATE PROBABILITO PERIOD POR INDICATE PROBABILITO POR INDICATE PROBABILITO PROBABILITATI PRO | TY OF IN
OD OF RE
CATED RE
NCE PROB | ISTANTANE
CORD 195
 | OUS PEAK F
7-67
INTERVAL
IN PERCEI | , IN
NT | PERIOD (CON-
SECU-
TIVE DAYS) 1 3 7 15 30 | DISCI
2
50%
36600
26600
18800
12500
8810 | HARGE, III
INTER
EXCEEDAI
5
20%
54500
39700
27900
17900
12500 | 73200
52400
35600
22300
15500 | R INDICAT
EARS, AND
BILITY, I | ED RECUR
ANNUAL
N PERCEN
50
2% | 100
1% | | 1.25
80% | TUDE AND BASE IN CFS, AND ANNUA 2 50% | PROBABILITO ON PERIOD FOR INDICATE PROBABILITO POR INDICATE PROBABILITO POR INDICATE PROBABILITO PERIOD POR INDICATE PROBABILITO POR INDICATE PROBABILITO PROBABILITATI PRO | TY OF IN
OD OF RE
CATED RE
NCE PROB | ISTANTANE
CORD 195
 | OUS PEAK F
7-67
INTERVAL
IN PERCEI | , IN
NT | PERIOD (CON-
SECU-
TIVE DAYS) 1 3 7 15 30 60 | 2 50%
36600 26600 18800 12500 8810 6720 | HARGE, II
INTER'
EXCEEDAI
5
20%
54500
39700
27900
17900
12500
9020 | 73200
52400
35600
22300
10900 | R INDICATEARS, AND BILITY, I | ED RECUR
ANNUAL
N PERCEN
50
2% | 100
1% | | MAGNITOLISCHARGE, YEARS, A | TUDE AND BASE IN CFS, AND ANNUA 2 50% | PROBABILITO ON PERIOD FOR INDICATE PROBABILITO POR
INDICATE PROBABILITO POR INDICATE PROBABILITO PERIOD POR INDICATE PROBABILITO POR INDICATE PROBABILITO PROBABILITATI PRO | TY OF IN
OD OF RE
CATED RE
NCE PROB | ISTANTANE
CORD 195
 | OUS PEAK F
7-67
INTERVAL
IN PERCEI | , IN
NT | PERIOD (CON-
SECU-
TIVE DAYS) 1 3 7 15 30 | DISCI
2
50%
36600
26600
18800
12500
8810 | HARGE, III
INTER
EXCEEDAI
5
20%
54500
39700
27900
17900
12500 | 73200
52400
35600
22300
15500 | R INDICATEARS, AND BILITY, I | ED RECUR
ANNUAL
N PERCEN
50
2% | 100
1% | | MAGNITISCHARGE, YEARS, / | TUDE AND BASE IN CFS, AND ANNUA 2 50% | PROBABILITO ON PERIOD FOR INDICATE PROBABILITO POR INDICATE PROBABILITO POR INDICATE PROBABILITO PERIOD POR INDICATE PROBABILITO POR INDICATE PROBABILITO PROBABILITATI PRO | TY OF IN | STANTANE CORD 195 | OUS PEAK I
7-67
INTERVAL
IN PERCEI
50
2% | FLOW IN NT 100 1# | PERIOD (CON-
SECU-
TIVE DAYS) 1 3 7 15 30 60 | 2 50% 36600 26600 18800 6720 5690 | HARGE, II
INTER'EXCEEDAI
5
20%
54500
39700
27900
17900
12500
9020
7560 | 73200
52400
35600
22300
15500
10900
9030 | R INDICATEARS, AND BILITY, I | ED RECUR
ANNUAL
N PERCEN
50
2% | 100
1% | ## 14378200 ILLINOIS RIVER NEAR AGNESS, OR LOCATION.--Lat 42°31'15", long 124°02'35", in SW±NW± sec.29, T.35 S., R.11 W., Curry County, Hydrologic Unit 17100311, on right bank 0.6 mi downstream from Lawson Creek, 1.4 mi upstream from Fox Creek, 2.8 mi southeast of Agness, and at mile 3.0. DRAINAGE AREA.--988 mi 2 , at cable section 2.1 mi downstream where all measurements are made. PERIOD OF RECORD. -- October 1960 to September 1981. 16500 9770 7160 5570 4580 3810 2480 1520 833 437 337 280 237 202 173 GAGE.--Water-stage recorder. Datum of gage is 125.86 ft National Geodetic Vertical Datum of 1929. REMARKS.--No regulation. Many diversions above station for irrigation, mining, and logpond operation. Records include flow of Fox Creek. All records given herein are for measuring site. AVERAGE DISCHARGE.--21 years, 4,094 ft³/s, 56.27 in/yr, 2,966,000 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.—Maximum discharge, 225,000 ft³/s Dec. 22, 1964, estimated on basis of runoff ratio with station near Selma; maximum gage height, 56.91 ft Dec. 22, 1964, from floodmark (backwater from Rogue River); minimum discharge, 125 ft³/s Sept. 14-16, 1977. | MO | ONTHLY AN | ID ANNUAL | MEAN DIS | SCHARGES | 1961-81 | | M.A | | | | OF ANNUA
RECORD 1 | | W | |---|---------------------------------------|--|--|---|--|-------------------------|---|--|---|--|---|--|-----------| | | MINIMUM | MAX I MUM | MEAN | STAN-
DARD
DEVIA-
TION | COEFFI-
CIENT OF
VARI- | PERCENT
OF
ANNUAL | PERIOD
(CON-
SECU- | DISC | INTERVA | L, IN YE | OR INDICA
EARS, AND
BABILITY, | ANNUAL NO | -MC | | MONTH | (CFS) | (CFS) | (CFS) | (CFS) | ATION | RUNOFF | TIVE
DAYS) | 2
50% | 5
20% | 10
10% | 20
5% | 50
2% | 100
1% | | OCTOBER | 167 | 4696 | 816 | 999 | 1.22 | 1.7 | 1 | 161 | 138 | 127 | 120 | | | | OVEMBER | 339 | 23060 | 4953 | 4875 | .98 | 10.1 | 3 | 162 | 139 | 128 | 120 | | | | ECEMBER | 262 | 26830 | 8833 | 5953 | .67 | 17.9 | 7 | 165 | 140 | 129 | 121 | | | | ANUARY | 591 | 25660 | 10370 | 6730 | .65 | 21.0 | 14 | 169 | 144 | 133 | 124 | | | | EBRUARY | 818 | 15420 | 7893 | 3680 | •47 | 16.0 | 30 | 178 | 153 | 142 | 135 | | | | IARCH | 2187 | 14550 | 7369 | 4076 | .55 | 15.0 | 60 | 200 | 168 | 154 | 145 | | | | PRIL | 1315 | 11750 | 4558 | 2326 | -51 | 9.2 | 90 | 229 | 196 | 185 | 178 | | | | IAY
UME | 1116 | 8195 | 2684 | 1808 | •67 | 5.4 | 120 | 287 | 240 | 222 | 210 | | | | UNE | 510 | 1690 | 903 | 309 | .34 | 1.8 | 183 | 611 | 451 | 388 | 344 | | | | ULY
UGUST | 221 | 574
384 | 377
237 | 82
58 | •22
•25 | .8
.5 | | | | | | | | | EPTEMBER | 131
149 | 1334 | 288 | 257 | .89 | .6 | | | | | | | | | CI ILMOLIN | 149 | 1334 | 200 | 251 | •09 | •0 | | | | | | | | | NNUAL | 800 | 7799 | 4094 | 4.67 | | | | | | | | | | | | TUDE AND | | TY OF IN | | .35

OUS PEAK F
1-81 | 100

FLOW | | | | BABILITY | OF ANNUA |
L HIGH FL
961-81 | | | MAGNIT | FUDE AND
BASE | PROBABILI
D ON PERI | TY OF IN
OD OF RE | ISTANTANE
CORD 196 | OUS PEAK F | FLOW | PERIOD
(CON- | BASI | ED ON PE
HARGE, I | RIOD OF
N CFS, F | | 961-81

TED RECUF
D ANNUAL | RENCE | | MAGNIT | TUDE AND
BASE
IN CFS, | PROBABILI
D ON PERI
FOR INDI-
L EXCEEDA | TY OF IN
OD OF RE
CATED RE
NCE PROE | ISTANTANE
CORD 196
CURRENCE
BABILITY, | OUS PEAK F
1-81
INTERVAL,
IN PERCEN | FLOW IN IT | PERIOD
(CON-
SECU- | BASI
DISCI | HARGE, I
INTER | RIOD OF
N CFS, F
VAL, IN
NCE PROB | RECORD 1 | 961-81
TED RECUF
D ANNUAL
IN PERCEN | RENCE | | MAGNIT
ISCHARGE,
YEARS, A | FUDE AND
BASE
IN CFS, | PROBABILI
D ON PERI
FOR INDI-
L EXCEEDA | TY OF IN
OD OF RE
CATED RE
NCE PROE | ASTANTANE
CORD 196
CURRENCE
BABILITY, | OUS PEAK F
1-81
INTERVAL,
IN PERCEN | FLOW | PERIOD
(CON- | BASI | ED ON PE
HARGE, I | RIOD OF
N CFS, F | RECORD 1 | 961-81

TED RECUF
D ANNUAL | RENCE | | MAGNIT | FUDE AND BASE IN CFS, AND ANNUA 2 50% | PROBABILI
D ON PERI
FOR INDI-
L EXCEEDA | TY OF IN
OD OF RE
CATED RE
NCE PROB | ISTANTANE
CORD 196
CURRENCE
BABILITY,
25
4% | OUS PEAK F
1-81
INTERVAL,
IN PERCEN | FLOW IN IT | PERIOD
(CON-
SECU-
TIVE | BASI
DISCI | HARGE, I
INTER
EXCEEDA | N CFS, F
VAL, IN
NCE PROB | RECORD 19 OR INDICA YEARS, AN ABILITY, 25 | 961-81 TED RECUF D ANNUAL IN PERCEN | RENCE | | MAGNIT
ISCHARGE,
YEARS, /
1.25
80% | FUDE AND BASE IN CFS, AND ANNUA 2 50% | PROBABILI
D ON PERI
FOR INDI-
L EXCEEDA
5
20% | TY OF IN
OD OF RE
CATED RE
NCE PROB | ISTANTANE
CORD 196
CURRENCE
BABILITY,
25
4% | OUS PEAK F
1-81
INTERVAL,
IN PERCEN | FLOW IN IT | PERIOD (CON- SECU- TIVE DAYS) | DISCI | HARGE, I
INTER
EXCEEDA
5
20% | N CFS, F
VAL, IN
NCE PROB | RECORD 1: OR INDICA YEARS, AN ABILITY, 25 4% 134000 | 961-81 TED RECUF D ANNUAL IN PERCEN | RENCE | | MAGNIT
ISCHARGE,
YEARS, /
1.25
80% | FUDE AND BASE IN CFS, AND ANNUA 2 50% | PROBABILI
D ON PERI
FOR INDI-
L EXCEEDA
5
20% | TY OF IN
OD OF RE
CATED RE
NCE PROE | ISTANTANE
CORD 196
CURRENCE
BABILITY,
25
4% | OUS PEAK F
1-81
INTERVAL,
IN PERCEN | FLOW IN IT | PERIOD
(CON-
SECU-
TIVE
DAYS) | DISCI 2 50% 62100 46700 | HARGE, I
INTER
EXCEEDA
5
20% | N CFS, F
VAL, IN
NCE PROB
10
10% | RECORD 1: OR INDICA YEARS, AN ABILITY, 25 4% | 961-81
TED RECUF
D ANNUAL
IN PERCEN
50
2% | RENCE | | MAGNIT
ISCHARGE,
YEARS, /
1.25
80% | FUDE AND BASE IN CFS, AND ANNUA 2 50% | PROBABILI
D ON PERI
FOR INDI-
L EXCEEDA
5
20% | TY OF IN
OD OF RE
CATED RE
NCE PROE | ISTANTANE
CORD 196
CURRENCE
BABILITY,
25
4% | OUS PEAK F
1-81
INTERVAL,
IN PERCEN | FLOW IN IT | PERIOD (CON- SECU- TIVE DAYS) 1 3 7 | DISCI 2 50% 62100 46700 31900 | HARGE, I
INTER
EXCEEDA
5
20%
95100
72000
49500 | 114000
87300
60400 | RECORD 1' OR INDICA YEARS, AN ABILITY, 25 4\$ 134000 104000 73000 | 961-81 TED RECUF D ANNUAL IN PERCEN 50 2% | 100
13 | | MAGNIT
ISCHARGE,
YEARS, /
1.25
80% | FUDE AND BASE IN CFS, AND ANNUA 2 50% | PROBABILI
D ON PERI
FOR INDI-
L EXCEEDA
5
20% | TY OF IN
OD OF RE
CATED RE
NCE PROE | ISTANTANE
CORD 196
CURRENCE
BABILITY,
25
4% | OUS PEAK F
1-81
INTERVAL,
IN PERCEN | FLOW IN IT | PERIOD
(CON-
SECU-
TIVE
DAYS)
 | DISCI
2
50%
62100
46700
31900
20700 | HARGE, 1
INTER
EXCEEDA
5
20%
95100
72000
49500
31000 | N CFS, F
VAL, IN
NCE PROB
10
10%
 | RECORD 1' | 961-81 TED RECUF D ANNUAL IN PERCEN 50 2% | 100
1% | | MAGNIT
I SCHARGE,
YEARS, /
1.25
80% | FUDE AND BASE IN CFS, AND ANNUA 2 50% | PROBABILI
D ON PERI
FOR INDI-
L EXCEEDA
5
20% | TY OF IN
OD OF RE
CATED RE
NCE PROE | ISTANTANE
CORD 196
CURRENCE
BABILITY,
25
4% | OUS PEAK F
1-81
INTERVAL,
IN PERCEN | FLOW IN IT | PERIOD
(CON-
SECU-
TIVE
DAYS)
 | DISCI
2
50%
62100
46700
31900
20700
15700 | HARGE, I
INTER
EXCEEDA
5
20%
95100
72000
49500
31000
21700 | N CFS, F
VAL, IN
NCE PROB
10
10
114000
87300
60400
24600 | RECORD 1' | TED RECUF
D ANNUAL
IN PERCEN
50
2% | 100
1% | | MAGNITALISCHARGE, YEARS, A | FUDE AND BASE IN CFS, AND ANNUA 2 50% | PROBABILI
D ON PERI
FOR INDI-
L EXCEEDA
5
20% | TY OF IN
OD OF RE
CATED RE
NCE PROE | ISTANTANE
CORD 196
CURRENCE
BABILITY,
25
4% | OUS PEAK F
1-81
INTERVAL,
IN PERCEN | FLOW IN IT | PERIOD (CON-
SECU-
TIVE DAYS) 1 3 7 15 30 60 | DISCI 2 50% 62100 46700 31900 20700 15700 15800 | 95100
72000
49500
31000
17400 | N CFS, F
VAL, IN
NCE PROB
10, 10,
87300
60400
37200
24600
19400 | RECORD 1' | 961-81 TED RECUF D ANNUAL IN PERCEN 50 2% | 100
1% | | MAGNIT
I SCHARGE,
YEARS, /
1.25
80% | FUDE AND BASE IN CFS, AND ANNUA 2 50% | PROBABILI
D ON PERI
FOR INDI-
L EXCEEDA
5
20% | TY OF IN OD OF RE | ISTANTANE
CORD 196
CURRENCE
BABILITY,
25
4\$ | OUS PEAK F
1-81
INTERVAL,
IN PERCEN
50 1
2% | IN NT 100 118 | PERIOD
(CON-
SECU-
TIVE
DAYS)
 | DISCI 2 50\$ 62100 46700 31900 15700 12800 10900 | HARGE, I INTER EXCEEDA 5 20% 95100 72000 49500 31000 21700 17400 14500 | N CFS, F VAL, IN NCE PROB 10 10% | RECORD 1' | TED RECUF
D ANNUAL
IN PERCEN
50
2% | 100
13 | | MAGNIT
SCHARGE,
YEARS, A
1.25
80% | FUDE AND BASE IN CFS, AND ANNUA 2 50% | PROBABILI
D ON PERI
FOR INDI-
L EXCEEDA
5
20% | TY OF IN OD OF RE | ISTANTANE
CORD 196
CURRENCE
BABILITY,
25
4\$ | OUS PEAK F
1-81
INTERVAL,
IN PERCEN
50 1
2% | IN NT 100 118 | PERIOD (CON-
SECU-
TIVE DAYS) 1 3 7 15 30 60 90 | DISCI 2 50\$ 62100 46700 31900 15700 12800 10900 | HARGE, I INTER EXCEEDA 5 20% 95100 72000 49500 31000 21700 17400 14500 | N CFS, F VAL, IN NCE PROB 10 10% | RECORD 1' | TED RECUF
D ANNUAL
IN PERCEN
50
2% | 100
1% | | MAGNIT
SCHARGE,
YEARS, /
1.25
80\$ | FUDE AND BASE IN CFS, AND ANNUA 2 50% | PROBABILI
D ON PERI
FOR INDI-
L EXCEEDA
5
20% | TY OF IN OD OF RECATED RENCE PROBLEM 10 10% | ISTANTANE CORD 196 CURRENCE SABILITY, 25 4% | OUS PEAK F
1-81
INTERVAL,
IN PERCEN
50 1
2% | IN UT | PERIOD (CON-
SECU-
TIVE DAYS) 1 3 7 15 30 60 90 | DISCI 2 50% 62100 46700 31900 20700 15700 12800 10900 | 95100
72000
31000
21700
17400
17400
17500
17500
17500
17600
17600 | N CFS, F
VAL, IN
NCE PROB
10
10%
 | RECORD 1 OR INDICA YEARS, AN ABILITY, 25 4% 134000 104000 73000 44300 27300 21100 117200 | TED RECUF
D ANNUAL
IN PERCEN
50
2% | 100
17 | ## CHETCO RIVER BASIN 243 ## 14400000 CHETCO RIVER NEAR BROOKINGS, OR LOCATION.--Lat 42°07'25", long 124°11'10", in SE½ sec.12, T.40 S., R.13 W., Curry County, Hydrologic Unit 17100312, on right bank 16 ft upstream from bridge, 0.5 mi upstream from Elk Creek, 6.8 mi northeast of Brookings, and at mile 10.7. DRAINAGE AREA .-- 271 mi2. 10100 6140 4290 3240 2530 2060 1330 757 397 218 168 129 104 70 PERIOD OF RECORD. -- October 1969 to September 1982. GAGE.--Water-stage recorder. Altitude of gage is 50 ft, from topographic map. REMARKS.--No regulation or diversion above station. AVERAGE DISCHARGE.--13 years, 2,320 ft³/s, 116.26 in/yr, 1,681,000 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 65,800 ft³/s Jan. 16, 1971, gage height, 27.45 ft; minimum, 45 ft³/s Oct. 21-23, 1974. EXTREMES OUTSIDE PERIOD OF RECORD.—Flood of Dec. 22, 1964, reached a stage of 32.25 ft, from high-water mark on bridge pier, discharge, 85,400 ft³/s, from rating curve extended above 45,000 ft³/s. | М | ONTHLY AN | ID ANNUAL | MEAN DI | SCHARGES | 1970-82 | | M/ | | | | OF ANNUA
RECORD 1 | |)W | |--|--|---|--|---|--|-------------------------|---|---|---|---|---|--|------------| | | MJNIMUM | MAXIMUM | MEAN | STAN-
DARD
DEVIA-
TION | COEFFI-
CIENT OF | PERCENT
OF
ANNUAL | PERIOD
(CON-
SECU- | DISC | INTERVA | L, IN YE | OR INDICA
ARS, AND
ABILITY, | ANNUAL NO |)N- | | MONTH | (CFS) | (CFS) | (CFS) | (CFS) | ATION | RUNOFF | TIVE
DAYS) | 2
50 % | 5
20 % | 10
10% | 20
5% | 50
2% | 100
1% | | OCTOBER | 61 | 2540 | 706 | 723 | 1.02 | 2.5 | 1 | 66 | 54 | 49 | 46 | | | | NOVEMBER | 229 | 10230 | 3656 | 3031 | .83 | 13.1 | 3 | 67 | 54 | 50 | 47 | | | | DECEMBER | 121 | 12770 | 5615 | 3330 | .59 | 20.1 | . 7 | 68 | 55 | 50 | 47 | | | | JANUARY | 479 | 13150 | 5467 | 3161 | .58 | 19.6 | 14 | 70 | 57 | 52 | 48 | | | | FEBRUARY | 619 | 8292 | 4215 | 2319 | •55 | 15.1 | 30 | 75 | 61 | 55 | 51 | | | | MARCH | 1768 | 6830 | 3842 | 1955 | .51 | 13.8 | 60 | 88 | 67 | 60 | 55 | | | | APRIL | 674 | 6956 | 2478 | 1649 | •67 | 8.9 | 90 | 110 | 81 | 71 | 65 | | | | MAY | 430 | 2508 | 1040 | 599 | -58 | 3.7 | 120 | 147 | 102 | 88 | 80 | | | | JUNE | 229 | 728 | 363 | 130 | .36 | 1.3 | 183 | 327 | 211 | 165 | 133 | | | | JULY | 121 | 268 | 167 | 39 | .23 | •6 | | | | | | | | | AUGUST | 75 | 231 | 115 | 53 | .46 | .4 | | | | | | | | | | 61 | 1532 | 269 | 400 | 1.49 | 1.0 | | | | | | | | | SEPTEMBER | 01 | .,,,, | | | | | | | | | | | | | ANNUAL | 549
TUDE AND | 3911 | | | .39
OUS PEAK
0-82 | 100
FLOW |
MA | | | | OF ANNUAL | |
.OW | | MAGNIT | 549 FUDE AND BASE | 3911
PROBABILI
D ON PERI | ITY OF IN | NSTANTANE
ECORD 197 | 0US PEAK
0-82 | FLOW | PERIOD (CON- | BASI | HARGE, II | N CFS, FO | | 970-82
TED RECUR
D ANNUAL | RENCE | | DISCHARGE,
YEARS, A | 549 FUDE AND BASE IN CFS, AND ANNUA | 3911 PROBABILI D ON PERI FOR INDI | ITY OF IN
IOD OF RE | NSTANTANE
ECORD 197
ECURRENCE
BABILITY, | OUS PEAK
0-82
INTERVAL
IN PERCE | FLOW | PERIOD | BASI | HARGE, II | N CFS, FO | RECORD 19 OR INDICAT YEARS, AND | 970-82
TED RECUR
D ANNUAL | RENCE | | MAGNIT
MAGNIT
DISCHARGE,
YEARS, A | 549 FUDE AND BASE IN CFS, | 3911 PROBABIL! D ON PERI FOR INDI | ITY OF IN
IOD OF RE | NSTANTANE
ECORD 197
ECURRENCE
BABILITY, | OUS PEAK
O-82
INTERVAL
IN PERCE | FLOW
, IN
NT | PERIOD
(CON-
SECU-
TIVE | DISCI | HARGE, II INTERI EXCEEDAI | N CFS, FO
VAL, IN NCE PROBA | OR INDICAT
YEARS, AND
ABILITY, I | 970-82 FED RECUR O ANNUAL IN PERCEN | RENCE | | MAGNIT
DISCHARGE,
YEARS, A | 549 FUDE AND BASE IN CFS, AND ANNUA | 3911 PROBABILI D ON PERI FOR INDI | ITY OF IN
IOD OF RE | NSTANTANE
ECORD 197
ECURRENCE
BABILITY, | OUS PEAK
0-82
INTERVAL
IN PERCE | FLOW
, IN
NT | PERIOD
(CON-
SECU- | DISCI | HARGE, II | N CFS, FO | RECORD 19 OR INDICAT YEARS, AND ABILITY, 1 | 970-82 FED RECUR O ANNUAL IN PERCEN | RENCE | | MAGNIT
DISCHARGE,
YEARS, A | 549 TUDE AND BASE IN CFS, AND ANNUA 2 50% | 3911 PROBABILID ON PERI | ITY OF IN
IOD OF RE
ICATED RE
ANCE PROE | NSTANTANE
ECORD 197
ECURRENCE
BABILITY, | OUS PEAK
0-82
INTERVAL
IN PERCE | FLOW
, IN
NT | PERIOD
(CON-
SECU-
TIVE | DISCI | HARGE, II INTERI EXCEEDAI | N CFS, FO
VAL, IN NCE PROBA | OR INDICAT
YEARS, AND
ABILITY, I | 970-82 FED RECUR O ANNUAL IN PERCEN | RENCE
T | | MAGNITA DISCHARGE, YEARS, A 1.25 80% | TUDE AND BASE IN CFS, ND ANNUA 2 50\$ | 3911 PROBABILID ON PERI FOR INDI L EXCEEDA 5 20\$ | ITY OF IN
IOD OF RE
ICATED RE
ANCE PROE | NSTANTANE
ECORD 197
ECURRENCE
BABILITY,
25'
4% | OUS PEAK
0-82
INTERVAL
IN PERCE | FLOW
, IN
NT | PERIOD (CON-
SECU-
TIVE
DAYS) | DISCI | HARGE, II
INTER
EXCEEDAN
5
20% | N CFS, FO
WAL, IN N
NCE PROB
10
10% | OR INDICAT
YEARS, AND
ABILITY, I | 970-82 FED RECUR O ANNUAL IN PERCEN | RENCE
T | | MAGNITA DISCHARGE, YEARS, A 1.25 80% | 549 TUDE AND BASE IN CFS, AND ANNUA 2 50% | 3911 PROBABILID ON PERI FOR INDI L EXCEEDA 5 20\$ | ITY OF IN
IOD OF RE
ICATED RE
ANCE PROE | NSTANTANE
ECORD
197
ECURRENCE
BABILITY,
25'
4% | OUS PEAK
0-82
INTERVAL
IN PERCE | FLOW
, IN
NT | PERIOD
(CON-
SECU-
TIVE
DAYS) | DISCI | HARGE, II
INTER'
EXCEEDAN
5
20% | N CFS, FO
VAL, IN N
NCE PROB | RECORD 19 OR INDICAT YEARS, AND ABILITY, 1 25 45 | FED RECUR
O ANNUAL
IN PERCEN
50
2% | RENCE
T | | MAGNITA DISCHARGE, YEARS, A 1.25 80% | TUDE AND BASE IN CFS, ND ANNUA 2 50\$ | 3911 PROBABILID ON PERI FOR INDI L EXCEEDA 5 20\$ | ITY OF IN
IOD OF RE
ICATED RE
ANCE PROE | NSTANTANE
ECORD 197
ECURRENCE
BABILITY,
25'
4% | OUS PEAK
0-82
INTERVAL
IN PERCE | FLOW
, IN
NT | PERIOD
(CON-
SECU-
TIVE
DAYS) | DISCI
2
50%
30200
22900
16700 | HARGE, II
INTER'
EXCEEDAN
5
20%
41400
32400
23200 | N CFS, FO
WAL, IN N
NCE PROB
10
10% | OR INDICAT
YEARS, AND
ABILITY, 1
25
4% | FED RECURD ANNUAL IN PERCEN | RENCE
T | | MAGNITA DISCHARGE, YEARS, A 1.25 80% | TUDE AND BASE IN CFS, ND ANNUA 2 50\$ | 3911 PROBABILID ON PERI FOR INDI L EXCEEDA 5 20\$ | ITY OF IN
IOD OF RE
ICATED RE
ANCE PROE | NSTANTANE
ECORD 197
ECURRENCE
BABILITY,
25'
4% | OUS PEAK
0-82
INTERVAL
IN PERCE | FLOW
, IN
NT | PERIOD
(CON-
SECU-
TIVE
DAYS) | DISCI 2 50% 30200 22900 16700 11200 | HARGE, II
INTER'
EXCEEDAN
5
20% | N CFS, FO
WAL, IN N
NCE PROB
10
10% | RECORD 19 OR INDICAT YEARS, AND ABILITY, 19 25 4% 52400 43800 | FED RECURD ANNUAL IN PERCEN | 100
1\$ | | MAGNITA DISCHARGE, YEARS, A 1.25 80% | TUDE AND BASE IN CFS, ND ANNUA 2 50\$ | 3911 PROBABILID ON PERI FOR INDI L EXCEEDA 5 20\$ | ITY OF IN
IOD OF RE
ICATED RE
ANCE PROE | NSTANTANE
ECORD 197
ECURRENCE
BABILITY,
25'
4% | OUS PEAK
0-82
INTERVAL
IN PERCE | FLOW
, IN
NT | PERIOD (CON-
SECU-
TIVE DAYS) | DISCI
2
50%
30200
22900
16700
11200
8870 | HARGE, II
INTER
EXCEEDAN
5
20%
41400
32400
23200
15700
11800 | N CFS, FI
VAL, IN VICE PROB.
10 10%
47000
37900
26600
18300 | DR INDICATION TO THE PROPERTY OF | 770-82 FED RECUR D ANNUAL IN PERCEN 50 2% | 100
1% | | MAGNIT | TUDE AND BASE IN CFS, ND ANNUA 2 50\$ | 3911 PROBABILID ON PERI FOR INDI L EXCEEDA 5 20\$ | ITY OF IN
IOD OF RE
ICATED RE
ANCE PROE | NSTANTANE
ECORD 197
ECURRENCE
BABILITY,
25'
4% | OUS PEAK
0-82
INTERVAL
IN PERCE | FLOW
, IN
NT | PERIOD (CON-
SECU-
TIVE DAYS) | DISCI
2
50%
30200
22900
16700
11200
8870
7410 | HARGE, II
INTER'
EXCEEDAN
5
20%
41400
32400
23200
15700
11800
9940 | N CFS, FIVAL, IN NCE PROBATE 10 10% 10% 10% 10% 10% 10% 10% 10% 10% | DR INDICATE AND A STATE | FO TO | 100
1% | | MAGNIT | TUDE AND BASE IN CFS, ND ANNUA 2 50\$ | 3911 PROBABILID ON PERI FOR INDI L EXCEEDA 5 20\$ | ITY OF IN
IOD OF RE
ICATED RE
ANCE PROE | NSTANTANE
ECORD 197
ECURRENCE
BABILITY,
25'
4% | OUS PEAK
0-82
INTERVAL
IN PERCE | FLOW
, IN
NT | PERIOD (CON-
SECU-
TIVE DAYS) | DISCI
2
50%
30200
22900
16700
11200
8870 | HARGE, II
INTER
EXCEEDAN
5
20%
41400
32400
23200
15700
11800 | N CFS, FI
VAL, IN VICE PROB.
10 10%
47000
37900
26600
18300 | DR INDICATION TO THE PROPERTY OF | FED RECURD ANNUAL IN PERCEN | 100
1% | | MAGNITA DISCHARGE, YEARS, A 1.25 80% | TUDE AND BASE IN CFS, ND ANNUA 2 50\$ | 3911 PROBABILID ON PERI FOR INDI L EXCEEDA 5 20\$ | ITY OF IN OD OF RE | STANTANE
CORRENCE
BABILITY,
25-
4% | OUS PEAK
0-82
INTERVAL
IN PERCE
50
2% | FLOW , IN NT | PERIOD (CON-
SECU-
TIVE DAYS) | 30200
22900
16700
11200
8870
7410
6140 | HARGE, II
INTER'EXCEEDAN
5
20%
41400
32400
23200
115700
11800
9940
8140 | 10 OF IN CFS, FIVAL, IN NICE PROBI | DR INDICATE AND A STATE | FED RECURD ANNUAL IN PERCEN | 100
1% | | MAGNITA DISCHARGE, YEARS, A 1.25 80% | TUDE AND BASE IN CFS, ND ANNUA 2 50\$ | 3911 PROBABIL ON PERI FOR INDI L EXCEEDA 5 20%528 | ITY OF IN OD OF RE | NSTANTANE CORD 197 CCURRENCE SABILITY, 25- 4% 77500 | OUS PEAK 0-82 INTERVAL IN PERCE 50 2% | FLOW , IN NT 100 1% | PERIOD (CON-
SECU-
TIVE DAYS) | 30200
22900
16700
11200
8870
7410
6140 | HARGE, III INTER' EXCEEDAN 41400 32400 23200 115700 11800 9940 8140 DRD 1970- | 100 OF IN CFS, FIVAL, IN NOCE PROB. 10 10\$ 47000 37900 26600 13200 11000 8910 8910 | DR INDICAT YEARS, AND ABILITY, 1 25 4% 52400 43800 30100 21300 14400 11800 9500 | FED RECURD ANNUAL IN PERCEN | 100
1% | | • | | | |---|--|--| STATION | NO. STATION NAME | PAGE | |----------------------|---|-----------| | 14306500
14169300 | | 155
71 | | 14366000 | Applegate River near Applegate | 228 | | 14362000 | | 226 | | 14363000 | ., • | 227 | | 14369500 | Applegate River near Wilderville | 230 | | 14357500 | Bear Creek at Medford | 223 | | 14248700 | | 141 | | 14337500 | 5 | 210 | | 14306900 | y | 160 | | 14138800 | | 17 | | 14162200 | | 62 | | 14161100 | · · · · · · · · · · · · · · · · · · · | 59 | | 14162000 | | 61 | | 14179000 | | 81 | | 14139500 | | 20 | | 14138850 | | 18 | | 14201500 | Butte Creek at Monitor | 117 | | 14172000 | , | 77 | | 14172000 | · · · · · · · · · · · · · · · · · · · | 76 | | 14320700 | • | 188 | | 14139700 | 5 | 21 | | 14400000 | y | 243 | | 14209500 | =/ | 135 | | 14208000 | | 130 | | 14210000 | Clackamas River at Estacada: Before the construction of North Fork Dam | 136 | | | After the completion of North Fork Dam | 137 | | 14211000 | | 138 | | 14152500 | | 41 | | 14157000 | | 48 | | 14153500 | | 42 | | 14157500 | | 49 | | 14309000 | | 169 | | 14310000 | Cow Creek near Riddle | 171 | | 14167000 | | 70 | | 14308700 | Days Creek at Days Creek | 168 | | 14377500 | , | 240 | | 14312200 | | 177 | | 14306810 | | 159 | | 14306600 | | 156 | | STATION NO | STATION NAME | PAGE | |--|---|--| | 14353500
14205500
14372500
14322000
14308500
14338000
14350000 | East Fork Ashland Creek near Ashland East Fork Dairy Creek at Mountaindale East Fork Illinois River near Takilma Elk Creek near Drain Elk Creek near Drew Elk Creek near Trail Emigrant Creek near Ashland: Before Green Springs powerplant diversion | 222
125
134
190
167
212 | | | After Green Springs powerplant diversion | 220 | | 14151000
14150300
14306400
14306800 | Fall Creek below Winberry Creek, near Fall Creek Before construction of Fall Creek Dam | 37
38
35
154
158 | | 14204500
14204000
14163000
14371500 | Gales Creek near Forest Grove | 124
123
65
232 | | 14195000
14144900 | Haskins Creek near McMinnville | 109
25 | | 14377000
14378200
14377100
14378000
14331000 | Illinois River at Kerby Illinois River near Agness Illinois River near Kerby Illinois River near Selma Imnaha Creek near Prospect | 238
242
239
241
204 | | 14307700
14211500 | Jackson Creek near Tiller | 165
139 | | 14307500
14387580
14312500
14151500
14182500
14318000
14141500
14131000 | Lake Creek at Triangle Lake Lake Creek near Deadwood Lake Creek near Diamond Lake Little Fall Creek near Fall Creek Little North Santiam River near Mehama Little River at Peel Little Sandy River near Bull Run Little Zigzag River at Twin Bridges, near Rhododendron Long Tom River at Monroe: | 161
162
178
39
84
184
22 | | 14170000 | Before construction of Fern Ridge Dam | 72
73 | | 14166500
14311500
14161500 | Long Tom River near Noti Lookingglass Creek at Brockway Lookout Creek near Blue River | 69
175
60 | | STATION NO | . STATION NAME | PAGE | |----------------------------------|---|------------------| | 14190000
14189500
14190500 | Luckiamute River at Pedee | 99
98
100 | | 14171000
14206000
14159000 | Marys River near Philomath | 75
126 | | 14158500 | Before the construction of Smith River Dam | 54
55
51 | | 14158850
14165500
14165000 | McKenzie River below Trail Bridge Dam, near Belknap Springs McKenzie River near Coburg | 53
67 | | | Before the construction of Smith River, Cougar, and Blue River dams | 63 | | 14326500
14333000
14145500 | River dams | 64
197
205 | | | Before the construction of Hills Creek Dam After the completion of Hills Creek Dam | 26
27 | | 14152000
14148000 | Middle Fork Willamette River at Jasper | 40 | | | Before the construction of Hills Creek Dam | 32
33 | | 14150000 | Middle Fork Willamette River near Dexter | 34 | | 14144800 | Middle Fork Willamette River near Oakridge | 24 | | 14186500 | Middle Santiam River at mouth, near Foster | 91 | | 14185800
14186000 | Middle Santiam River near Cascadia | 88
90 | | 14306036 | Mill Creek near Toledo | 152 | | 14193300 | Mill Creek near Willamina | 106 | | 14165000
14198500 | Mohawk River near Springfield | 66 | | 14190000 | Mollala River above Pine Creek, near Wilhoit Molalla River near Canby | 113
114 | | 14156500 | Mosby Creek at mouth, near Cottage Grove | 47 | | 14156000 | Mosby Creek near Cottage Grove | 46 | | 14306700 | Needle Branch near Salado | 157 | | 14301000 | Nehalem River near Foss | 144 | |
14303600 | Nestucca River near Beaver | 149 | | 14302900
14303000 | Nestucca River near Fairdale | 147
148 | | 14306100 | North Fork Alsea River at Alsea | 153 | | 14138900 | North Fork Bull Run River near Multnomah Falls | 19 | | 14326800 | North Fork Coquille River near Fairview | 198 | | 14327000
14342500 | North Fork Coquille River near Myrtle Point North Fork Little Butte Creek at Fish Lake, near Lakecreek. | 199
217 | | エチフチムフひひ | norm fork title butte creek at FISH Lake, hear Lakecreek. | 411 | | STATION NO | STATION NAME | PAGE | |----------------------|---|------------| | 14343000 | North Fork Little Butte Creek near Lakecreek | 218 | | 14147500 | North Fork of Middle Fork Willamette River near Oakridge | 31 | | 14307645 | North Fork Siuslaw River near MINERVA | 164 | | 14311000 | North Myrtle Creek near Myrtle Creek | 173 | | 14183000 | North Santiam River at Mehama: | | | | Before the construction of Detroit and Big Cliff dams | | | | After the completion of Detroit and Big Cliff dams | 86 | | 14181500 | North Santiam River at Niagara: | | | | Before the construction of Detroit and Big Cliff dams | 82 | | | After the completion of Detroit and Big Cliff dams | 83 | | 14178000 | North Santiam River below Boulder Creek, near Detroit | 80 | | 14316500 | North Umpqua River above Copeland Creek, near Toketee Falls | 180
182 | | 14317500 | North Umpqua River above Rock Creek, near Glide | 179 | | 14315500
14319500 | North Umpqua River at Toketee Falls | 187 | | 14319500 | North Umpqua River near Glide | 185 | | 14197000 | North Yamhill River at Pike | 111 | | 14194300 | North Yamhill River near Fairdale | 108 | | 14196500 | North Yamhill River near Pike | 110 | | ,0500 | No. 711 January F. Maria Hadi F. Maria | | | 14209000 | Oak Grove Fork above powerplant intake: | | | . , | Before regulation by Timothy Lake | 133 | | | After regulation by Timothy Lake | 134 | | 14208500 | Oak Grove Fork at Timothy Meadows | 131 | | 14208700 | Oak Grove Fork near Government Camp | 132 | | 14311200 | Olalla Creek near Tenmile | 174 | | | | | | 14368500 | Powell Creek near Williams | 229 | | 14202000 | Pudding River at Aurora | 118 | | 14201000 | Pudding River near Mount Angel | 116 | | 14185900 | Quartzville Creek near Cascadia | 89 | | 14100900 | Qualifizative Greek Hear Cascadia | 09 | | 14333500 | Red Blanket Creek near Prospect | 206 | | 14190700 | Rickreall Creek near Dallas | 101 | | 14317600 | Rock Creek near Glide | 183 | | 14170500 | Rock Creek near Philomath | 74 | | 14327500 | Rogue River above Bybee Creek, near Union Creek | 200 | | 14328000 | Rogue River above Prospect | 201 | | 14339000 | Rogue River at Dodge Bridge, near Eagle Point | 213 | | 14361500 | Rogue River at Grants Pass | 225 | | 14359000 | Rogue River at Raygold, near Central Point | 224 | | 14330000 | Rogue River below Prospect | 202 | | 14335000 | Rogue River below South Fork Rogue River, near Prospect | 208 | | 14372300 | Rogue River near Agness | 233 | | 14337600 | Rogue River near McLeod | 211 | | STATION 1 | NO. STATION NAME | PAGE | |----------------------|---|------------| | 14154500
14155500 | Row River above Pitcher Creek, near Dorena | 43 | | | Before the construction of Dorena Dam | 44
45 | | 14146500 | Salmon Creek near Oakridge | 2 9 | | 14135500 | Salmon River above Boulder Creek, near Brightwood | 15
14 | | 14135000
14134500 | Salmon River at Welches | 13 | | 14134000 | Salmon River near Government Camp | 12 | | 14146000 | Salt Creek near Oakridge | 28 | | 14142500 | Sandy River below Bull Run River, near Bull Run | 23 | | 14137000 | Sandy River near Marmot | 16 | | 14189000 | Santiam River at Jefferson: | 96 | | | Before the construction of three upstream dams | 97 | | 14203000 | Scoggins Creek near Gaston | 121 | | 14305500 | Siletz River at Siletz | 150 | | 14200300 | Silver Creek at Silverton | 115 | | 14307620
14370000 | Siuslaw River near Mapleton | 163
231 | | 14158790 | Smith River above Smith River Reservoir, near Belknap Spgs. | 52 | | 14335500 | South Fork Big Butte Creek near Butte Falls | 209 | | 14324600 | South Fork Coquille River above Panther Creek, near Illahe. | 193 | | 14325000 | South Fork Coquille River at Powers | 196 | | 14324700
14324900 | South Fork Coquille River near Illahe | 194
195 | | 14324900 | South Fork Coquille River near Powers | 214 | | 14341500 | South Fork Little Butte Creek near Lakecreek: | 2 | | | Before diversion in Dead Indian Collection Canal | 215 | | | After diversion in Dead Indian Collection Canal | 216 | | 14159200 | South Fork McKenzie River above Cougar Lake, near Rainbow. | 56 | | 14159500 | South Fork McKenzie River near Rainbow: | 57 | | | Before the construction of Cougar Dam | 58 | | 14330500 | South Fork Rogue River above Imnaha Creek, near Prospect | 203 | | 14334700 | South Fork Rogue River, south of Prospect | 207 | | 14310700 | South Myrtle Creek near Myrtle Creek | 172 | | 14187500 | South Santiam River at Waterloo: | | | | Before construction of Green Peter and Foster dams | 93 | | 14185000 | After completion of Green Peter and Foster dams South Santiam River below Cascadia | 94
87 | | 14165000 | South Umpqua River at Tiller | 166 | | 14312000 | South Umpqua River near Brockway | 176 | | 14194000 | South Yamhill River near Whiteson | 107 | | 14192500 | South Yamhill River near Willamina | 104 | | STATION NO. | STATION NAME | PAGE | |----------------------|--|------------| | 14316700 | Steamboat Creek near Glide | 181 | | 14375100 | Sucker Creek below Little Grayback Creek, near Holland | 236 | | 14375000 | Sucker Creek near Holland | 235 | | 14319200 | Sutherlin Creek at Sutherlin | 186 | | 14323200 | Tenmile Creek near Lakeside | 191 | | 14188800 | Thomas Creek near Scio | 95 | | 14302500 | Trask River near Tillamook | 146 | | 14206500 | Tualatin River at Farmington | 127 | | 14207500 | Tualatin River at West Linn: Excluding flow in Oswego Canal | 128 | | | Including flow in Oswego Canal | 129 | | 14203500 | Tualatin River near Dilley | 122 | | 14202500 | Tualatin River near Gaston: | | | | Before Hillsboro water-supply diversion | 119 | | | After Hillsboro water-supply diversion | 120 | | 14321000 | Umpqua River near Elkton | 189 | | 14147000 | Waldo Lake Outlet near Oakridge | 30 | | 14353000 | West Fork Ashland Creek near Ashland | 221 | | 14309500 | West Fork Cow Creek near Glendale | 170 | | 14375500 | West Fork Illinois River below Rock Creek, near O°Brien | 237 | | 14324500 | West Fork Millicoma River near Allegany | 192 | | 14187000 | Wiley Creek near Foster | 92 | | 14174000 | Willamette River at Albany: | | | | Before the construction of nine upstream reservoirs | 78 | | | After the completion of nine upstream reservoirs | 79 | | 14166000 | Willamette River at Harrisburg | 68 | | 14211700 | Willamette River at Portland | 140 | | 14191000 | Willamette River at Salem: | 400 | | | Before the construction of twelve upstream reservoirs | 102 | | 1.4450000 | After the completion of twelve upstream reservoirs | 103 | | 14158000 | Willamette River at Springfield | 50 | | 14198000
14193900 | Willamette River at Wilsonville | 112 | | | | 105 | | 14301500
14150800 | Wilson River near Tillamook | 145
36 | | 14170000 | willbeil y creek hear Lowell | 50 | | 14306030
14251500 | Yaquina River near Chitwood | 151 | | 14421200 | | 140 | | | Before water-supply diversion | 142
143 | | | 7.1.1C1 WG 1C1 TSUUULV ULVELSTUL ********************** | 14) |